Predicting Sensory and Affective Tactile Perception from Physical Parameters Obtained by Using a Biomimetic Multimodal Tactile Sensor
<p>Overview of the Toccare system and biomimetic multimodal tactile sensor. (<b>A</b>) Experimental apparatus, (<b>B</b>) measuring mechanism, and (<b>C</b>) schematic of the BioTac finger-shaped tactile sensor.</p> "> Figure 2
<p>Variation in physical parameters for materials. Gray zone is basic range measurement range. Each dot represents the score of a single material.</p> "> Figure 3
<p>Prediction model for the representative sensory descriptors: (<b>A</b>) slimy, (<b>B</b>) soggy, (<b>C</b>) bumpy, and (<b>D</b>) warm. Blue circles indicate training data, and red crosses indicate test data.</p> "> Figure 4
<p>Prediction model for the representative affective descriptors: (<b>A</b>) unpleasant, (<b>B</b>) interest, (<b>C</b>) slight warmth, and (<b>D</b>) delicate. Blue circles indicate training data, and red crosses indicate test data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tactile Vocabulary
2.3. Participants
2.4. Evaluation of Tactile Vocabulary Scores
2.5. Evaluation of Physical Parameters
2.6. Prediction of Tactile Perception Scores
3. Results
3.1. Prediction Models for Tactile Perception
3.2. Accuracy of Tactile Perception Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Citrin, A.V.; Stem, D.E.; Spangenberg, E.R.; Clark, M.J. Consumer need for tactile input. J. Bus. Res. 2003, 56, 915–922. [Google Scholar] [CrossRef]
- McCabe, D.B.; Nowlis, S.M. The effect of examining actual products or product descriptions on consumer preference. J. Consum. Psychol. 2003, 13, 431–439. [Google Scholar] [CrossRef]
- Peck, J.; Childers, T.L. To have and to hold: The influence of haptic information on product judgments. J. Mark. 2003, 67, 35–48. [Google Scholar] [CrossRef]
- Veelaert, L.; Du Bois, E.; Moons, I.; Karana, E. Experiential characterization of materials in product design: A literature review. Mater. Des. 2020, 190, 108543. [Google Scholar] [CrossRef]
- Piselli, A.; Baxter, W.; Simonato, M.; Del Curto, B.; Aurisicchio, M. Development and evaluation of a methodology to integrate technical and sensorial properties in materials selection. Mater. Des. 2018, 153, 259–272. [Google Scholar] [CrossRef]
- Zuo, H.; Jones, M.; Hope, T.; Jones, R. Sensory perception of material texture in consumer products. Des. J. 2016, 19, 405–427. [Google Scholar] [CrossRef]
- Drewing, K.; Weyel, C.; Celebi, H.; Kaya, D. Feeling and feelings: Affective and perceptual dimensions of touched materials and their connection. In Proceedings of the IEEE World Haptics Conference, Munich, Germany, 6–9 June 2017; pp. 25–30. [Google Scholar]
- Guest, S.; Dessirier, J.M.; Mehrabyan, A.; McGlone, F.; Essick, G.; Gescheider, G.; Fontana, A.; Xiong, R.; Ackerley, R.; Blot, K. The development and validation of sensory and emotional scales of touch perception. Atten. Percept. Psychophys. 2011, 73, 531–550. [Google Scholar] [CrossRef]
- Nagano, H.; Okamoto, S.; Yamada, Y. Modeling semantically multilayered affective and psychophysical responses toward tactile textures. IEEE Trans. Haptics 2018, 11, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Osgood, C.E.; Sugi, G.J.; Tannenbaum, P.H. The Measurement of Meaning; University of Illinois Press: Urbana, IL, USA, 1957. [Google Scholar]
- Ikejima, T.; Mizukoshi, K.; Nonomura, Y. Development of a tactile vocabulary based on suitability and perceptual intensity. J. Sens. Stud. 2024, 39, e12956. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Sensory evaluation of food. In Sensory Evaluation of Food—Principles and Practices; Food Science Text Series; Springer: New York, NY, USA, 2010; pp. 433–449. [Google Scholar]
- Chen, X.; Shao, F.; Barnes, C.; Childs, T.; Henson, B. Exploring relationships between touch perception and surface physical properties. Int. J. Des. 2009, 3, 67–76. [Google Scholar]
- Kim, W. A study on the subjective feeling affecting tactile satisfaction of leather in automobile: A structural equation modeling approach. Int. J. Ind. Ergon. 2021, 84, 103167. [Google Scholar] [CrossRef]
- Watanabe, S.; Horiuchi, T. Modeling perceptions using common impressions: Perceptual “authenticity”, “luxury”, and “quaintness” for leather. Text. Res. J. 2021, 91, 73–86. [Google Scholar] [CrossRef]
- Kikegawa, K.; Kuhara, R.; Kwon, J.; Sakamoto, M.; Tsuchiya, R.; Nagatani, N.; Nonomura, Y. Physical origin of a complicated tactile sensation: ‘shittori feel’. R. Soc. Open Sci. 2019, 6, 190039. [Google Scholar] [CrossRef]
- Mohamad Hashim, I.H.; Kumamoto, S.; Takemura, K.; Maeno, T.; Okuda, S.; Mori, Y. Tactile evaluation feedback system for multi-layered structure inspired by human tactile perception mechanism. Sensors 2017, 17, 2601. [Google Scholar] [CrossRef]
- Gibson, J.J. Observations on active touch. Psychol. Rev. 1962, 69, 477. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Pancheri, F.; Lueth, T.C. LARG: A Lightweight Robotic Gripper with 3-D Topology Optimized Adaptive Fingers. IEEE/ASME Trans. Mechatron. 2022, 27, 2026–2034. [Google Scholar] [CrossRef]
- Shan, X.; Birglen, L. Modeling and analysis of soft robotic fingers using the fin ray effect. Int. J. Robot. Res. 2020, 39, 1686–1705. [Google Scholar] [CrossRef]
- Fishel, J.A.; Loeb, G.E. Sensing tactile microvibrations with the BioTac—Comparison with human sensitivity. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1122–1127. [Google Scholar]
- Technology, SynTouch. Available online: https://www.syntouchinc.com/wp-content/uploads/2017/07/WP_WorkingWithSynTouch_071017.pdf (accessed on 22 November 2024).
- Fishel, J.A.; Loeb, G.E. Bayesian exploration for intelligent identification of textures. Front. Neurorobot. 2012, 6, 4. [Google Scholar] [CrossRef]
- Liu, Z.; Graf, K.; Hub, J.; Kellermeier, M. Effects of cosmetic emulsions on the surface properties of Mongolian hair. ACS Omega 2022, 7, 10910–10920. [Google Scholar] [CrossRef]
- Skedung, L.; Harris, K.L.; Collier, E.S.; Rutland, M.W. The finishing touches: The role of friction and roughness in haptic perception of surface coatings. Exp. Brain Res. 2020, 238, 1511–1524. [Google Scholar] [CrossRef]
- Richardson, B.A.; Kuchenbecker, K.J. Learning to predict perceptual distributions of haptic adjectives. Front. Neurorobot. 2020, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Wettels, N.; Loeb, G.E. Haptic feature extraction from a biomimetic tactile sensor: Force, contact location and curvature. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 7–11 December 2011; pp. 2471–2478. [Google Scholar] [CrossRef]
- Fishel, J.A.; Santos, V.J.; Loeb, G.E. A robust micro-vibration sensor for biomimetic fingertips. In Proceedings of the 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, USA, 19–22 October 2008; pp. 659–663. [Google Scholar] [CrossRef]
- Xu, D.; Loeb, G.E.; Fishel, J.A. Tactile identification of objects using Bayesian exploration. In Proceedings of the 2013 IEEE international Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3056–3061. [Google Scholar]
- Erickson, N. Autogluon-tabular: Robust and accurate automl for structured data. arXiv 2020, arXiv:2003.06505. [Google Scholar]
- Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Ruppel, P.; Jonetzko, Y.; Görner, M.; Hendrich, N.; Zhang, J. Simulation of the SynTouch BioTac Sensor. In Intelligent Autonomous Systems 15, Proceedings of the IAS 2018, Baden-Baden, Germany, 11–15 June 2018; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Strand, M.; Dillmann, R.; Menegatti, E.; Ghidoni, S. (Eds.) Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2019; Volume 867, pp. 333–342. [Google Scholar] [CrossRef]
- Cao, L.; Russo, D.; Lapkin, A.A. Automated robotic platforms in design and development of formulations. AIChE J. 2021, 67, e17248. [Google Scholar] [CrossRef]
- Sagara, M.; Nobuyama, L.; Takemura, K. Nonlinear tactile estimation model based on perceptibility of mechanoreceptors improves quantitative tactile sensing. Sensors 2022, 22, 6697. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241–258. [Google Scholar] [CrossRef]
- Breiman, L. Using Adaptive Bagging to Debias Regressions; Technical Report 547; Department of Statistics, UC Berkeley: Berkeley, CA, USA, 1999; p. 16. [Google Scholar]
- Graczyk, M.; Lasota, T.; Trawiński, B.; Trawiński, K. Comparison of bagging, boosting and stacking ensembles applied to real estate appraisal. In Intelligent Information and Database Systems, Proceedings of the Second International Conference, ACIIDS, Hue City, Vietnam, 24–26 March 2010; Proceedings, Part II 2; Springer: Berlin/Heidelberg, Germany, 2010; pp. 340–350. [Google Scholar]
- Altman, N.; Krzywinski, M. Ensemble methods: Bagging and random forests. Nat. Methods 2017, 14, 933–935. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kumar, A. Applications of python to evaluate the performance of bagging methods. Environ. Prog. Sustain. Energy 2018, 37, 1555–1559. [Google Scholar] [CrossRef]
- Sharafati, A.; Asadollah, S.B.H.S.; Al-Ansari, N. Application of bagging ensemble model for predicting compressive strength of hollow concrete masonry prism. Ain Shams Eng. J. 2021, 12, 3521–3530. [Google Scholar] [CrossRef]
- Okamoto, S.; Nagano, H.; Yamada, Y. Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 2013, 6, 81–93. [Google Scholar] [CrossRef]
- Guest, S.; Mehrabyan, A.; Essick, G.; Phillips, N.; Hopkinson, A.; McGlone, F. Physics and tactile perception of fluid-covered surfaces. J. Texture Stud. 2011, 43, 77–93. [Google Scholar] [CrossRef]
- Summers, I.R.; Irwin, R.J.; Brady, A.C.; Grunwald, M. (Eds.) Haptic discrimination of paper. In Human Haptic Perception: Basics and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 525–535. [Google Scholar]
- Yoshioka, T.; Bensmaıa, S.J.; Craig, J.C.; Hsiao, S.S. Texture perception through direct and indirect touch: An analysis of perceptual space for tactile textures in two modes of exploration. Somatosens. Mot. Res. 2007, 24, 53–70. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tanaka, M.; Chonan, S. Development of a sensor system for measuring tactile sensation. In Proceedings of the 2006 IEEE Sensors, Daegu, Republic of Korea, 22–25 October 2006; pp. 554–557. [Google Scholar]
- Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161. [Google Scholar] [CrossRef]
- Mesquita, B.; Frijda, N.H. Cultural variations in emotions: A review. Psychol. Bull. 1992, 112, 179–204. [Google Scholar] [CrossRef]
- Kitayama, S.; Mesquita, B.; Karasawa, M. Cultural affordances and emotional experience: Socially engaging and disengaging emotions in Japan and the United States. J. Personal. Soc. Psychol. 2006, 91, 890–903. [Google Scholar] [CrossRef]
No. | Materials | No. | Materials |
---|---|---|---|
1 | Lotion *1 | 17 | Broad cloth |
2 | Serum *1 | 18 | Cotton |
3 | Cream *1 | 19 | Nylon |
4 | Lotion (after application) *2 | 20 | Cashmere |
5 | Serum (after application) *2 | 21 | Leather |
6 | Cream (after application) *2 | 22 | Styrene foam |
7 | Sticky tape | 23 | Western paper |
8 | Slime | 24 | Japanese paper |
9 | Clay | 25 | Wood plate |
10 | Artificial skin | 26 | Stainless plate |
11 | Fur | 27 | Polishing sponge |
12 | Mesh (rough) | 28 | Cork |
13 | Mesh (fine) | 29 | Convex rubber |
14 | Sponge rubber | 30 | Tile |
15 | Rubber | 31 | Acrylic plate |
16 | Low rebound sponge | 32 | Artificial leather |
(A) Sensory Descriptors | |
---|---|
No. | Sensory Descriptors |
1 | Bulky |
2 | Bumpy |
3 | Cold |
4 | Dry |
5 | Elastic |
6 | Firm |
7 | Hard |
8 | Moist |
9 | Rough |
10 | Scratch |
11 | Sleek |
12 | Slimy |
13 | Slippery |
14 | Smooth |
15 | Soft |
16 | Soggy |
17 | Sticky |
18 | Warm |
19 | Wet |
(B) Affective Descriptors | |
No. | Affective Descriptors |
1 | Calm |
2 | Comfort |
3 | Delicate |
4 | Dislike |
5 | Fine |
6 | Friendly |
7 | Interest |
8 | Like |
9 | Luxury |
10 | Pleasant |
11 | Slight warmth |
12 | Unpleasant |
Sensors | Genres | Items | Details |
---|---|---|---|
Pressure | Friction | fST | Effort required to initiate sliding on a surface |
fRS | Effort required to continue sliding on a surface | ||
aTK | Effort required to break contact with a surface | ||
Macro-roughness | mTX | Intensity of large features (>1 mm spacing) | |
mCO | Perceived spacing of large features (>1 mm) | ||
mRG | Perceived uniformity of large features (>1 mm) | ||
Micro-roughness | μRO | Intensity of small features (<1 mm spacing) | |
μCO | Perceived spacing of small features (<1 mm) | ||
Thermistor | Thermal | tCO | Initial rate that a surface draws heat from the fingertip |
tPR | Extent that a surface continues drawing heat from the fingertip | ||
Electrodes | Compliance | cCM | Degree that a surface deforms under pressure |
cDF | Degree of surface wrap around the fingertip when being deformed | ||
cDP | Speed that a surface returns to its original shape after being deformed | ||
cRX | Degree to which a surface stops pushing back after being deformed | ||
cYD | Degree to which a surface remains deformed after being pressed |
Model | Feature | Sensory Descriptors | Affective Descriptors | Total Descriptors |
---|---|---|---|---|
Bagging Regressor | Nonlinear (ensemble) | 14/19 | 8/12 | 22/31 |
Decision Tree | Nonlinear (decision tree) | 14/19 | 4/12 | 18/31 |
Elastic Net | Linear | 12/19 | 5/12 | 17/31 |
Random Forest | Nonlinear (decision tree) | 11/19 | 6/12 | 17/31 |
Lasso | Linear | 10/19 | 5/12 | 15/31 |
Gradient Boosting | Nonlinear (ensemble) | 11/19 | 2/12 | 13/31 |
CatBoost | Nonlinear (ensemble) | 8/19 | 3/12 | 11/31 |
Linear Regression | Linear | 4/19 | 4/12 | 8/31 |
Ridge | Linear | 4/19 | 4/12 | 8/31 |
SVR | Nonlinear | 3/19 | 3/12 | 6/31 |
(A) Sensory Descriptors | ||
---|---|---|
Sensory Descriptors | Coefficient of Determination | Contribution of Explanatory Variables |
Slimy | 0.911 | fRS, µCO, cDP |
Soggy | 0.904 | aTK, cDP, tCO |
Cold | 0.901 | tCO, cRX, cYD |
Elastic | 0.869 | cRX, cDP, aTK |
Sticky | 0.850 | aTK, cDP, fRS |
Wet | 0.848 | fRS, cDP, tCO |
Soft | 0.829 | cYD, cDP, cCM |
Moist | 0.823 | cDP, cYD, fST |
Firm | 0.796 | cDP, fST, cDF |
Hard | 0.767 | fRS, tPR, cDF |
Dry | 0.748 | cDP, fRS, µCO |
Bulky | 0.660 | µCO, cDP, µRO |
Slippery | 0.607 | µCO, cCM, mCO |
Rough | 0.603 | cDP, µCO, tCO |
Smooth | 0.592 | µCO, fST, µRO |
Scratch | 0.487 | µRO, mCO, cRX |
Sleek | 0.484 | cDF, mCO, µRO |
Warm | 0.337 | tCO, mRG, mCO |
Bumpy | 0.292 | mTX, fRS, fST |
(B) Affective Descriptors | ||
Affective Descriptors | Coefficient of Determination | Contribution of Explanatory Variables |
Unpleasant | 0.829 | aTK, µRO, cDF |
Interest | 0.774 | fRS, cDP, aTK |
Calm | 0.705 | µCO, cYD, mRG |
Like | 0.676 | cCM, µRO, fRS |
Luxury | 0.674 | µRO, fRS, cYD |
Pleasant | 0.627 | µRO, aTK, cYD |
Fine | 0.624 | µCO, µRO, aTK |
Friendly | 0.622 | µCO, tCO, µRO |
Comfort | 0.516 | µCO, tPR, µRO |
Dislike | 0.489 | tCO, aTK, cRX |
Delicate | 0.485 | tCO, aTK, tPR |
Slight warmth | 0.304 | tCO, tPR, mRG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikejima, T.; Mizukoshi, K.; Nonomura, Y. Predicting Sensory and Affective Tactile Perception from Physical Parameters Obtained by Using a Biomimetic Multimodal Tactile Sensor. Sensors 2025, 25, 147. https://doi.org/10.3390/s25010147
Ikejima T, Mizukoshi K, Nonomura Y. Predicting Sensory and Affective Tactile Perception from Physical Parameters Obtained by Using a Biomimetic Multimodal Tactile Sensor. Sensors. 2025; 25(1):147. https://doi.org/10.3390/s25010147
Chicago/Turabian StyleIkejima, Toshiki, Koji Mizukoshi, and Yoshimune Nonomura. 2025. "Predicting Sensory and Affective Tactile Perception from Physical Parameters Obtained by Using a Biomimetic Multimodal Tactile Sensor" Sensors 25, no. 1: 147. https://doi.org/10.3390/s25010147
APA StyleIkejima, T., Mizukoshi, K., & Nonomura, Y. (2025). Predicting Sensory and Affective Tactile Perception from Physical Parameters Obtained by Using a Biomimetic Multimodal Tactile Sensor. Sensors, 25(1), 147. https://doi.org/10.3390/s25010147