Room-Temperature Ammonia Sensing Using Polyaniline-Coated Laser-Induced Graphene
<p>Schematic of (<b>a</b>) fabrication process of the PANI@LIG gas sensor and (<b>b</b>) interactions between PANI and LIG.</p> "> Figure 2
<p>Schematic illustration of measurement system used for gas sensing tests.</p> "> Figure 3
<p>FESEM images of bare LIG (<b>a</b>,<b>b</b>), PANI@LIG (<b>c</b>–<b>f</b>).</p> "> Figure 4
<p>Raman spectra of bare LIG and PANI@LIG (<b>a</b>); ATR-FTIR spectra of bare LIG and PANI@LIG (<b>b</b>).</p> "> Figure 5
<p>X-ray photoelectron spectroscopy (XPS) survey spectra of PANI@LIG (<b>a</b>), and high-resolution spectra fitting results of C1s (<b>b</b>), N1s (<b>c</b>) and O1s (<b>d</b>) of PANI@LIG.</p> "> Figure 6
<p>Gas sensing performance of PANI@LIG NCs gas sensors in dry ambient conditions. (<b>a</b>) Electrical resistance response to different concentrations (5, 10, 25, 50, and 100 ppm) of NH<sub>3</sub> at room temperature. (<b>b</b>) Regression curve. (<b>c</b>) Sensor repeatability testing at successive exposures of 25 ppm of NH<sub>3</sub>. (<b>d</b>) Response to 5 ppm of NH<sub>3</sub> and analysis of response/recovery time.</p> "> Figure 7
<p>Calibration curves obtained for dry ambient conditions, 30%RH and 50%RH (<b>a</b>) and responses to different gas compounds (CO, C<sub>2</sub>H<sub>6</sub>O, C<sub>6</sub>H<sub>6</sub>, C<sub>7</sub>H<sub>8</sub>, NH<sub>3</sub>, H<sub>2</sub>, and NO<sub>2</sub>) (<b>b</b>).</p> "> Figure 8
<p>Schematic of the interaction between ammonia and PANI@LIG.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of LIG Electrode
2.2. Electrochemical Deposition of PANI on LIG Electrode
2.3. Materials Characterization Techniques
2.4. Gas Sensing Tests
3. Results and Discussion
3.1. Structural and Morphological Characteristics
3.2. Gas Sensing Performance Analysis
3.3. Gas Sensing Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science (1979) 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Urade, A.R.; Lahiri, I.; Suresh, K.S. Graphene Properties, Synthesis and Applications: A Review. JOM 2023, 75, 614–630. [Google Scholar] [CrossRef] [PubMed]
- Mbayachi, V.B.; Ndayiragije, E.; Sammani, T.; Taj, S.; Mbuta, E.R.; Khan, A.U. Graphene Synthesis, Characterization and Its Applications: A Review. Results Chem. 2021, 3, 100163. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and Prospects. Science (1979) 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Singh, E.; Meyyappan, M.; Nalwa, H.S. Flexible Graphene-Based Wearable Gas and Chemical Sensors. ACS Appl. Mater. Interfaces 2017, 9, 34544–34586. [Google Scholar] [CrossRef]
- Xiao, Y.; Pang, Y.X.; Yan, Y.; Qian, P.; Zhao, H.; Manickam, S.; Wu, T.; Pang, C.H. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. Adv. Sci. 2023, 10, 2205292. [Google Scholar] [CrossRef]
- Weiss, N.O.; Zhou, H.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X. Graphene: An Emerging Electronic Material. Adv. Mater. 2012, 24, 5782–5825. [Google Scholar] [CrossRef]
- Han, T.H.; Kim, H.; Kwon, S.J.; Lee, T.W. Graphene-Based Flexible Electronic Devices. Mater. Sci. Eng. R Rep. 2017, 118, 1–43. [Google Scholar] [CrossRef]
- Liu, J.; Bao, S.; Wang, X. Applications of Graphene-Based Materials in Sensors: A Review. Micromachines 2022, 13, 184. [Google Scholar] [CrossRef]
- Syam Sundar, L.; Amin Mir, M.; Waqar Ashraf, M.; Djavanroodi, F. Synthesis and Characterization of Graphene and Its Composites for Lithium-Ion Battery Applications: A Comprehensive Review. Alex. Eng. J. 2023, 78, 224–245. [Google Scholar] [CrossRef]
- Lakra, R.; Kumar, R.; Sahoo, P.K.; Thatoi, D.; Soam, A. A Mini-Review: Graphene Based Composites for Supercapacitor Application. Inorg. Chem. Commun. 2021, 133, 108929. [Google Scholar] [CrossRef]
- Whitener, K.E.; Sheehan, P.E. Graphene Synthesis. Diam. Relat. Mater. 2014, 46, 25–34. [Google Scholar] [CrossRef]
- Sun, B.; Pang, J.; Cheng, Q.; Zhang, S.; Li, Y.; Zhang, C.; Sun, D.; Ibarlucea, B.; Li, Y.; Chen, D.; et al. Synthesis of Wafer-Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications. Adv. Mater. Technol. 2021, 6, 2000744. [Google Scholar] [CrossRef]
- Kumar, N.; Salehiyan, R.; Chauke, V.; Joseph Botlhoko, O.; Setshedi, K.; Scriba, M.; Masukume, M.; Sinha Ray, S. Top-down Synthesis of Graphene: A Comprehensive Review. FlatChem Chem. Flat Mater. 2021, 27, 100224. [Google Scholar] [CrossRef]
- Gutiérrez-Cruz, A.; Ruiz-Hernández, A.R.; Vega-Clemente, J.F.; Luna-Gazcón, D.G.; Campos-Delgado, J. A Review of Top-down and Bottom-up Synthesis Methods for the Production of Graphene, Graphene Oxide and Reduced Graphene Oxide. J. Mater. Sci. 2022, 57, 14543–14578. [Google Scholar] [CrossRef]
- Madurani, K.A.; Suprapto, S.; Machrita, N.I.; Bahar, S.L.; Illiya, W.; Kurniawan, F. Progress in Graphene Synthesis and Its Application: History, Challenge and the Future Outlook for Research and Industry. ECS J. Solid State Sci. Technol. 2020, 9, 093013. [Google Scholar] [CrossRef]
- Lin, L.; Peng, H.; Liu, Z. Synthesis Challenges for Graphene Industry. Nat. Mater. 2019, 18, 520–524. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-Induced Porous Graphene Films from Commercial Polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef]
- Ye, R.; James, D.K.; Tour, J.M. Laser-Induced Graphene. Acc. Chem. Res. 2018, 51, 1609–1620. [Google Scholar] [CrossRef]
- Ye, R.; James, D.K.; Tour, J.M. Laser-Induced Graphene: From Discovery to Translation. Adv. Mater. 2019, 31, 1803621. [Google Scholar] [CrossRef]
- Vivaldi, F.M.; Dallinger, A.; Bonini, A.; Poma, N.; Sembranti, L.; Biagini, D.; Salvo, P.; Greco, F.; Di Francesco, F. Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing. ACS Appl. Mater. Interfaces 2021, 13, 30245–30260. [Google Scholar] [CrossRef] [PubMed]
- Duy, L.X.; Peng, Z.; Li, Y.; Zhang, J.; Ji, Y.; Tour, J.M. Laser-Induced Graphene Fibers. Carbon. 2018, 126, 472–479. [Google Scholar] [CrossRef]
- Cheng, L.; Guo, W.; Cao, X.; Dou, Y.; Huang, L.; Song, Y.; Su, J.; Zeng, Z.; Ye, R. Laser-Induced Graphene for Environmental Applications: Progress and Opportunities. Mater. Chem. Front. 2021, 5, 4874–4891. [Google Scholar] [CrossRef]
- Le, T.D.; Phan, H.; Kwon, S.; Park, S.; Jung, Y.; Min, J.; Chun, B.J.; Yoon, H.; Ko, S.H.; Kim, S.; et al. Recent Advances in Laser-Induced Graphene: Mechanism, Fabrication, Properties, and Applications in Flexible Electronics. Adv. Funct. Mater. 2022, 32, 2205158. [Google Scholar] [CrossRef]
- Movaghgharnezhad, S.; Kang, P. Laser-Induced Graphene: Synthesis Advances, Structural Tailoring, Enhanced Properties, and Sensing Applications. J. Mater. Chem. C 2024, 12, 6718–6742. [Google Scholar] [CrossRef]
- Wan, Z.; Nguyen, N.-T.; Gao, Y.; Li, Q. Laser Induced Graphene for Biosensors. Sustain. Mater. Technol. 2020, 25, e00205. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, X.; Song, W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS Nano 2021, 15, 18708–18741. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Z.; Liu, P.; Guo, X. Laser-Induced Graphene Based Flexible Electronic Devices. Biosensors 2022, 12, 55. [Google Scholar] [CrossRef]
- Yan, W.; Yan, W.; Chen, T.; Xu, J.; Tian, Q.; Ho, D. Size-Tunable Flowerlike MoS2 Nanospheres Combined with Laser-Induced Graphene Electrodes for NO2 Sensing. ACS Appl. Nano Mater. 2020, 3, 2545–2553. [Google Scholar] [CrossRef]
- Peng, Z.; Tao, L.-Q.; Zou, S.; Zhu, C.; Wang, G.; Sun, H.; Ren, T.-L. A Multi-Functional NO2 Gas Monitor and Self-Alarm Based on Laser-Induced Graphene. Chem. Eng. J. 2022, 428, 131079. [Google Scholar] [CrossRef]
- Tseng, S.-F.; Chen, P.-S.; Hsu, S.-H.; Hsiao, W.-T.; Peng, W.-J. Investigation of Fiber Laser-Induced Porous Graphene Electrodes in Controlled Atmospheres for ZnO Nanorod-Based NO2 Gas Sensors. Appl. Surf. Sci. 2023, 620, 156847. [Google Scholar] [CrossRef]
- Soydan, G.; Ergenc, A.F.; Alpas, A.T.; Solak, N. Development of an NO2 Gas Sensor Based on Laser-Induced Graphene Operating at Room Temperature. Sensors 2024, 24, 3217. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Shao, Y.; Zhang, Q.; Qu, M.; Ping, J.; Fu, Y.; Xie, J. A Flexible Virtual Sensor Array Based on Laser-Induced Graphene and MXene for Detecting Volatile Organic Compounds in Human Breath. Analyst 2021, 146, 5704–5713. [Google Scholar] [CrossRef]
- Stanford, M.G.; Yang, K.; Chyan, Y.; Kittrell, C.; Tour, J.M. Laser-Induced Graphene for Flexible and Embeddable Gas Sensors. ACS Nano 2019, 13, 3474–3482. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, G.; Cao, Y.; Meng, C.; Li, Y.; Ji, H.; Chen, X.; Niu, G.; Yan, J.; Xue, Y.; et al. Moisture-Resistant, Stretchable NOx Gas Sensors Based on Laser-Induced Graphene for Environmental Monitoring and Breath Analysis. Microsyst. Nanoeng. 2022, 8, 78. [Google Scholar] [CrossRef]
- Yang, L.; Yi, N.; Zhu, J.; Cheng, Z.; Yin, X.; Zhang, X.; Zhu, H.; Cheng, H. Novel Gas Sensing Platform Based on a Stretchable Laser-Induced Graphene Pattern with Self-Heating Capabilities. J. Mater. Chem. A 2020, 8, 6487–6500. [Google Scholar] [CrossRef]
- Yi, N.; Cheng, Z.; Li, H.; Yang, L.; Zhu, J.; Zheng, X.; Chen, Y.; Liu, Z.; Zhu, H.; Cheng, H. Stretchable, Ultrasensitive, and Low-Temperature NO2 Sensors Based on MoS2@rGO Nanocomposites. Mater. Today Phys. 2020, 15, 100265. [Google Scholar] [CrossRef]
- Yang, L.; Ji, H.; Meng, C.; Li, Y.; Zheng, G.; Chen, X.; Niu, G.; Yan, J.; Xue, Y.; Guo, S.; et al. Intrinsically Breathable and Flexible NO2 Gas Sensors Produced by Laser Direct Writing of Self-Assembled Block Copolymers. ACS Appl. Mater. Interfaces 2022, 14, 17818–17825. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yi, N.; Ding, X.; Liu, S.; Zhu, J.; Castonguay, A.C.; Gao, Y.; Zarzar, L.D.; Cheng, H. In Situ Laser-Assisted Synthesis and Patterning of Graphene Foam Composites as a Flexible Gas Sensing Platform. Chem. Eng. J. 2023, 456, 140956. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.; Liu, X.; Yue, Z.; Chen, X.; Wan, Z. Doping of Laser-Induced Graphene and Its Applications. Adv. Mater. Technol. 2023, 8, 2300244. [Google Scholar] [CrossRef]
- Kwak, D.; Kim, H.; Jang, S.; Kim, B.G.; Cho, D.; Chang, H.; Lee, J.O. Investigation of Laser-Induced Graphene (LIG) on a Flexible Substrate and Its Functionalization by Metal Doping for Gas-Sensing Applications. Int. J. Mol. Sci. 2024, 25, 1172. [Google Scholar] [CrossRef] [PubMed]
- Santos-Ceballos, J.C.; Salehnia, F.; Romero, A.; Vilanova, X.; Llobet, E. Low Cost, Flexible, Room Temperature Gas Sensor: Polypyrrole-Modified Laser-Induced Graphene for Ammonia Detection. IEEE Sens. J. 2024, 24, 9366–9374. [Google Scholar] [CrossRef]
- Santos-Ceballos, J.C.; Salehnia, F.; Romero, A.; Vilanova, X. Electrochemical Deposition of Polyaniline on Laser-Induced Graphene for Room Temperature Ammonia Sensing. In Proceedings of the EUROSENSORS XXXVI, Debrecen, Hungary, 1 September 2024; pp. 333–334. [Google Scholar]
- Nair, A.A.; Yu, F. Quantification of Atmospheric Ammonia Concentrations: A Review of Its Measurement and Modeling. Atmosphere 2020, 11, 1092. [Google Scholar] [CrossRef]
- Insausti, M.; Timmis, R.; Kinnersley, R.; Rufino, M.C. Advances in Sensing Ammonia from Agricultural Sources. Sci. Total Environ. 2020, 706, 135124. [Google Scholar] [CrossRef]
- Lefferts, M.J.; Castell, M.R. Ammonia Breath Analysis. Sens. Diagn. 2022, 1, 955–967. [Google Scholar] [CrossRef]
- Fang, X.; Guo, X.; Shi, H.; Cai, Q. Determination of Ammonia Nitrogen in Wastewater Using Electronic Nose. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–4. [Google Scholar]
- Timmer, B.; Olthuis, W.; Berg, A. van den Ammonia Sensors and Their Applications—A Review. Sens. Actuators B Chem. 2005, 107, 666–677. [Google Scholar] [CrossRef]
- Yuliarti, R.; Khambali, K.; Rusmiati, R. Risk Analysis of Exposure to NH3 And H2S Gas to Workers in The Small Industrial Environment of Magetan Regency in 2021. Int. J. Adv. Health Sci. Technol. 2022, 2, 169–174. [Google Scholar] [CrossRef]
- Reis, T.; Moura, P.C.; Gonçalves, D.; Ribeiro, P.A.; Vassilenko, V.; Fino, M.H.; Raposo, M. Ammonia Detection by Electronic Noses for a Safer Work Environment. Sensors 2024, 24, 3152. [Google Scholar] [CrossRef]
- Tanguy, N.R.; Thompson, M.; Yan, N. A Review on Advances in Application of Polyaniline for Ammonia Detection. Sens. Actuators B Chem. 2018, 257, 1044–1064. [Google Scholar] [CrossRef]
- Wen, J.; Wang, S.; Feng, J.; Ma, J.; Zhang, H.; Wu, P.; Li, G.; Wu, Z.; Meng, F.; Li, L.; et al. Recent Progress in Polyaniline-Based Chemiresistive Flexible Gas Sensors: Design, Nanostructures, and Composite Materials. J. Mater. Chem. A 2024, 12, 6190–6210. [Google Scholar] [CrossRef]
- Hirata, M.; Sun, L. Characteristics of an Organic Semiconductor Polyaniline Film as a Sensor for NH3 Gas. Sens. Actuators A Phys. 1994, 40, 159–163. [Google Scholar] [CrossRef]
- Kukla, A.L.; Shirshov, Y.M.; Piletsky, S.A. Ammonia Sensors Based on Sensitive Polyaniline Films. Sens. Actuators B Chem. 1996, 37, 135–140. [Google Scholar] [CrossRef]
- Farooqi, B.A.; Ashraf, A.; Farooq, U.; Ayub, K. Comparative Study on Sensing Abilities of Polyaniline and Graphene Polyaniline Composite Sensors toward Methylamine and Ammonia. Polym. Adv. Technol. 2020, 31, 3351–3360. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Zhu, S.; Zhou, Z.; Yao, Y.; Quan, W.; Liu, B. Enhanced Sensitivity of Ammonia Sensor Using Graphene/Polyaniline Nanocomposite. Sens. Actuators B Chem. 2013, 178, 485–493. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, T.; Chen, F.; Sun, X.; Li, X.; Yu, Z.; Wan, P.; Chen, X. Hierarchical Graphene–Polyaniline Nanocomposite Films for High-Performance Flexible Electronic Gas Sensors. Nanoscale 2016, 8, 12073–12080. [Google Scholar] [CrossRef]
- Gavgani, J.N.; Hasani, A.; Nouri, M.; Mahyari, M.; Salehi, A. Highly Sensitive and Flexible Ammonia Sensor Based on S and N Co-Doped Graphene Quantum Dots/Polyaniline Hybrid at Room Temperature. Sens. Actuators B Chem. 2016, 229, 239–248. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, X.; Wang, Z.; Li, C.; Hu, Q.; Gao, J.; Feng, L. Polyaniline-Reduced Graphene Oxide Nanosheets for Room Temperature NH3 Detection. ACS Appl. Nano Mater. 2021, 4, 5263–5272. [Google Scholar] [CrossRef]
- Tohidi, S.; Parhizkar, M.; Bidadi, H.; Mohamad-Rezaei, R. Electrodeposition of Polyaniline/Three-Dimensional Reduced Graphene Oxide Hybrid Films for Detection of Ammonia Gas at Room Temperature. IEEE Sens. J. 2020, 20, 9660–9667. [Google Scholar] [CrossRef]
- Santos-Ceballos, J.C.; Salehnia, F.; Romero, A.; Vilanova, X. Application of Digital Twins for Simulation Based Tailoring of Laser Induced Graphene. Sci. Rep. 2024, 14, 10363. [Google Scholar] [CrossRef]
- Santos-Ceballos, J.C.; Salehnia, F.; Romero, A.; Vilanova, X. Using Laser in the Fabrication of Graphene for Gas Sensing: A Digital Twin Approach. J. Laser Micro/Nanoeng. 2024; 19, 122–126. [Google Scholar] [CrossRef]
- Xu, J.; Wang, K.; Zu, S.-Z.; Han, B.-H.; Wei, Z. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage. ACS Nano 2010, 4, 5019–5026. [Google Scholar] [CrossRef]
- Mitra, M.; Kulsi, C.; Chatterjee, K.; Kargupta, K.; Ganguly, S.; Banerjee, D.; Goswami, S. Reduced Graphene Oxide-Polyaniline Composites—Synthesis, Characterization and Optimization for Thermoelectric Applications. RSC Adv. 2015, 5, 31039–31048. [Google Scholar] [CrossRef]
- Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Effect of Graphene Oxide on the Properties of Its Composite with Polyaniline. ACS Appl. Mater. Interfaces 2010, 2, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Cháfer, J.; García-Aboal, R.; Atienzar, P.; Llobet, E. Gas Sensing Properties of Perovskite Decorated Graphene at Room Temperature. Sensors 2019, 19, 4563. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ni, L.; Zhang, X.; Feng, L. A Novel Flexible Substrate-Free NH3 Sensing Membrane Based on PANI Covered RGO Functionalized Fiber. Sens. Actuators B Chem. 2023, 380, 133307. [Google Scholar] [CrossRef]
- Wu, Q.; Shen, W.; Lv, D.; Chen, W.; Song, W.; Tan, R. An Enhanced Flexible Room Temperature Ammonia Gas Sensor Based on GP-PANI/PVDF Multi-Hierarchical Nanocomposite Film. Sens. Actuators B Chem. 2021, 334, 129630. [Google Scholar] [CrossRef]
- Badi, N.; Khasim, S.; Roy, A.S. Micro-Raman Spectroscopy and Effective Conductivity Studies of Graphene Nanoplatelets/Polyaniline Composites. J. Mater. Sci. Mater. Electron. 2016, 27, 6249–6257. [Google Scholar] [CrossRef]
- Ji, D.; Li, B.; Raj, B.T.; Li, X.; Zhang, D.; Rezeq, M.; Cantwell, W.; Zheng, L. In Situ Surface Polymerization of PANI/SWCNT Bilayer Film: Effective Composite for Improving Seebeck Coefficient and Power Factor. Adv. Mater. Interfaces 2024, 2400566. [Google Scholar] [CrossRef]
- Ajeel, K.I.; Kareem, Q.S. Synthesis and Characteristics of Polyaniline (PANI) Filled by Graphene (PANI/GR) Nano-Films. J. Phys. Conf. Ser. 2019, 1234, 012020. [Google Scholar] [CrossRef]
- Yanilmaz, M.; Dirican, M.; Asiri, A.M.; Zhang, X. Flexible Polyaniline-Carbon Nanofiber Supercapacitor Electrodes. J. Energy Storage 2019, 24, 100766. [Google Scholar] [CrossRef]
- Yang, S.; Zhu, S.; Hong, R. Graphene Oxide/Polyaniline Nanocomposites Used in Anticorrosive Coatings for Environmental Protection. Coatings 2020, 10, 1215. [Google Scholar] [CrossRef]
- Visan, A.I.; Popescu-Pelin, G.; Gherasim, O.; Grumezescu, V.; Socol, M.; Zgura, I.; Florica, C.; Popescu, R.C.; Savu, D.; Holban, A.M.; et al. Laser Processed Antimicrobial Nanocomposite Based on Polyaniline Grafted Lignin Loaded with Gentamicin-Functionalized Magnetite. Polymers 2019, 11, 283. [Google Scholar] [CrossRef] [PubMed]
- Butoi, B.; Groza, A.; Dinca, P.; Balan, A.; Barna, V. Morphological and Structural Analysis of Polyaniline and Poly(o-Anisidine) Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration. Polymers 2017, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.M.; Li, R.M.; Ma, Y.W.; Chen, R.F.; Shi, N.E.; Fan, Q.L.; Huang, W. One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications. Adv. Funct. Mater. 2011, 21, 2989–2996. [Google Scholar] [CrossRef]
- Li, Z.L.; Yang, S.K.; Song, Y.; Xu, H.Y.; Wang, Z.Z.; Wang, W.K.; Dang, Z.; Zhao, Y.Q. In-Situ Modified Titanium Suboxides with Polyaniline/Graphene as Anode to Enhance Biovoltage Production of Microbial Fuel Cell. Int. J. Hydrogen Energy 2019, 44, 6862–6870. [Google Scholar] [CrossRef]
- Trchová, M.; Stejskal, J. Polyaniline: The Infrared Spectroscopy of Conducting Polymer Nanotubes (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1803–1817. [Google Scholar] [CrossRef]
- Yang, X.; Qiu, Y.; Zhang, M.; Zhang, L.; Li, H. Facile Fabrication of Polyaniline/Graphene Composite Fibers as Electrodes for Fiber-Shaped Supercapacitors. Appl. Sci. 2021, 11, 8690. [Google Scholar] [CrossRef]
- Oyetade, J.A.; Machunda, R.L.; Hilonga, A. Functional Impacts of Polyaniline in Composite Matrix of Photocatalysts: An Instrumental Overview. RSC Adv. 2023, 13, 15467–15489. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, Y.; Guang, S.; Ke, F.; Xu, H. Polyaniline-Graphene Composites with a Three-Dimensional Array-Based Nanostructure for High-Performance Supercapacitors. Carbon 2015, 83, 79–89. [Google Scholar] [CrossRef]
- Goswami, S.; Maiti, U.N.; Maiti, S.; Nandy, S.; Mitra, M.K.; Chattopadhyay, K.K. Preparation of Graphene–Polyaniline Composites by Simple Chemical Procedure and Its Improved Field Emission Properties. Carbon 2011, 49, 2245–2252. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Jiang, Y.; Duan, Z.; Liu, B.; Zhao, Q.; Wang, S.; Yuan, Z.; Tai, H. Ultrasensitive Flexible NH3 Gas Sensor Based on Polyaniline/SrGe4O9 Nanocomposite with Ppt-Level Detection Ability at Room Temperature. Sens. Actuators B Chem. 2020, 319, 128293. [Google Scholar] [CrossRef]
- Kumar, L.; Rawal, I.; Kaur, A.; Annapoorni, S. Flexible Room Temperature Ammonia Sensor Based on Polyaniline. Sens. Actuators B Chem. 2017, 240, 408–416. [Google Scholar] [CrossRef]
- Bai, S.; Zhao, Y.; Sun, J.; Tian, Y.; Luo, R.; Li, D.; Chen, A. Ultrasensitive Room Temperature NH3 Sensor Based on a Graphene–Polyaniline Hybrid Loaded on PET Thin Film. Chem. Commun. 2015, 51, 7524–7527. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos-Ceballos, J.C.; Salehnia, F.; Güell, F.; Romero, A.; Vilanova, X.; Llobet, E. Room-Temperature Ammonia Sensing Using Polyaniline-Coated Laser-Induced Graphene. Sensors 2024, 24, 7832. https://doi.org/10.3390/s24237832
Santos-Ceballos JC, Salehnia F, Güell F, Romero A, Vilanova X, Llobet E. Room-Temperature Ammonia Sensing Using Polyaniline-Coated Laser-Induced Graphene. Sensors. 2024; 24(23):7832. https://doi.org/10.3390/s24237832
Chicago/Turabian StyleSantos-Ceballos, José Carlos, Foad Salehnia, Frank Güell, Alfonso Romero, Xavier Vilanova, and Eduard Llobet. 2024. "Room-Temperature Ammonia Sensing Using Polyaniline-Coated Laser-Induced Graphene" Sensors 24, no. 23: 7832. https://doi.org/10.3390/s24237832
APA StyleSantos-Ceballos, J. C., Salehnia, F., Güell, F., Romero, A., Vilanova, X., & Llobet, E. (2024). Room-Temperature Ammonia Sensing Using Polyaniline-Coated Laser-Induced Graphene. Sensors, 24(23), 7832. https://doi.org/10.3390/s24237832