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Abstract: Despite its interpretability and excellence in time series forecasting, the fuzzy
time series forecasting model (FTSFM) faces significant challenges when handling non-
stationary time series. This paper proposes a novel hybrid non-stationary FTSFM that
integrates time-variant FTSFM, Bayesian network (BN), and non-stationary fuzzy sets.
We first apply first-order differencing to extract the fluctuation information of the time
series while reducing non-stationarity. A novel time-variant FTSFM updating method is
proposed to effectively merge historical knowledge with new observations, enhancing
model stability while maintaining sensitivity to time series changes. The updating of
fuzzy sets is achieved by incorporating non-stationary fuzzy sets and prediction residuals.
Based on updated fuzzy sets, the system reconstructs fuzzy logical relationship groups
by combining historical and new data. This approach implements dynamic quantitative
modeling of fuzzy relationships between historical and predicted moments, integrating
valuable historical temporal fuzzy patterns with emerging temporal fuzzy characteristics.
This paper further develops an adaptive BN structure learning method with an adaptive
scoring function to update temporal dependence relationships between any two moments
while building upon existing dependence relationships. Experimental results indicate that
the proposed model significantly outperforms benchmark algorithms.

Keywords: bayesian network; fuzzy time series forecasting model; adaptive learning;
non-stationary time series forecasting; non-stationary fuzzy set

1. Introduction
The advancement of modern sensor technology has facilitated the proliferation of

automated data acquisition systems across diverse fields, resulting in the generation of ex-
tensive temporal observations. These data, structured as time series, document the dynamic
evolution of system states, establishing a fundamental basis for predictive analysis and
decision support. Numerous time series forecasting methods have been proposed [1,2].
The superior interpretability of fuzzy time series forecasting models (FTSFMs) has led to
their widespread application in various fields, including financial markets [3] and wind
energy [4]. FTSFMs utilize fuzzy sets to model systematic uncertainties in data, specifi-
cally imprecision and vagueness. Ref. [5] introduced the FTSFM to address time series
forecasting problems. The model first fuzzifies precise original data using fuzzy sets. Next,
it employs max–min composition operations on the fuzzified data to build a fuzzy relation
matrix that indicates the relationships between various time points. Using historical data
and the fuzzy relationship matrix, the model generates fuzzy forecast values, which are
converted into precise ones. Ref. [6] improved the model of [5] by replacing the complex
max–min operations with simpler arithmetic operations.

Sensors 2025, 25, 1628 https://doi.org/10.3390/s25051628

https://doi.org/10.3390/s25051628
https://doi.org/10.3390/s25051628
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s25051628
https://www.mdpi.com/article/10.3390/s25051628?type=check_update&version=1


Sensors 2025, 25, 1628 2 of 27

Traditional FTSFMs are optimized for stationary time series, assuming data genera-
tion from a fixed, albeit unknown, process. However, the time series generation process
often changes over time in practical applications. The dynamic nature of the generation
process is reflected by the data produced, which is called a non-stationary time series.
The probabilistic properties of non-stationary time series change irregularly over time [7].
The development of effective fuzzy time series forecasting methodologies for such non-
stationary data represents a critical research challenge.

FTSFMs struggle to keep pace with the dynamic variations of non-stationary time
series, affecting forecast accuracy. To address this challenge, researchers have employed
two primary approaches for reducing non-stationarity: differencing operations and decom-
position methods [8,9]. Ref. [10] demonstrated that training with first-order differentiated
data improves prediction accuracy compared with raw time series data. Ref. [11] proposed
an intuitionistic FTSFM using the percentage of first-order differenced data between con-
secutive time intervals. Additionally, utilizing empirical mode decomposition methods can
transform raw data into relatively more stationary multivariate time series [12,13]. Both
methods decompose the original time series into multiple subsequences known as intrin-
sic mode functions, which possess stronger stationarity than the original non-stationary
time series. However, these subsequences may incorporate future information, leading to
the so-called look-ahead bias [14]. The presence of look-ahead bias can severely distort
experimental results. While these stationarity transformation approaches can partially
mitigate non-stationarity, they cannot completely eliminate the dynamic nature inherent in
time series, necessitating fundamental improvements to FTSFMs to better accommodate
temporal variations.

Several improved FTSFMs have been developed to adapt to irregular changes in
non-stationary time series and reduce data non-stationarity. Ref. [5] defined the time-
variant FTSFM: if the fuzzy relation matrix changes over time, it is called a time-variant
FTSFM. Ref. [15] further explained the detailed implementation steps for the time-variant
FTSFM. For each prediction, a fuzzy relation matrix is built using historical data from a
preceding period, enabling the fuzzy relationships to change over time. The length of
the historical period is referred to as the window base. Many researchers have explored
time-variant FTSFMs and combined them with the aforementioned time series stabiliza-
tion methods. Ref. [16] utilized differenced time series for time-variant fuzzy time series
forecasting. Ref. [17] advanced the work of [16] by improving outlier handling, data fuzzifi-
cation, and window base determination. Ref. [18] proposed a novel time-variant FTSFM for
differenced seasonal data with a systematic search algorithm for the window base. Ref. [19]
presented a time-variant FTSFM incorporating a sliding window approach [20], where the
fuzzy relation matrix changes as the window slides. A propositional linear temporal logic
formula is proposed to analyze the data trend in the window, thereby supporting forecast-
ing. These time-variant FTSFMs aim to construct predictive models that can adapt to the
characteristics of the latest period of data. However, neglecting the valuable information
in previously trained models may result in reduced prediction quality. Since new data
evolves from historical data, fully utilizing previously trained models becomes crucial for
improving prediction accuracy on incoming data.

FTSFMs quantify the imprecision and vagueness within time series using fuzzy set
theory. It is challenging for fixed fuzzy sets to accommodate dynamic changes in non-
stationary time series. Ref. [21] proposed the definition of the non-stationary fuzzy set
for dynamically adjusting fuzzy sets. A non-stationary fuzzy set is created by integrating
a basic fuzzy set with a perturbation function, where the parameters of the membership
function change according to the values of the perturbation function at different time
points. Ref. [22] applied non-stationary fuzzy sets to FTSFMs to predict non-stationary
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time series with trends and scale changes, with interpolation functions serving as perturba-
tion functions. Ref. [23] introduced a non-stationary fuzzy time series (NSFTS) forecasting
model capable of handling non-stationary and heteroskedastic time series. The NSFTS
model utilizes a residual-based perturbation function to adaptively adjust the membership
function parameters of the basic fuzzy set, reflecting changes in the non-stationary time se-
ries. The numerical forecast is calculated by combining the midpoints of the right-hand side
(RHS) of each matched rule and the membership grades of the observations. Non-stationary
fuzzy sets-based forecasting models perform well in short-term non-stationary time se-
ries forecasting. However, the unchanging fuzzy relationships limit their performance in
long-term non-stationary time series forecasting.

Ref. [24] proposed a time-varying FTSFM that incorporates non-stationary fuzzy
sets to improve the accuracy of wind power predictions. The model handles time series
variability by dividing the series into segments, each with unique membership and partition
functions. Adjustments to membership function parameters employ non-stationary fuzzy
set methods to suit non-stationary time series. The model retrains using the latest data
window when the most recent prediction error surpasses a predefined threshold to reduce
computational requirements. While [24] offers computational efficiency, its strategy of
maintaining only the fuzzy relationships from the latest data window may result in the loss
of valuable temporal patterns embedded in historical relationships, potentially limiting the
model’s ability to capture long-term temporal relationships.

Apart from adaptively adjusting fuzzy sets in the fuzzification stage, adaptive methods
have been employed to enhance other aspects of FTSFMs, thereby better accommodat-
ing the dynamic nature of non-stationary time series. Ref. [25] proposed an adaptive
method that automatically modifies the order of the FTSFM based on prediction accuracy
for forecasting various data. Ref. [26] applied the adaptive expectation model [27,28] to
optimize the forecast outcomes of a trend-weighted FTSFM following the initial forecasts
from the FTSFM. The adaptive expectation model adjusts the forecast value using the
difference between it and the observation at the previous time point. Ref. [29] utilized a
modified adaptive expectation model with adaptive parameters to enhance forecasting per-
formance. Changes in the adaptive expectation model parameters indicate stock fluctuation
and oscillation.

Ref. [30] introduced the Bayesian network (BN) concept. A BN represents knowledge
through a probabilistic graph, with nodes denoting random variables and directed edges
indicating the dependence relationships between variables. The strength of dependence
between two variables is represented by their conditional probability distributions (CPDs)
within a BN. The initial task when constructing a BN is to establish the BN structure that
depicts the dependence relationships among variables. These relationships serve to model
the causal interactions within the system. The BN structure can be manually set based on
domain knowledge. In certain situations, the dependence relationships among variables
are unknown and need to be inferred from data. Due to the advantages of modeling
dependence relationships and handling statistical uncertainty in complex systems, several
studies have applied BNs to time series forecasting. Ref. [31] initially applied BN structure
learning to determine the dependence relationships in the price-earnings ratio at various
time points, representing these as a BN structure. The CPDs of the time points were
determined through BN parameter learning. Given historical observations at previous
time points, the BN conducts probabilistic inference to generate the predicted values.
Ref. [32] leveraged domain knowledge to construct the BN structure after determining
the set of variables. The prediction phase initially utilized a BN to forecast the stochastic
vehicular speed, followed by error compensation performed by a backpropagation neural
network. Ref. [33] utilized Bayesian networks to discover direct and indirect dependence
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relationships across various time points in time series. Potential temporal patterns were
modeled by integrating the BN structure with fuzzy logic relationships (FLRs). The study
developed fuzzy empirical probability-weighted fuzzy logical relationship groups (FLRGs)
to model statistical and systematic uncertainties, fully accounting for both relationships.
In the above BN-based time series forecasting model, once dependence relationships
are set based on all training data, they remain unchanged. This restriction reduces the
model’s flexibility, which is necessary for effective time series forecasting in many situations.
Ref. [34] proposed a method to construct BNs at each time point using data from a preceding
period. With this approach, we can intuitively observe changes in the causal relationships
within the system. Experimental results from the U.S. and Chinese stock markets indicate
that the BN structure remains stable in the short term but changes over the long term. It
shows that a fixed BN alone is inadequate for capturing the changing characteristics of the
time series. In other words, changes in the dependencies within the BN structure can reflect
the diversity of causal relationships in time series. Therefore, to enhance the BN’s ability to
model complex relationships in non-stationary time series, it is necessary to develop BN
structure learning methods that dynamically change based on input data.

In this study, we present a new hybrid FTSFM to enhance the accuracy of non-
stationary time series forecasting. The proposed method begins by performing first-
order differencing on the raw time series data. This differencing operation reduces non-
stationarity while extracting information, producing a variation time series that captures
fluctuations between adjacent time points. We establish the initial FTSFM using the training
set of the variation time series. BN and fuzzy logical relationships (FLRs) represent the
data’s temporal patterns. The BN structure visually illustrates the dependence relationships
between different time points in the variation time series. At the same time, FLRs capture
the fuzzy relationships between historical and forecasting moments after fuzzifying the
variation time series. Uncertainty in the variation of time series is quantitatively described
using FLRGs weighted by fuzzy empirical probabilities, which aggregate the membership
values of corresponding FLRs within each FLRG. During the forecasting phase, we employ
a sliding window approach, dividing the entire prediction dataset into multiple forecasting
windows. The model remains unchanged within each window. The decision to update the
existing model is based on its forecasting performance in the previous window. If no up-
date is required, predictions are generated using the existing model; otherwise, the model
is updated before predicting. When model updates are required, the proposed method
employs a comprehensive updating mechanism: utilizing the training data for the existing
model as old data and the actual observations from all prediction windows since the last
model update as new data. The proposed method adjusts the parameters of non-stationary
fuzzy sets using prediction residuals of the new data, achieving smooth transitions of fuzzy
sets to respond to dynamic changes in the variation time series. The adaptive BN structure
learning method employs a novel adaptive structure scoring function using old and new
data, enhancing structural adaptability to new data while preserving valuable information
from the dependence relationships in the existing BN. The model then reconstructs fuzzy
empirical probability-weighted FLRGs using the updated BN and non-stationary fuzzy
sets. After completing the model update, the framework generates predictions using the
updated FLRGs and BN. The main contributions of this study are as follows:

1. We propose a novel hybrid FTSFM that integrates time-variant FTSFM, BN, and non-
stationary fuzzy sets. The traditional time-variant FTSFM update strategy handles
the dynamic update of fuzzy relationships. BN structure learning captures adaptive
changes in temporal dependence relationships between specific time points. Non-
stationary fuzzy sets address irregular changes in data imprecision. This multi-
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dimensional modeling strategy significantly enhances the model’s adaptability and
forecasting accuracy for non-stationary time series.

2. We develop an adaptive BN structure updating method with a novel dynamic scor-
ing mechanism. The proposed method enables continuous refinement of temporal
dependence relationships while preserving crucial historical patterns, thereby achiev-
ing an optimal balance between stability and adaptability in temporal relationship
modeling.

3. We introduce a novel non-stationary fuzzy set approach that enhances existing meth-
ods through an innovative residual-based perturbation mechanism. This perturbation
function enables each fuzzy set to share the impact of prediction residuals through
distinct displacement degrees, facilitating smooth transitions of fuzzy sets. It ensures
the model’s sensitivity to changes in the vagueness of non-stationary time series while
enhancing its stability.

The remaining sections of this paper are structured as follows. In Section 2, we provide
a detailed explanation of FTSFMs and BNs serving as the basis for the proposed algorithm.
Section 3 provides an in-depth description of the proposed FTSFMs with BNs in non-
stationary environments. Experimental result analyses are presented in Section 4. Section 5
concludes the paper.

2. Preliminaries
In this section, basic definitions of FTSFMs, non-stationary fuzzy sets, and BNs are

briefly presented.

2.1. Basic Concepts of Fuzzy Time Series Model

Let U be the universe of discourse. A fuzzy set A on U is expressed as

A =
∫

u∈U
µA(u)/u, (1)

where µA denotes the membership function of A, µA : U 7→ [0, 1]. µA(u) is the membership
grade of u ∈ U, and µA(u) ∈ [0, 1]. Let the parameters of µA be p1, . . . , pm. µA(u) can be
expressed as µA(u, p1, . . . , pm).

A triangular fuzzy set A takes the triangular function as the underlying membership
function. Denote the lower, midpoint, and upper values of the triangle as a, b, and c,
respectively. The membership function is defined as

µA(u, a, b, c) =


(u− a)/(b− a), a ≤ u ≤ b

(c− u)/(c− b), b ≤ u ≤ c

0, else.

(2)

Suppose a time series Y = {yt|t ∈ T} is given with yt ∈ R. Fuzzy sets A1, ..., AI are
defined on the universe of discourse U. Membership grades of yt belong to the fuzzy sets
formed from the fuzzified data ft = [µA1(yt), . . . , µAI (yt)] at the moment t. F is the fuzzy
time series defined on Y with the collection of ft.

When ft results from ft−h, ..., ft−1, FLRs represent the fuzzy relationship between the
antecedent moments t− h, ..., t− 1 and the consequent moment t. An FLR for ft−h, ..., ft

has the format At−h
i , ..., At−1

i → At
i , where the membership grade of yt−k on the fuzzy set

At−k
i (k = 0, ..., h) is greater than zero. Each combination of { ft−k}0

k=h can yield mul-
tiple FLRs, given that each ft−k may comprise multiple elements with non-zero mem-
bership grades. FLRs that have the same left-hand side constitute an FLRG denoted as
At−h

i , ..., At−1
i → Ak1 , Ak2 , · · · .
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2.2. Non-Stationary Fuzzy Set

Ref. [21] introduced non-stationary fuzzy sets with the help of the non-stationary
membership function and the perturbation function. The non-stationary membership
function reflects the temporal variability present in membership functions. The perturbation
function calculates the dynamic component of function parameters when the membership
function changes. Non-stationary fuzzy sets reflect data change through positional shifts,
changes in width, and noise-induced variations in the membership grade.

A non-stationary fuzzy set Ȧ is denoted as follows:

Ȧ =
∫

t∈T

∫
u∈U

µȦ(t, u)/u/t, (3)

where T contains a series of time points and µȦ(t, u) : T×U 7→ [0, 1] is the non-stationary
membership function. µȦ(t, u) changes over time in the time interval T, which can be
expressed as

µȦ(t, u) = µA(u, p1(t), . . . , pm(t)). (4)

pi(t) = pi + cibi(t) with a time-variant perturbation function bi(t) and a constant ci for
i = 1, . . . , m.

2.3. Bayesian Network

Bayesian networks have demonstrated their remarkable effectiveness for complex
data-analysis problems [35]. The BN is a member of probabilistic graphical models. BNs
can represent the latent patterns within data by incorporating a set of variables and their
dependence in the form of directed acyclic graphs. A BN includes Nv nodes representing
random variables. Values of these nodes are possible observations of the variables. BNs
visually represent conditional independence through directed acyclic graphs. A BN also
utilizes an adjacency matrix G representing the edges between variables, with Gij = 1
indicating the directed dependence relationship from the i-th node to the j-th node. The
CPD P(Xi|Pai) for the i-th node represents the strength of the dependence between the
i-th node and its parent nodes Pai. P(Xi = xi|Pai = paj) denotes the probability of the
value xi of the i-th node given the j-th set of observations paj of parent nodes Pai. The
directed acyclic graph of a BN factorizes the joint probability distribution over variables
X = {X1, . . . , XNv}:

P(X1, . . . , XNv) =
Nv

∏
i=1

P(Xi|Pai) (5)

Representing dependence relationships between variables in a BN requires acquiring
the directed acyclic graph structure through learning methods, typically achieved using
BN structure learning techniques. Apart from structure learning, BN learning also includes
parameter learning. Parameter learning involves the determination of CPD parameters,
while structure learning aims at generating the adjacency matrix to discover dependence
relationships between variables. Structure and parameter learning are interdependent,
as parameter learning needs the BN structure to identify the parents of each node before
computing CPDs. Moreover, parameter learning is essential for evaluating the matching
degree of a candidate network structure and the data.

Data-driven BN structure learning methods principally fall into two categories:
constraint-based algorithms and score-based algorithms. The core idea of the latter is
to explore the space of all potential directed acyclic graphs using a search strategy to select
the optimal graph based on the values yielded from a scoring function on the gathered
data. The present research employs a score-based structural learning method using the hill-
climbing search method and Bayesian information criterion (BIC) as the score function [36].
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The BIC scoring function offers the benefit of decomposability and clear intuitiveness. The
BIC score approximates the marginal likelihood function as follows:

BIC(G|D) = log P(G|D)− f (G|D), (6)

where log P(G|D) is the logarithm likelihood of the graph structure G given the dataset D.
The CPD parameters are determined by the maximum likelihood estimation algorithm. The
penalty term f (G|D) = Nparams/2 · log ND helps prevent overfitting. Nparams represents the
count of parameters in all CPDs within the BN. The dataset D contains ND data instances.
The BIC function for a BN can be factorized as

BIC(G|D) = ∑
i

BIC(Xi|Pai, D) = ∑
i

log P(Xi|Pai, D)− f (Xi|D),

where BIC(Xi|Pai, D) is the BIC score of the variable Xi and f (Xi|D) = Nparamsi /2 · log ND.
The hill-climbing method is a widely used search algorithm. The search starts with

an initial model, which can either be an empty graph or a specific graph. Each search
iteration produces candidate models derived from a single modification of the current
model. When applying the hill-climbing algorithm to BN structure learning, the model with
superior performance is preserved by comparing the scores of each candidate model and the
current model via the scoring function. Operations such as adding, deleting, or reversing
an edge generate candidate models during each iteration. As the BIC score function is
decomposable, the comparison between candidate models and the current model can focus
solely on the score of their dissimilar segments. Combining domain knowledge with a
data-driven learning method is a common practice in BN learning. This paper models the
BN structure by blending temporal adjacency relationships as domain knowledge with raw
time-series data. A detailed description of the hill climbing and BIC-based BN structure
learning method is introduced in [33].

3. Proposed Method
This section introduces a novel FTSFM, abbreviated as TV-NS-BN-PWFTS (Time-

Variant Non-Stationary Bayesian Network-based Probabilistic Weighted Fuzzy Time Series),
which incorporates adaptive structure learning of BN and non-stationary fuzzy set into the
time-variant FTSFM based on the fundamental concepts mentioned earlier.

The proposed methodology consists of two primary phases: initial model construction
during training (Section 3.1), followed by a dynamic forecasting process utilizing a sliding
window approach (Section 3.2). During the forecasting phase, the model continuously
monitors prediction residuals from the most recent window. When these residuals exceed a
preset threshold value, the model updates using data from existing available prediction
windows before generating predictions for the current window. Figure 1 depicts the
workflow of the proposed model. The following are descriptions of the various stages of
the proposed method.

3.1. Training Procedure

Traditional FTSFMs focus on capturing the intrinsic patterns in time series by estab-
lishing fuzzy relationships and using fuzzy sets and membership degrees to qualitatively
and quantitatively describe systematic uncertainty. The Bayesian network-based proba-
bilistic weighted fuzzy time series (BN-PWFTS) model proposed by [33] models temporal
patterns in time series by combining BN and FLRs. BN fully considers direct and indirect
dependence relationships between different time points, thus incorporating additional
information about potential patterns beyond fuzzy relationships, providing more infor-
mation for modeling the uncertainty of future time series values. To model systematic
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and statistical uncertainties, BN-PWFTS defines BN-based probabilistic weighted FLRGs.
The probabilistic weights of elements in an FLRG are calculated as fuzzy empirical condi-
tional probabilities using dependence relationships and membership degrees. The weights
assigned to the antecedent and consequent components of FLRGs are determined by sys-
tematically incorporating the fuzzy empirical conditional probabilities of their constituent
elements, leveraging the established dependency relationships. Although BN-PWFTS
makes predictions by modeling interrelationships and uncertainties in time series, it lacks
the ability to adapt to non-stationary changes in the time series. To address this limitation,
we propose an enhanced model, TV-NS-BN-PWFTS, which not only preserves the advan-
tages of BN-PWFTS but also effectively handles non-stationarity in time series data. In
order to develop an effective initial model that can adequately capture both the intricate
patterns and underlying uncertainties within time series data, we have adopted the train-
ing methodology from the fuzzy time series forecasting model proposed by [33]. In the
training procedure, first-order differencing is conducted to decrease the non-stationarity
of the time series, producing a differenced time series that captures variations between
consecutive observations. Subsequently, the BN-PWFTS training process is employed to
capture the intricate temporal relationships and uncertainties in the differenced time series.
Algorithm 1 contains a detailed description of the training procedure.

Figure 1. The flow chart of the proposed model.

Algorithm 1 Training procedure

Input: Ytr
t —the original value at the time point t in the training dataset, ω—the order

of FTSFM.
Output: FG—BN-based probabilistic weighted fuzzy logical relationship groups

(BN-PWFLRGs), B—the trained BN, Ā—fuzzy sets, Z—partition functions.
// Non-stationary time series stabilization

1: Compute the variation in time series between two adjacent time points YD as
YDt = Ytr

t −Ytr
t−1.

// Fuzzy set construction
2: Define U as the universe of discourse of YD, and split U into I equal-length intervals
{Ui} with midpoints {mi}. The fuzzy sets Ā = {Ai} are built on U with membership
functions µAi (), where 1 ≤ i ≤ I.
// Time series fuzzification
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3: Generate the fuzzified time series F = { ft} = {[µA1(YDt), . . . , µAI (YDt)]}. 0 ≤
µAi (YDt) ≤ 1.
// Fuzzy relationship modeling

4: Generate FLRs from the fuzzified data with the format At−ω
i , ..., At−1

i → At
i . Multiple

FLRs may be generated for some given set of time points.
5: Generate FLRGs FG = {FGAilhs

} = {At−ω
i , ..., At−1

i → Ak1 , Ak2 , · · · } by gathering all

FLRs with the same left-hand side (LHS) Ailhs = At−ω
i , ..., At−1

i .
// BN structure learning for dependence relationship modelling

6: YD is transformed into a ω + 1-variate dataset C = {c1, c2, ..., cT1−ω}. ct =

[YDt−ω, ..., YDt] represents a series of observations of ω historical time points and
a prediction moment t.

7: Taking observations of the ω + 1 moments as variable values, construct dependence
relationships between these moments as a BN B using a hill-climbing algorithm and
BIC (Equation (6)) based BN structure learning method.
// BN-based fuzzy empirical probability calculation

8: for 0 ≤ k ≤ ω do
9: Compute the fuzzy empirical conditional probability P(At−k

i |A
Pat−k
j ) of the moment

t− k in an FLRG. P(At−k
i |A

Pat−k
j ) is determined below:

P(At−k
i |A

Pat−k
j ) =

∑YDt−k ,pat−k
µAi (YDt−k)µA

Pat−k
j

(pat−k)

∑i ∑YDt−k ,pat−k
µAi (YDt−k)µA

Pat−k
j

(pat−k)
, (7)

where APat−k
j is the j-th fuzzy set group for the parent moments of t − k identified

by the learned B. pat−k is the set of observations in YD for the parent moments.
µ

A
Pat−k
j

(pat−k) denotes the product of the membership degrees of the parent moments

∏s∈Pat−k
µAis

(pas).
10: end for
11: Compute the fuzzy empirical probability of the LHS of an FLRG with Ailhs based on

the fuzzy empirical conditional probabilities of historical time points according to
Equations (5) and (7).

P(Ailhs) =
1

∏
k=ω

P(At−k
i |A

Pat−k
j ). (8)

12: Compute the fuzzy empirical probabilities of the RHS of an FLRG with Ailhs according
to Bayes rule

P(At
i |Ailhs) =

P(At
i , Ailhs)

P(Ailhs)
. (9)

13: Calculate the partition functions Z = {ZAilhs
}

ZAilhs
= ∑

YDt−ω ,...,YDt−1∈U

1

∏
k=ω

µAt−k
i

(YDt−k). (10)

14: Assign weights of the LHS and RHS to construct the BN-PWFLRG FGAilhs
with the

format as P(Ailhs) · Ailhs → P(At
1|Ailhs) · A

t
1, · · · , P(At

I |Ailhs) · A
t
I .

15: return the set of BN-PWFLRGs FG = {FGAilhs
}, the learned BN B, the fuzzy sets Ā,

and the partition functions Z = {ZAilhs
}.
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3.2. Forecasting Procedure

In many non-stationary time series forecasting scenarios, newly arrived data often
deviates from previously observed patterns in historical data, presenting significant chal-
lenges to traditional FTSFM. To address this limitation, we propose a novel forecasting
procedure that incorporates a dynamic updating mechanism. This approach allows the
model to continuously adapt to the the uncertainty and temporal patterns within new
data, ensuring accurate predictions even when the underlying characteristics change over
time. The following section first introduces the dynamic updating mechanism for non-
stationary fuzzy sets and BN structure, followed by a detailed discussion of the complete
forecasting procedure.

3.2.1. Non-Stationary Fuzzy Set Updating with New Perturbation Function

In non-stationary time series forecasting, traditional fuzzy sets struggle to adapt to dy-
namic changes in data distribution. Ideally, once the perfect model captures all information
in the data, its prediction residuals should exhibit a standard normal distribution. Ref. [23]
therefore designed perturbation functions based on the mean and variance of residuals to
adjust non-stationary fuzzy set parameters, driving prediction residuals toward a standard
normal distribution. However, the uniform adjustment with residual means ignores the
different contributions of individual fuzzy sets to the residuals. We propose an improved
residual-based non-stationary fuzzy set perturbation function. The proposed non-stationary
fuzzy sets are built on the first-order differencing time series instead of the original time
series to capture additional non-stationary features. Unlike [23], our method updates the
fuzzy sets only when the model’s prediction performance for the current time period falls
below a threshold. The proposed perturbation function employs a uniform distribution
strategy to assign the residual mean to each fuzzy set, enabling gradual adjustments from
the original position towards the new arrival data. This strategy maintains the valuable
historical information within the existing fuzzy sets while promptly capturing the time
series’ evolving characteristics.

This paper designs a new non-stationary fuzzy set parameter adjustment method
based on triangular membership function Equation (2). For any non-stationary fuzzy set
Ai built on the differenced time series, its perturbed membership function is expressed as
µAi (YDt, p(ai, bi, ci, di, si)), where the perturbation function p(ai, bi, ci, di, si) is defined as:

p(ai, bi, ci, di, si) = {ai + di − si/2, bi + di, ci + di + si/2}, (11)

where di and si denote the displacement and scaling factors of fuzzy set Ai, respectively,
both computed based on prediction residuals. Let the residual mean be Ē and the variance
be σE. The displacement parameter di for fuzzy set migration based on residual statistics is
calculated as follows:

di =

 i·Ē
I + i 2σE

I−1 − σE, if Ē ≥ 0
(I−i)·Ē

I + i 2σE
I−1 − σE, if Ē < 0.

(12)

This design enables fuzzy sets to progressively approach the zero-mean residual direc-
tion through i·Ē

I as i increases while incorporating boundary scaling information via
i · 2σE/(I − 1)− σE. The coverage range of fuzzy sets is modulated by the scaling parameter

si = |di−1 − di+1|, (13)

which ensures smooth transitions between adjacent fuzzy sets. The proposed membership
function parameter adjustment mechanism enables fuzzy sets to dynamically adapt to the
non-stationary characteristics of the time series.
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3.2.2. BN Structure Adaptive Updating

Existing FTSFMs exhibit significant limitations when handling non-stationary time
series: they either employ fixed FLRs [23] or exclusively utilize the latest data for construct-
ing FLRs. Both strategies fail to achieve effective long-term prediction due to their inability
to fully leverage the crucial temporal pattern information embedded in historical data. To
overcome this limitation, we propose a novel time-variant FTSFM updating strategy. Once
the initial FTSFM is established during training, the model undergoes dynamic updates
at irregular intervals during the prediction phase. We assume that all data used to train
the current model are old data Dold, and the actual values of the periods predicted by the
current model are new data Dnew. The model update regarding temporal patterns includes
two parts: (1) After updating non-stationary fuzzy sets, FLRs and FLRGs are reconstructed
using both Dold and Dnew, retaining historical temporal patterns to some extent while
capturing pattern changes in new data. (2) The BN structure, containing dependence rela-
tionships for each time point, is updated through a hill-climbing-based structure learning
method with an adaptive BIC. This method adaptively adjusts the learning process to
balance the influence of new and old data. Additionally, updating based on the existing
BN structure ensures the preservation of valuable historical dependence information. The
BN updating process is summarized in Algorithm 2.

Algorithm 2 BN structure adaptive updating

Input: Dold—the data used to train the current FTSFM, Dnew—real observations of
the forecasting sub-windows predicted by the current FTSFM, B—the current BN,
η—weighting parameter in the adaptive BIC, ω—the order of FTSFM.

Output: Updated BN B∗.
1: Initialize variables X = {X1, ..., Xω+1} representing the time points in FLRG
2: B∗ ← B
3: Compute the score Sold of the initial BN structure B with the adaptive BIC score function

BICa()

Sold = BICa(B|Dold, Dnew, η) =η

[
log P(B|Dold)−

Nparams

2
log |Dold|

]
+ (1− η)

[
log P(B|Dnew)−

Nparams

2
log |Dnew|

] (14)

4: while not converged do
5: for each possible edge operation op ∈ {add, delete, reverse} do
6: for each possible edge e = Xi → Xj for operation op do
7: B′ ← Apply op with edge e in B
8: if B′ is acyclic then
9: ∆e

op ← BICa(B′|Dold, Dnew, η)− BICa(B|Dold, Dnew, η),
10: if ∆e

op > 0 then
11: Sbest ← BICa(B′|Dold, Dnew, η)

12: Bbest ← B′

13: end if
14: end if
15: end for
16: end for
17: if Sbest > Sold then
18: B∗ ← Bbest

19: Sold ← Sbest

20: else
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21: return B∗

22: end if
23: end while

3.2.3. Integrated Forecasting Framework

The forecasting process employs a dynamic prediction framework that adaptively
updates the model based on prediction residuals and historical data. The model’s per-
formance in the previous sub-window is evaluated using the mean absolute scaled error
(MASE) before each new forecasting sub-window. The MASE metric is defined as follows:

MASE =
1
lr ∑lr

t=1 |Yt − Ŷt|
1

lr−1 ∑lr
t=2 |Yt −Yt−1|

, (15)

where Yt is the actual value, Ŷt is the predicted value at time point t, and lr is the length
of the prediction sub-window. MASE offers a scale-independent measure of prediction
accuracy. MASE < 1 indicates better performance compared with the naive approach of
using the previous observation as the prediction. A lower MASE value indicates better
predictive performance of the model. The model is updated when the MASE surpasses
a predefined threshold θ, which signifies that the current model’s prediction accuracy on
the latest prediction window is unsatisfactory. The forecasting procedure is detailed in
Algorithm 3, including the numerical prediction generation process in Algorithm 4.

Algorithm 3 Forecasting procedure

Input: Yt—the original value at the time point t in the testing dataset, B—the initial
trained BN, FG—BN-based probabilistic weighted fuzzy logical relationship groups
(BN-PWFLRGs), ω—the order of FTSFM, θ—the threshold for model update, lo—the
length of old data memory window, ln—the length of new data memory window,
lp—the length of prediction window, Ā—fuzzy sets, Z—partition functions, Ytr—the
training dataset.

Output: Ŷ—all predicted values.
1: Initialize the old data memory window Wo by the last lo samples of Ytr

2: Initialize the new data memory window Wn, the prediction result memory window
Wp, and the true value memory window Wtrue

p as ∅
3: for t = 1 to Nte do

// Check if need update model before forecasting the initial point in each forecasting sub-window
4: if t = 1 then
5: Generate the prediction Ŷt with Yt−ω, ..., Yt−1, Z, Ā and FG (Algorithm 4)
6: Wp ←Wp ∪ {Ŷt}
7: end if
8: if t%lr == 1 and t > 1 then
9: Wtrue

p ←Wtrue
p ∪ {Yt−1}, Wn ←Wn ∪ {Yt−1}

10: if MASE(Wtrue
p , Wp) ≥ θ then

11: Dold ←Wo, Dnew ←Wn

12: Adaptively update the BN B with Dold, Dnew, ω, and η to obtain the updated
BN B∗ (Algorithm 2) and B← B∗

13: Update the non-stationary fuzzy sets Ā with the perturbation function
Equations (11)–(13).

14: Reconstruct BN-PWFLRGs FG = {FGAilhs
} with the format as P(Ailhs) ·

Ailhs → P(At
1|Ailhs) · At

1, · · · , P(At
I |Ailhs) · At

I by Dold, Dnew, the updated Ā and B
(Equations (7)–(9)).
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15: Recalculate the partition functions Z based on Dold, Dnew, the updated Ā and
B (Equation (10)).

16: Generate the prediction Ŷt with Yt−ω, ..., Yt−1, Z, Ā and FG (Algorithm 4)
17: Wo ← the last lo samples of Wo ∪Wn, Wn ← ∅, Wtrue

p ← ∅, Wp ← {Ŷt}
18: else
19: Generate the prediction Ŷt with Yt−ω, ..., Yt−1, Z, Ā and FG (Algorithm 4)
20: Wp ←Wp ∪ {Ŷt}
21: end if
22: else
23: Generate the prediction Ŷt with Yt−ω, ..., Yt−1, Z, Ā and FG (Algorithm 4)
24: Wn ←Wn ∪ {Yt−1}, Wp ←Wp ∪ {Ŷt}, Wtrue

p ←Wtrue
p ∪ {Yt−1}

25: end if
26: end for
27: return Ŷ = {Ŷ1, · · · , ŶNte}.

Algorithm 4 Generate prediction for time point t

Input: Yt−ω , ..., Yt−1—historical data, Ā—fuzzy sets, FG—BN-based probabilistic weighted
fuzzy logical relationship groups (BN-PWFLRGs),
Z—partition functions.

Output: Ŷt—predicted value.
1: Generate YDt−l = Yt−l −Yt−l−1 (l = 1, ..., w) by first-order differencing.
2: Fuzzify YDt−l into Ft−l = {At−l

i |µAi (YDt−l) > 0} based on Ā, l = 1, ..., w.
3: Construct each possible pair of Ft−ω , ..., Ft−1 denoted by Ailhs = {At−ω

i , ..., At−1
i } as the

LHS of an FLRG
4: Locate the BN-PWFLRG FGAilhs

∈ FG that has the same LHS Ailhs as the active FLRG
for each Ailhs .

5: Calculate the expectation E(mpAilhs
) of midpoints of fuzzy sets on the RHS of FGAilhs

according to Equations (8) and (9):

E(mpAilhs
) = ∑

j∈I
P(Aj | Ailhs) ·mpj. (16)

6: Calculate the prediction based on all active FLRGs:

ˆYDt = ∑
ilhs

P(YDt−ω, ..., YDt−1|Ailhs)

∑ilhs
P(YDt−ω, ..., YDt−1|Ailhs)

E(mpAilhs
), (17)

where P(YDt−ω, ..., YDt−1|Ailhs) = P(Ailhs)µAilhs
(YDt−ω, ..., YDt−1)/ZAilhs

according
to Equation (10). µAilhs

(YDt−ω, ..., YDt−1) is the product of membership degrees of
YDt−ω, ..., YDt−1 on fuzzy sets in Ailhs .

7: Inverse differencing to obtain the final numerical prediction Ŷt ← Yt−1 + ˆYDt.
8: return Ŷt.

4. Experiments
4.1. Experimental Design

This section verifies the superiority of the proposed model in forecasting non-
stationary time series. First, an overview of datasets and evaluation metrics is pro-
vided [23,37–39]. Next, we benchmark the proposed model against various non-stationary
FTSFMs and state-of-the-art forecasting models in batch mode. All software is executed on
a Windows 11 desktop machine of intel core i5-13400F with 16 GB DDR4 ram with Python
version 3.9.18.
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The forecasting capability of the proposed model has been tested on different time
series. The first group consists of nine-time series TAIEX, SP500a (The dataset SP500a is the
daily averages of S&P 500 stock index in [37], while SP500b is the daily open data of S&P 500
in [38]), NASDAQ, Dow Jones, BTC–USD, ETH–USD, EUR–GBP, EUR–USD, and GBP–USD
for comparison with existing non-stationary fuzzy time series forecasting models. The
second group includes eight classical time series datasets from various domains (Sunspot,
MG, SP500b, Radio, Lake, CO2, Milk, and DJ) for comparison with state-of-the-art batch
learning models.

Table 1 summarizes the details of each time series. Figure 2 shows the original and
first-order differenced time series for the seventeen-time series. Figure 2 demonstrates
that all-time series, excluding MG and CO2, display varying trends and heteroscedasticity.
While first-order differencing effectively reduces trend non-stationarity in these time series,
heteroscedastic characteristics persist. To assess the stationarity properties, we conducted
the Augmented Dickey–Fuller (ADF) test and Levene’s test on both original and first-order
differenced series. Test results are presented in Table 2. The ADF test was employed to
examine the presence of unit roots, with the null hypothesis H0 indicating non-stationarity
(presence of unit root) and the alternative hypothesis H1 suggesting stationarity (absence of
unit root) at a significance level α = 0.05. Additionally, we applied Levene’s test to evaluate
variance homogeneity, where H0 represents homoscedasticity (equal variances), and H1

indicates heteroscedasticity (unequal variances) at a significance level α = 0.05.

Table 1. Descriptions of seventeen time series.

Dataset Description Number

TAIEX [37] Daily averages of open, high, low, and close prices for the Dow Jones Industrial Average 4000
SP500a [37] Daily averages of open, high, low, and close prices for the S&P 500 stock index 4000

NASDAQ [37] Daily averages of open, high, low, and close prices for the National Association of Securities Dealers
Automated Quotations Composite Index 4000

Dow Jones [37] Daily averages of the Dow Jones Industrial Index’s open, high, low, and close prices 4000
BTC–USD [37] Daily cryptocurrency exchange rates for Bitcoin quoted in US Dollars 2968
ETH–USD [37] Daily cryptocurrency exchange rates for Ethereum quoted in US Dollars 1121
EUR–GBP [37] FOREX data, including daily average quotations for Euro to Great British Pound 5000
EUR–USD [37] FOREX data, including daily average quotations for US Dollar to Euro 5000
GBP–USD [37] FOREX data, including daily average quotations for Great British Pound to US Dollar 5000
Sunspot [38] Yearly sunspot count 288

MG [38] Obtained by solving a first-order nonlinear differential-delay equation via the fourth-order
Runge–Kutta algorithm 1000

SP500b [38] Daily open prices of the S&P 500 stock index 251
Milk [38] Milk production in pounds on a monthly basis 168
DJ [38] Monthly close prices for the Dow Jones industrial index 291
Radio [38] Highest permitted radio frequency for broadcasting in Washington, DC, USA 240
CO2 [38] CO2 measurements at Mauna Loa 192
Lake [38] Monthly level of Lake Erie 680

The ADF test results reveal that all original time series accept the null hypothesis H0

except MG, confirming their non-stationarity. After first-order differencing, all-time series
reject H0, showing that differencing effectively mitigates non-stationarity. According to
Levene’s test results, heteroscedasticity persists in both original and differenced series for
all datasets except MG. This analysis shows that while differencing effectively mitigates
non-stationarity, variance instability continues to be a significant characteristic in most time
series. These findings highlight the complex nature of non-stationarity in time series.
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Figure 2. Original and first-order differenced time series for seventeen datasets. The top panel depicts
the original time series data. The lower panel shows the first-order differenced time series.

Table 2. Stationarity evaluation based on Augmented Dickey–Fuller test and Levene’s test.

Dataset
Original Time Series First Order Differenced Time Series

ADF Test
p Value Test Result

Levene’s Test
p Value Test Result

ADF Test
p Value Test Result

Levene’s Test
p Value Test Result

TAIEX 0.1175 H0 Accepted 0.0000 H0 Rejected 0.0000 H0 Rejected 0.0000 H0 Rejected
SP500 0.7733 H0 Accepted 0.0000 H0 Rejected 0.0000 H0 Rejected 0.0000 H0 Rejected
NASDAQ 0.9841 H0 Accepted 0.0000 H0 Rejected 0.0000 H0 Rejected 0.0000 H0 Rejected
Dow Jones 0.8189 H0 Accepted 0.0000 H0 Rejected 0.0000 H0 Rejected 0.0000 H0 Rejected
BTC–USD 0.6710 H0 Accepted 0.0000 H0 Rejected 0.0000 H0 Rejected 0.0000 H0 Rejected
ETH–USD 0.3546 H0 Accepted 0.0000 H0 Rejected 0.0000 H0 Rejected 0.0000 H0 Rejected
EUR–GBP 0.4537 H0 Accepted 0.0000 H0 Rejected 0.0000 H0 Rejected 0.0000 H0 Rejected
EUR–USD 0.3579 H0 Accepted 0.0000 H0 Rejected 0.0000 H0 Rejected 0.0000 H0 Rejected
GBP–USD 0.7022 H0 Accepted 0.0000 H0 Rejected 0.0000 H0 Rejected 0.0000 H0 Rejected
Sunspot 0.1462 H0 Accepted 0.0000 H0 Rejected 0.0000 H0 Rejected 0.0000 H0 Rejected
MG 0.0000 H0 Rejected 0.9164 H0 Accepted 0.0000 H0 Rejected 0.9018 H0 Accepted
SP500 0.8298 H0 Accepted 0.0000 H0 Rejected 0.0000 H0 Rejected 0.0000 H0 Rejected
Milk 0.6274 H0 Accepted 0.0102 H0 Rejected 0.0301 H0 Rejected 0.0110 H0 Rejected
DJ 0.3550 H0 Accepted 0.0023 H0 Rejected 0.0000 H0 Rejected 0.0028 H0 Rejected
Radio 0.2491 H0 Accepted 0.0001 H0 Rejected 0.0102 H0 Rejected 0.0000 H0 Rejected
CO2 0.9964 H0 Accepted 0.0000 H0 Rejected 0.0001 H0 Rejected 0.0000 H0 Rejected
Lake 0.1109 H0 Accepted 0.0135 H0 Rejected 0.0000 H0 Rejected 0.0098 H0 Rejected

The forecasting performance is quantified using root mean squared error (RMSE),
mean absolute percentage error (MAPE), and Theil’s U statistic (U) [25,40,41]. RMSE
calculates the divergence between the predicted and actual values. MAPE measures a
scale-independent error, allowing direct comparison across datasets. Theil’s U statistic
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evaluates the forecasting performance of a model compared with the naive method. These
metrics are presented as follows:

RMSE =

√√√√ 1
Nte

Nte

∑
t=1

(yt − ŷt)
2 (18)

MAPE =
1

Nte

Nte

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ ∗ 100 (19)

U =

√
1

Nte
∑Nte

t=1(yt − ŷt)
2√

1
Nte

∑Nte
t=1(yt − yt−1)

2
. (20)

4.2. Comparison with Non-Stationary Fuzzy Time Series Forecasting Models

In this section, we conduct comprehensive experiments to evaluate the performance
of the proposed TV-NS-BN-PWFTS model against other state-of-the-art non-stationary
fuzzy time series forecasting methods. The benchmark FTSFMs include two time-variant
FTSFMs [23] (TV-PWFTS, TV-BN-PWFTS) that utilize PWFTS [10] and BN-PWFTS [33] as
internal methods, respectively. Incremental ensemble approaches [23] are also applied to
construct non-stationary FTSFMs by combining with PWFTS or BN-PWFTS, specifically
IE-PWFTS and IE-BN-PWFTS. NSFTS [23] is employed, which maintains constant fuzzy
relationships while employing residual-based non-stationary fuzzy sets (Source code for
NSFTS, TV-PWFTS, and IE-PWFTS is available on https://github.com/PYFTS/NSFTS (ac-
cessed on 31 November 2024). TV-BN-PWFTS, IE-BN-PWFTS, and TV-NS-BN-PWFTS
are implemented using the pyFTS library (https://github.com/PYFTS (accessed on
31 November 2024)) for the time-variant framework and pgmpy (https://github.com/
pgmpy (accessed on 31 November 2024)) for Bayesian network components). The divi-
sion of training and testing sets for the first group of datasets is as follows: the first 10%
of the data is used for training, and the remaining 90% is used for testing. All experi-
ments were conducted on a Windows 11 desktop computer equipped with an Intel Core
i5-13400F processor and 16 GB DDR4 RAM, running Python 3.9.18. We implemented a
grid search to identify the optimal parameters for benchmark FTSFMs. For the proposed
TV-NS-BN-PWFTS method, we conducted systematic parameter optimization experiments
within specified parameter ranges. Parameters are selected from the following ranges:
FTSFM order ω {2,3}, number of fuzzy sets from three to fourteen, old data window
length lo {100,300}, new data window length ln {50,100}, prediction sub-window length
lp {10,30}, model update threshold θ {0.25,1}, and BN adaptive learning weighted parameter
η {0.25,0.75}.

Tables 3–5 present the comparative prediction performance of six FTSFMs on nine non-
stationary time series. Experimental results reveal that the proposed TV-NS-BN-PWFTS
achieves superior performance across the majority of datasets. Compared with other
BN-PWFTS-based models (IE-BN-PWFTS and TV-BN-PWFTS), the dynamic historical in-
formation integration mechanism in TV-NS-BN-PWFTS effectively enhances the FTSFM’s
adaptability to the dynamic characteristics of time series. The superior performance of
IE-BN-PWFTS over TV-BN-PWFTS further validates the necessity of extracting useful infor-
mation from historical data for prediction enhancement. Our model’s superior performance
over NSFTS reveals that merely adjusting fuzzy set parameters is insufficient to compre-
hensively capture statistical characteristic changes in time series, reflecting the complex
nature of time series non-stationarity. Although TV-NS-BN-PWFTS has slightly higher
MAPE and U-values (less than 1.5% difference) compared with IE-BN-PWFTS on the Dow
Jones dataset, it retains the optimal RMSE value. This indicates that TV-NS-BN-PWFTS still
maintains a highly competitive overall forecasting performance.

https://github.com/PYFTS/NSFTS
https://github.com/PYFTS
https://github.com/pgmpy
https://github.com/pgmpy


Sensors 2025, 25, 1628 17 of 27

Table 3. Comparison of the proposed method with other non-stationary fuzzy time series forecasting
models in terms of root mean squared error (RMSE). The optimal value is represented in bold.

Dataset TV-PWFTS IE-PWFTS IE-BN-PWFTS TV-BN-PWFTS NSFTS TV-NS-BN-PWFTS

TAIEX 123.9999 1018.5415 95.2133 137.1233 107.4994 92.9266
SP500a 8.8415 42.5027 7.2578 13.2580 7.8307 7.1490
NASDAQ 35.0900 202.5477 28.0960 43.5705 33.7277 27.5051
Dow Jones 69.5462 284.9341 57.9956 104.4958 62.6613 57.7796
BTC–USD 306.1626 1364.0944 142.1741 197.9182 151.4576 138.6654
ETH–USD 44.5400 158.8328 18.8919 27.8365 19.3987 18.3194
EUR–USD 0.0069 0.0190 0.0061 0.0117 0.0064 0.0060
EUR–GBP 0.0035 0.0048 0.0031 0.0061 0.0032 0.0031
GBP–USD 0.0083 0.0283 0.0072 0.0141 0.0092 0.0070

Table 4. Comparison of the proposed method with other non-stationary fuzzy time series forecasting
models in terms of mean absolute percentage error. The optimal value is represented in bold.

Dataset TV-PWFTS IE-PWFTS IE-BN-PWFTS TV-BN-PWFTS NSFTS TV-NS-BN-PWFTS

TAIEX 1.4122 10.7081 1.0428 1.5246 1.2096 1.0174
SP500a 0.6130 1.9956 0.4914 0.9442 0.5505 0.4881
NASDAQ 0.9000 4.0233 0.7558 1.1891 0.9791 0.7534
Dow Jones 0.6054 1.6009 0.5049 0.9514 0.5755 0.5120
BTC–USD 6.5868 36.2601 2.4370 3.7092 3.0203 2.5151
ETH–USD 7.3500 37.0502 3.4305 4.8608 3.8407 3.4196
EUR–USD 0.3892 0.9249 0.3425 0.6631 0.3642 0.3402
EUR–GBP 0.3122 0.3230 0.2725 0.5499 0.2798 0.2696
GBP–USD 0.3630 0.8986 0.3163 0.6325 0.3881 0.3114

Table 5. Comparison of the proposed method with other non-stationary fuzzy time series forecasting
models in terms of Theil’s U statistic. The optimal value is represented in bold.

Dataset TV-PWFTS IE-PWFTS IE-BN-PWFTS TV-BN-PWFTS NSFTS TV-NS-BN-PWFTS

TAIEX 1.3047 10.7687 1.0016 1.4497 1.1420 0.9870
SP500a 1.1164 5.4013 0.9164 1.6742 1.0019 0.9144
NASDAQ 1.2500 7.2834 1.0102 1.5615 1.2154 0.9913
Dow Jones 1.1043 4.5522 0.9207 1.6689 1.0062 0.9275
BTC–USD 1.9831 8.9213 0.9205 1.2916 0.9999 0.9151
ETH–USD 2.0600 7.9795 0.9487 1.3920 1.0003 0.9432
EUR–USD 1.1296 3.1134 0.9902 1.9032 1.0476 0.9845
EUR–GBP 1.1054 1.4879 0.9669 1.8933 1.0055 0.9745
GBP–USD 1.1247 3.8410 0.9789 1.9140 1.2580 0.9581

Figure 3 presents the prediction residuals generated by the proposed model across
nine datasets using their respective test subsets. The error values predominantly cluster
around zero, indicating minimal overall prediction bias. The absence of periodic patterns or
trending behaviors in the residuals suggests that the model effectively captures the dynamic
characteristics of the time series. Figure 4 illustrates the residual distribution histograms
and their corresponding density curves across the nine-time series. The experimental
results demonstrate that the residuals predominantly exhibit characteristics of a standard
normal distribution, validating the model’s effectiveness. While minor deviations from
standard normality were detected in the EUR–GBP, NASDAQ, TAIEX, and EUR–USD
datasets, the model maintains robust reliability and stability overall.

Furthermore, to facilitate a more extensive and thorough evaluation of TV-NS-BN-
PWFTS’s forecasting capabilities, we conducted analyses on the TAIEX, NASDAQ, Dow
Jones, and SP500 datasets spanning from 2017 to 2022, with each fiscal year treated as
an independent time series. The experimental data were sourced from [42]. For compar-
ative analysis purposes, we adopted their experimental configuration where the initial
22-week period constituted the training dataset, and predictions were conducted on a
weekly interval basis. The proposed model was benchmarked against several established
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time-variant fuzzy forecasting models, including NSFTS, the dynamic evolving neural-
fuzzy inference system (DENFIS) [43], and the phase-cum-time variant fuzzy time series
model (PTVFTS) [42]. The comparative results, presented in Table 6, illustrate the per-
formance metrics in terms of RMSE and MAPE. The empirical evidence clearly indicates
that the proposed TV-NS-BN-PWFTS demonstrates markedly superior predictive perfor-
mance when benchmarked against other contemporary fuzzy forecasting models. Table 6
demonstrates the significant advantages of TV-NS-BN-PWFTS. The model achieved optimal
performance in both RMSE and MAPE metrics across sixteen out of twenty-four annual pre-
diction tasks. While PTVFTS outperformed TV-NS-BN-PWFTS in six specific years (SP500-
2021, TAIEX-2017, NASDAQ-2018, SP500-2018, NASDAQ-2021, and Dow Jones-2018),
TV-NS-BN-PWFTS maintained consistently high prediction accuracy across the majority
of forecasting tasks. The model demonstrated an average performance improvement of
over 30.50% across sixteen datasets. In the remaining six datasets where PTVFTS showed
superior results, TV-NS-BN-PWFTS exhibited relatively minor performance gaps of 20.16%
in RMSE and 24.58% in MAPE metrics.

Figure 3. Error scatter plot produced by the proposed model for (a) BTC–USD time series, (b) Dow
Jones time series, (c) ETH–USD time series, (d) EUR–GBP time series, (e) EUR–USD time series,
(f) GBP–USD time series, (g) NASDAQ time series, (h) SP500a time series, (i) TAIEX time series.
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Figure 4. Error distribution histogram produced by the proposed model for (a) BTC–USD time
series, (b) Dow Jones time series, (c) ETH–USD time series, (d) EUR–GBP time series, (e) EUR–USD
time series, (f) GBP–USD time series, (g) NASDAQ time series, (h) SP500a time series, (i) TAIEX
time series.

Table 6. Prediction performance of the models on NASDAQ, SP500, Dow Jones, and TAIEX 2017-2022
in terms of RMSE and MAPE. The optimal value is represented in bold.

Dataset
RMSE MAPE

NSFTS DENFIS PTVFTS TV-NS-BN-PWFTS NSFTS DENFIS PTVFTS TV-NS-BN-PWFTS

NASDAQ-2017 108.7284 239.1259 48.1924 36.8277 1.3742 2.9002 0.5577 0.4102
NASDAQ-2018 176.4645 632.8676 115.4398 136.8919 1.8796 6.9452 1.1441 1.5356
NASDAQ-2019 142.2725 443.8779 81.5571 42.4718 1.4696 4.2853 0.7909 0.3875
NASDAQ-2020 268.2565 869.2766 199.9467 96.4991 1.9631 5.9934 1.4795 0.5843
NASDAQ-2021 295.9192 679.2459 159.6753 199.3805 1.5915 3.6026 0.8272 1.0269
NASDAQ-2022 284.4377 481.7911 238.0055 204.9993 2.1808 3.5995 1.6000 1.3231
SP500-2017 24.8333 78.8404 13.0605 9.9889 0.7286 2.4440 0.3908 0.2895
SP500-2018 51.3791 187.3747 31.8340 41.7365 1.5853 5.4565 0.8731 1.2067
SP500-2019 52.9810 125.7938 24.2265 12.6155 1.5685 3.3177 0.6088 0.3087
SP500-2020 74.2154 202.9605 60.1607 24.4032 1.8372 4.7154 1.4894 0.5327
SP500-2021 87.8825 190.3767 40.0989 44.8478 1.6162 3.3508 0.7340 0.7523
SP500-2022 83.9869 185.1545 64.8664 58.3521 1.7117 3.9391 1.2873 1.0746
Dow Jones-2017 155.6373 1099.0488 105.9790 101.4949 0.4887 3.7595 0.3769 0.3240
Dow Jones-2018 460.0347 1473.7939 300.8507 402.6199 1.4994 4.5950 0.8755 1.2875
Dow Jones-2019 512.6081 632.8676 234.7223 125.2802 1.7099 6.9452 0.6574 0.3313
Dow Jones-2020 606.3734 885.0938 515.7433 249.5781 1.7313 2.6101 1.5478 0.6366
Dow Jones-2021 610.8571 1023.9746 283.7141 308.0270 1.5315 2.3345 0.6558 0.6414
Dow Jones-2022 587.7988 2435.7356 445.4243 393.2805 1.4833 6.1544 1.1168 0.8883
TAIEX-2017 172.0256 218.0463 64.5821 65.0468 1.4130 1.6605 0.4914 0.4982
TAIEX-2018 163.9537 623.0989 109.0077 91.3104 1.1107 4.6290 0.7166 0.7262
TAIEX-2019 179.5368 514.1494 77.9204 67.5768 1.3398 3.6155 0.5358 0.4666
TAIEX-2020 218.2937 961.8291 145.8409 116.1398 1.3034 5.7339 0.9152 0.6687
TAIEX-2021 221.4625 679.2459 159.8782 100.8645 1.0444 3.6026 0.7338 0.4578
TAIEX-2022 323.6182 1006.9976 233.6213 174.7879 1.8401 5.8642 1.2132 0.9504
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To evaluate the capability of TV-NS-BN-PWFTS in quantifying prediction uncertainty,
we extended TV-NS-BN-PWFTS to construct prediction intervals. Specifically, TV-NS-
BN-PWFTS adopts the interval prediction methodology proposed by [10], utilizing fuzzy
empirical probability-weighted FLRGs to compute prediction intervals. Two representative
non-stationary financial time series, TAIEX and EUR–USD, were selected for experimental
analysis. For clarity of presentation, we conducted a detailed analysis of the last 100 ob-
servations in the test set. As illustrated in Figure 5, the prediction intervals generated
by TV-NS-BN-PWFTS achieved higher true value coverage rates compared with IE-BN-
PWFTS, validating the superiority and reliability of our proposed model in non-stationary
time series forecasting.

Figure 5. Prediction intervals yielded by the proposed model and IE-BN-PWFTS for (a) TAIEX time
series and (b) EUR–USD time series.

4.3. Comparison with Batch Learning Models

In this section, the proposed model is compared with various outstanding batch learn-
ers in the second dataset group to evaluate its predictive performance. We compared
the proposed method with classic predictive models such as the multiresolution autore-
gressive model (MAR), the autoregressive model (AR), the adaptive network-based fuzzy
inference system (ANFIS), and the artificial neural network (ANN). Additionally, deep
neural network-based models, such as temporal convolutional networks (TCNs), recur-
rent neural networks (RNNs), the long short-term memory (LSTM) network, and gated
recurrent unit (GRU), are included in the comparison. The fuzzy cognitive map (FCM)
models integrated with wavelet transform (Wavelet-HFCM [39]) or convolutional neural
network (CNN-FCM [44]) are also included in the comparison. Wavelet-HFCM utilizes
the redundant wavelet transform to decompose non-stationary series into multivariate
time series. HFCM models the latent relationships within these time series and predicts
these time series. CNN-FCM applies FCM to learn the relationships between series decom-
posed by TCN. A regression model then predicts the next observation based on the FCM
output. The fuzzy-probabilistic predictive models PWFTS [10] and BN-PWFTS [33] are
also employed. This experiment adopts the dataset division scheme in [44]. Considering
the characteristics of the second dataset group, the search range for the model order is set
from three to thirteen to achieve optimal predictive performance. The optimal results for
PWFTS and BN-PWFTS were determined using the grid search method. The results for
other benchmark methods were obtained from [39,44].

Table 7 indicates that TV-NS-BN-PWFTS achieves the best forecasting performance
on four out of eight datasets while maintaining competitive performance just behind BN-
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PWFTS on CO2, Lake, and Milk datasets. Compared with BN-PWFTS, TV-NS-BN-PWFTS
exhibits stronger adaptability to dynamic changes in non-stationary time series due to
its model update strategy driven by phased prediction performance. For datasets like
DJ, where significant differences exist between training and testing data distributions,
the model updating mechanism of TV-NS-BN-PWFTS has notable advantages. The dy-
namic adjustment mechanism may introduce extra fluctuations when the time series has
strong periodic characteristics, such as CO2 and Milk datasets. TV-NS-BN-PWFTS sur-
passes FCM-based methods on seven out of eight datasets except for MG. The superior
performance over Wavelet-HFCM and CNN-FCM can be attributed to its ability to cap-
ture the dynamic changes in temporal patterns of non-stationary time series, which FCM
methods with fixed causal relationships cannot achieve. TV-NS-BN-PWFTS’s weaker per-
formance on the MG dataset may be due to the absence of non-stationarity, which prevents
the update mechanism of TV-NS-BN-PWFTS from fully exhibiting its advantages. This
indirectly proves that the model is more suitable for handling complex time series with
non-stationary characteristics.

Table 7. Comparison of the proposed method with batch learning models in terms of RMSE. The op-
timal value is represented in bold.

CO2 DJ Lake MG Milk Radio SP500b Sunspot

RNN 1.4190 26.2320 0.3740 0.0010 29.2530 0.6130 27.8960 19.2920
ANFIS 0.9100 27.5260 0.4580 0.0010 9.5780 0.6510 14.9350 22.7530
LSTM 2.1600 26.9360 0.3840 0.0010 32.7430 0.5900 46.2660 19.0060
ANN 1.6950 28.5320 0.4020 0.0050 27.1130 0.6520 17.6960 19.9010
AR 1.3500 29.8220 0.6380 0.0350 57.7170 0.9020 17.8970 35.2620
MAR 0.8120 26.7330 0.3900 0.0020 37.8380 0.6620 16.0410 19.1860
GRU 1.5610 25.2110 0.3850 0.0010 36.0940 0.8320 20.4070 19.4080
TCN 3.1200 25.2140 0.4090 0.0010 33.8580 0.6020 51.2670 22.4490
Wavelet-HFCM 0.5600 23.1590 0.3770 0.0040 8.2580 0.5470 16.1050 18.9160
CNN-FCM 0.7310 25.1900 0.3910 0.0010 30.4740 0.5670 20.8160 17.9490
PWFTS 0.4884 22.6454 0.3816 0.0050 8.3004 0.3705 11.6922 23.6950
BN-PWFTS 0.3412 22.9275 0.3663 0.0013 6.0392 0.3290 11.7978 18.8784
TV-NS-BN-PWFTS 0.3757 22.5617 0.3692 0.0018 6.1244 0.3289 11.5956 17.5088

Figure 6 demonstrates the prediction residuals obtained from the proposed model
for eight datasets when benchmarked against batch learning approaches. The balanced
distribution of positive and negative errors reveals the model’s ability to generate unbiased
predictions without systematic overestimation or underestimation. The absence of temporal
patterns in the residual scatter plots confirms the model’s effectiveness in capturing time-
varying characteristics of the data. Figure 7 presents the residual distribution characteristics
across eight datasets. The SP500b, DJ, and Lake datasets exhibit highly symmetric normal
distributions. The density curves for the Sunspot, CO2, and MG datasets display varying
degrees of skewness, while the Milk and Radio datasets demonstrate bimodal distribution
patterns, potentially attributable to limited sample sizes and inherent data fluctuations.

To further validate the performance of the proposed model, we conducted comparative
experiments using NASDAQ daily closing prices from 2001 to 2012 [13]. The model was
benchmarked against various FTSFMs with data stationary operations and classical time
series forecasting models. The comparison methods include an FTSFM with an improved
sparrow search algorithm and complete ensemble empirical mode decomposition with
adaptive noises (CEEMDAN-ISSA-FTS) [13], the FTSFM based on fuzzy c-means clustering
and the empirical mode decomposition method (EMD-FC-FTS) [45] utilizing empirical
mode decomposition, Wavelet-HFCM [39] employing wavelet transform, prophet [46]
based on time series additive decomposition, and traditional Chen’s FTSFM (Chen) [6]
and ARIMA using the differencing method. As shown in Table 8, TV-NS-BN-PWFTS
outperforms these methods in both RMSE and MAPE metrics, demonstrating its significant
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advantages over traditional feature extraction-based time series prediction models and
further validating its effectiveness in handling non-stationary time series forecasting tasks.

Figure 6. Error scatter plot produced by the proposed model for (a) Sunspot time series, (b) MG time
series, (c) SP500b time series, (d) Radio time series, (e) Lake time series, (f) CO2 time series, (g) Milk
time series, (h) DJ time series.

Table 8. Results of the proposed model on NASDAQ 2001-2012 in terms of RMSE and MAPE.
The optimal value is represented in bold.

CEEMDAN-ISSA-FTS Chen ARIMA Prophet EMD-FC-FTS Wavelet-HFCM TV-NS-BN-PWFTS

RMSE 45.8600 80.4000 97.6200 120.0600 126.9500 74.4300 29.3285
MAPE 1.2200 2.3300 2.7300 3.4800 3.4700 2.1200 0.7574
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Figure 7. Error distribution histogram produced by the proposed model for (a) Sunspot time series,
(b) MG time series, (c) SP500b time series, (d) Radio time series, (e) Lake time series, (f) CO2 time
series, (g) Milk time series, (h) DJ time series.

4.4. Comparison Considering Multiple Time Series Together

To comprehensively evaluate model performance across all datasets, we conducted the
Friedman test [47] and the post-hoc Holm test [48] for non-parametric statistical analysis.
The results in Table 9 display TV-NS-BN-PWFTS’s superior performance with an average
ranking of 1.06 across nine datasets, considerably outperforming other non-stationary
FTSFMs. The Friedman test results include a test statistic z-value of 42.7070 and a p-value
of 4.2364 ×10−8, indicating significant performance differences among the FTSFMs at
the 5% significance level.

Table 9. Rankings of non-stationary fuzzy time series forecasting models across nine datasets.
The optimal value is represented in bold.

Dataset TV-PWFTS IE-PWFTS IE-BN-PWFTS TV-BN-PWFTS NSFTS TV-NS-BN-PWFTS

TAIEX 4.00 6.00 2.00 5.00 3.00 1.00
SP500 4.00 6.00 2.00 5.00 3.00 1.00
NASDAQ 4.00 6.00 2.00 5.00 3.00 1.00
Dow Jones 4.00 6.00 2.00 5.00 3.00 1.00
BTC–USD 5.00 6.00 2.00 4.00 3.00 1.00
ETH–USD 5.00 6.00 2.00 4.00 3.00 1.00
EUR–USD 4.00 6.00 2.00 5.00 3.00 1.00
EUR–GBP 4.00 5.00 1.50 6.00 3.00 1.50
GBP–USD 3.00 6.00 2.00 5.00 4.00 1.00
Average 4.11 5.89 1.94 4.89 3.11 1.06

The Holm test results in Table 10 further reveal that TV-NS-BN-PWFTS has statis-
tically significant performance advantages over IE-PWFTS, TV-BN-PWFTS, TV-PWFTS,
and NSFTS. In contrast, the performance comparison between TV-NS-BN-PWFTS and
IE-BN-PWFTS shows no statistically significant difference.

Statistical comparison with batch learning models through Friedman and Holm tests
demonstrates TV-NS-BN-PWFTS’s effectiveness. According to Table 11, TV-NS-BN-PWFTS
achieves the top average rank of 2.25 compared with twelve batch learners, notably excelling
in predicting time series with complex dynamic characteristics. Friedman test results,
displaying a test statistic z-value of 47.7997 and a p-value of 3.3867×10−6, reveal significant
performance differences among models at the 5% significance level. The Holm test in
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Table 12 confirms the statistically significant difference of TV-NS-BN-PWFTS over AR, TCN,
ANN, GRU, MAR, LSTM, and ANFIS at the 95% confidence level. Despite showing non-
significant differences with RNN, CNN-FCM, PWFTS, Wavelet-HFCM, and BN-PWFTS,
TV-NS-BN-PWFTS still demonstrates superior overall predictive accuracy according to the
RMSE metric.

Table 10. Holm test results of non-stationary fuzzy time series forecasting models.

Comparison z-Value p-Value

1 TV-NS-BN-PWFTS vs. IE-PWFTS 5.4805 0.0000
2 TV-NS-BN-PWFTS vs. TV-BN-PWFTS 4.3466 0.0000
3 TV-NS-BN-PWFTS vs. TV-PWFTS 3.4647 0.0027
4 TV-NS-BN-PWFTS vs. NSFTS 2.3308 0.0198
5 TV-NS-BN-PWFTS vs. IE-BN-PWFTS 1.0079 0.9405

Table 11. Rankings of the proposed method and batch learning models across eight datasets. The op-
timal value is represented in bold.

Methods CO2 DJ Lake MG Milk Radio SP500b Sunspot Average

RNN 9.00 8.00 3.00 3.50 7.00 8.00 11.00 7.00 7.06
ANFIS 7.00 11.00 12.00 3.50 5.00 9.00 4.00 11.00 7.81
LSTM 12.00 10.00 6.00 3.50 9.00 6.00 12.00 5.00 7.94
ANN 11.00 12.00 10.00 11.50 6.00 10.00 7.00 9.00 9.56
AR 8.00 13.00 13.00 13.00 13.00 13.00 8.00 13.00 11.75
MAR 6.00 9.00 8.00 9.00 12.00 11.00 5.00 6.00 8.25
GRU 10.00 6.00 7.00 3.50 11.00 12.00 9.00 8.00 8.31
TCN 13.00 7.00 11.00 3.50 10.00 7.00 13.00 10.00 9.31
Wavelet-HFCM 4.00 4.00 4.00 10.00 3.00 4.00 6.00 4.00 4.88
CNN-FCM 5.00 5.00 9.00 3.50 8.00 5.00 10.00 2.00 5.94
PWFTS 3.00 2.00 5.00 11.50 4.00 3.00 2.00 12.00 5.31
BN-PWFTS 1.00 3.00 1.00 7.00 1.00 2.00 3.00 3.00 2.62
TV-NS-BN-PWFTS 2.00 1.00 2.00 8.00 2.00 1.00 1.00 1.00 2.25

Table 12. Holm test results of the proposed method and batch learning models.

Comparison z-Value p-Value

1 TV-NS-BN-PWFTS vs. AR 4.8787 0.0000
2 TV-NS-BN-PWFTS vs. TCN 3.6270 0.0014
3 TV-NS-BN-PWFTS vs. ANN 3.7554 0.0016
4 TV-NS-BN-PWFTS vs. GRU 3.1134 0.0111
5 TV-NS-BN-PWFTS vs. MAR 3.0813 0.0144
6 TV-NS-BN-PWFTS vs. LSTM 2.9208 0.0349
7 TV-NS-BN-PWFTS vs. ANFIS 2.8566 0.0471
8 TV-NS-BN-PWFTS vs. RNN 2.4715 0.1615
9 TV-NS-BN-PWFTS vs. CNN-FCM 1.8937 0.1748
10 TV-NS-BN-PWFTS vs. PWFTS 1.5728 0.2316
11 TV-NS-BN-PWFTS vs. Wavelet-HFCM 1.3481 0.7105
12 TV-NS-BN-PWFTS vs. BN-PWFTS 0.1926 0.8473

4.5. Ablation Study

In this section, we conduct ablation experiments to validate the effectiveness of core
modules. We first introduce three variants of TV-NS-BN-PWFTS. TV-BN-PWFTS represents
an FTSFM that employs BN-PWFTS as its core module with a traditional time-variant
updating strategy [15]. This variant only utilizes recent data to construct a new BN-PWFTS
for prediction, disregarding useful historical information. TV-BN-PWFTS (NSFS) replaces
traditional fuzzy sets with our proposed non-stationary fuzzy sets to demonstrate their
effectiveness. TV-BN-PWFTS (adaptive) substitutes the time-variant updating strategy [15]
with our dynamic updating approach to verify its efficacy in capturing temporal patterns.
Table 13 presents the results across nine time series using three metrics: RMSE, MAPE,
and U. The results show that both variant methods incorporating either non-stationary
fuzzy sets or model updating modules outperform the baseline TV-BN-PWFTS. The supe-
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rior performance of TV-BN-PWFTS (adaptive) over TV-BN-PWFTS (NSFS) indicates that
dynamic changes in temporal patterns significantly impact the long-term prediction of non-
stationary time series. TV-NS-BN-PWFTS offers a comprehensive approach to handling
non-stationarity in time series. It not only addresses the dynamic changes in vagueness
through non-stationary fuzzy sets but also captures the evolution of temporal relationships,
thereby providing more accurate and comprehensive forecasting results.

Table 13. Ablation study in terms of RMSE, MAPE, and U.

TAIEX SP500 NASDAQ Dow
Jones BTC–USD ETH–USD EUR–USD EUR–GBP GBP–USD

RMSE

TV-BN-PWFTS 317.2940 18.8346 44.6259 144.3049 344.3751 48.5997 0.0343 0.0134 0.0312
TV-BN-PWFTS (NSFS) 94.7724 7.7763 27.8757 62.1150 156.4451 19.4565 0.0061 0.0032 0.0074
TV-BN-PWFTS (adaptive) 93.8905 7.1645 28.2721 56.5443 141.0029 20.6079 0.0060 0.0031 0.0071
TV-NS-BN-PWFTS 92.9266 7.1490 27.5051 57.7796 138.6654 18.3194 0.0060 0.0031 0.0070

MAPE

TV-BN-PWFTS 3.5785 1.3729 1.2272 1.2636 6.8562 9.2859 2.1052 1.2701 1.3969
TV-BN-PWFTS (NSFS) 1.0378 0.5341 0.7658 0.5523 2.6283 3.5073 0.3450 0.2760 0.3203
TV-BN-PWFTS (adaptive) 1.0215 0.4828 0.7659 0.5012 2.5094 3.4801 0.3409 0.2728 0.3160
TV-NS-BN-PWFTS 1.0174 0.4881 0.7534 0.5120 2.5151 3.4196 0.3402 0.2696 0.3114

U

TV-BN-PWFTS 3.3514 2.3902 1.6019 2.2860 2.2215 2.4291 5.6060 4.1973 4.2130
TV-BN-PWFTS (NSFS) 1.0065 0.9947 1.0047 0.9972 1.0325 1.0018 1.0040 1.0042 1.0021
TV-BN-PWFTS (adaptive) 0.9972 0.9164 1.0190 0.9077 0.9306 1.0611 0.9873 0.9741 0.9714
TV-NS-BN-PWFTS 0.9870 0.9144 0.9913 0.9275 0.9151 0.9432 0.9845 0.9745 0.9581

The bold values indicate the best performance for each metric on each dataset.

5. Conclusions
To address the negative impact of non-stationarity on FTSFM forecasting performance,

we propose a novel hybrid FTSFM that effectively captures heteroscedasticity and trend
changes inherent in time series. It employs a novel dynamic updating scheme that effec-
tively incorporates historical information with new data. First-order differencing reduces
time series non-stationarity while extracting time series variation information. Dynamic
adjustment of non-stationary fuzzy set parameters based on residuals enables precise
modeling of local changes in time series variation. Once old and new data are fuzzified,
the model rebuilds fuzzy empirical probability-based FLRGs, enabling dynamic updates
of fuzzy relationships. We use adaptive BN structure learning to model dependence rela-
tionships dynamically between time points in FLRGs. The updates of the BN and FLRGs
reflect changes in temporal relationships within the time series. The proposed hybrid
FTSFM successfully integrates historical knowledge preservation with dynamic adaptation
according to new data, enhancing FTSFMs’ ability to handle non-stationary time series
more effectively. Experimental results show that the proposed model outperforms existing
non-stationary FTSFMs and batch learning models. Hypothesis tests verify the reliability
of the proposed model.

The proposed model demonstrates excellent performance in improving the forecasting
accuracy of FTSFM for non-stationary time series. However, several issues need further
investigation. While the current model successfully handles univariate non-stationary
time series forecasting, future work will extend it to address the challenges of multivariate
non-stationary time series prediction. The current research is limited to using triangular
membership functions to construct non-stationary fuzzy sets. In order to expand the
applicability of the model, it is necessary to conduct in-depth research on the performance
of other types of membership functions, such as Gaussian functions and ladder functions,
in non-stationary environments. Due to time series non-stationarity, quantifying prediction
uncertainty is essential. We plan to incorporate confidence interval estimation into our
forecasting framework to better assess prediction reliability. The potential integration
of fuzzy reasoning and neural network fitting will be explored, which may combine the
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continuous-time modeling advantages of NARX while preserving the interpretability
characteristics of fuzzy systems.
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