[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Simulation of the SynTouch BioTac Sensor

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 15 (IAS 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 867))

Included in the following conference series:

Abstract

We present a data-driven approach to simulate the BioTac tactile fingertip sensor within physics engines. The behavior of the sensor is first captured in an experimental setup that records positions and external forces of contacts as well as the sensor output. This data is then used to fit a non-linear model that maps force-annotated mesh collisions of a simulator to sensor responses.

We discuss two deep network architectures that reproduce the BioTac data with high accuracy and demonstrate the simulation of simple grasps with the Shadow Dexterous Hand and five BioTac sensors. We present an open source plug-in for the simulator Gazebo and release the captured dataset alongside this paper.

This research was funded by the German Research Foundation (DFG) and the National Science Foundation of China in project Crossmodal Learning, TRR-169.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fishel, J.A., Santos, V.J., Loeb, G.E.: A robust micro-vibration sensor for biomimetic fingertips. In: 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 659–663 (2008). https://doi.org/10.1109/BIOROB.2008.4762917

  2. Wettels, N.B.: Biomimetic tactile sensor for object identification and grasp control. University of Southern California (2011)

    Google Scholar 

  3. Fishel, J.A.: Design and use of a biomimetic tactile microvibration sensor with human-like sensitivity and its application in texture discrimination using Bayesian exploration. University of Southern California (2012)

    Google Scholar 

  4. Loeb, G.E.: Estimating point of contact, force and torque in a biomimetic tactile sensor with deformable skin (2013). https://www.syntouchinc.com/wp-content/uploads/2016/12/2013_Lin_Analytical-1.pdf

  5. Chu, V., et al.: Robotic learning of haptic adjectives through physical interaction. Rob. Auton. Syst. 63, 279–292 (2015). https://doi.org/10.1016/j.robot.2014.09.021

    Article  Google Scholar 

  6. Fishel, J.A., Lin, G., Matulevich, B., Loeb, G.: BioTac product manual. SynTouch LLC, V20 edn. (2015). https://www.syntouchinc.com/wp-content/uploads/2017/01/BioTac_Product_Manual.pdf

  7. Shadow Robot Dextrous Hand. https://www.shadowrobot.com/

  8. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Proceedings, vol. 3, pp. 2149–2154. IEEE (2004). https://doi.org/10.1109/iros.2004.1389727

  9. Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng., A. Y., ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  10. Open Dynamics Engine. http://www.ode.org/

  11. Bullet Physics Library. http://bulletphysics.org/wordpress/

  12. Simbody Multibody Physics API. https://simtk.org/projects/simbody/

  13. Dynamic Animation and Robotics Toolkit. http://dartsim.github.io/

  14. Cyberbotics Inc., Webots robot simulator. https://www.cyberbotics.com/

  15. Coppelia Robotics, V-REP Virtual Robot Experimentation Platform. http://www.coppeliarobotics.com/

  16. Cutkosky, M.R.: On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans. Rob. Autom. 5(3), 269–279 (1989). https://doi.org/10.1109/70.34763

    Article  Google Scholar 

  17. Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA 2000, vol. 1, pp. 348–353. IEEE (2000). https://doi.org/10.1109/ROBOT.2000.844081

  18. Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Rob. Autom. Mag. 11(4), 110–122 (2004). https://doi.org/10.1109/MRA.2004.1371616

    Article  Google Scholar 

  19. Ciocarlie, M.T., Allen, P.K.: Hand posture subspaces for dexterous robotic grasping. Int. J. Rob. Res. 28(7), 851–867 (2009). https://doi.org/10.1177/0278364909105606

    Article  Google Scholar 

  20. Goldfeder, C., Ciocarlie, M., Dang, H., Allen, P.K.: The columbia grasp database. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 1710–1716. IEEE (2009). https://doi.org/10.1109/ROBOT.2009.5152709

  21. Taylor, J.R., Drumwright, E.M., Hsu, J.: Analysis of grasping failures in multi-rigid body simulations. In: IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), pp. 295–301. IEEE (2016). https://doi.org/10.1109/SIMPAR.2016.7862410

  22. Scharfe, H., Hendrich, N., Zhang, J.: Hybrid physics simulation of multi-fingered hands for dexterous in-hand manipulation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3777–3783. IEEE (2012). https://doi.org/10.1109/ICRA.2012.6225156

  23. León, B., et al.: OpenGRASP: a toolkit for robot grasping simulation. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 109–120. Springer (2010). https://doi.org/10.1007/978-3-642-17319-6_13

    Chapter  Google Scholar 

  24. OpenGRASP toolkit. http://opengrasp.sourceforge.net/

  25. Diankov, R., Kuffner, J.: OpenRAVE: a planning architecture for autonomous robotics. Robotics Institute, Pittsburgh, PA, Technical report. CMU-RI-TR-08-34 79 (2008)

    Google Scholar 

  26. Dahiya, R.S., Metta, G., Valle, M., Sandini, G.: Tactile sensing-from humans to humanoids. IEEE Trans. Rob. 26(1), 1–20 (2010). https://doi.org/10.1109/TRO.2009.2033627

    Article  Google Scholar 

  27. Yousef, H., Boukallel, M., Althoefer, K.: Tactile sensing for dexterous in-hand manipulation in robotics-a review. Sens. Actuators A Phys. 167(2), 171–187 (2011). https://doi.org/10.1016/j.sna.2011.02.038

    Article  Google Scholar 

  28. Message and service publishers for interfacing with Gazebo through ROS. http://wiki.ros.org/gazebo_ros

  29. Optoforce Ltd., 3D Force Sensor. https://optoforce.com/3d-force-sensor-omd

  30. Grazioso, S., Sonneville, V., Di Gironimo, G., Bauchau, O., Siciliano, B.: A nonlinear finite element formalism for modelling flexible and soft manipulators. In: IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), pp. 185–190. IEEE (2016). https://doi.org/10.1109/SIMPAR.2016.7862394

  31. ANSYS multiphysics simulation. https://www.ansys.com/products/platform/multiphysics-simulation

  32. Comsol Multiphysics suite. https://www.comsol.com/multiphysics

  33. ATI Industrial Automation Inc.: F/T Sensor Nano17. http://www.ati-ia.com/products/ft/ft_models.aspx?id=Nano17

  34. Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3400–3407. IEEE (2011). https://doi.org/10.1109/ICRA.2011.5979561

  35. Ciobanu, V., Popescu, D, Petrescu, A.: Point of contact location and normal force estimation using biomimetical tactile sensors. In: Eighth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 373–378. IEEE (2014). https://doi.org/10.1109/CISIS.2014.52

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Hendrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruppel, P., Jonetzko, Y., Görner, M., Hendrich, N., Zhang, J. (2019). Simulation of the SynTouch BioTac Sensor. In: Strand, M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds) Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing, vol 867. Springer, Cham. https://doi.org/10.1007/978-3-030-01370-7_30

Download citation

Publish with us

Policies and ethics