Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine) Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration
"> Figure 1
<p>Experimental setup of the employed DC plasma reactor [<a href="#B6-polymers-09-00732" class="html-bibr">6</a>,<a href="#B7-polymers-09-00732" class="html-bibr">7</a>].</p> "> Figure 2
<p>2D images of (<b>a</b>) PANI 1; (<b>b</b>) PANI 2; (<b>c</b>) PANI 3; (<b>d</b>) PANI 4; (<b>e</b>) PANI 5; (<b>f</b>) PANI 6; (<b>g</b>) PANI 7; (<b>h</b>) PANI 8; and (<b>i</b>) POA polymeric layers.</p> "> Figure 3
<p>3D images of: (<b>a</b>) PANI 1; (<b>b</b>) PANI 2; (<b>c</b>) PANI 3; (<b>d</b>) PANI 4; (<b>e</b>) PANI 5; (<b>f</b>) PANI 6; (<b>g</b>) PANI 7; (<b>h</b>) PANI 8; and (<b>i</b>) POA polymeric layers.</p> "> Figure 4
<p>SEM images of: (<b>a</b>) PANI 1; (<b>b</b>) PANI 2; (<b>c</b>) PANI 3; (<b>d</b>) PANI 4; (<b>e</b>) PANI 5; (<b>f</b>) PANI 6; (<b>g</b>) PANI 7; (<b>h</b>) PANI 8; (<b>i</b>) POA layers.</p> "> Figure 5
<p>SEM images of the transversal cross-section of the PANI 8 sample.</p> "> Figure 6
<p>FTIR spectra of PANI liquid precursor.</p> "> Figure 7
<p>FTIR spectra of: (<b>a</b>) PANI 1; (<b>b</b>) PANI 2; (<b>c</b>) PANI 3; (<b>d</b>) PANI 4; (<b>e</b>) PANI 5; (<b>f</b>) PANI 6; (<b>g</b>) PANI 7; and (<b>h</b>) PANI 8.</p> "> Figure 8
<p>Details of PANI samples FTIR spectra in 900–450 cm<sup>−1</sup> range.</p> "> Figure 9
<p>FTIR spectrum of the poly(<span class="html-italic">o</span>-anisidine) liquid precursor (black line) and polymer (red line).</p> "> Figure 10
<p>XRD diffraction patterns of the PANI 8 sample.</p> "> Figure 11
<p>XRD diffraction patterns of the POA sample.</p> "> Figure 12
<p>Dependence of PANI 8 and POA samples’ electrical conductivity on temperature.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Deposition Technique of Polyaniline and Poly(o-Anisidine) Layers
2.3. Structural, Morphological, and Electrical Characterization of Polyaniline and Poly(o-Anisidine) Layers
3. Results
3.1. AFM Analysis
3.2. SEM Analysis
3.3. FTIR Analysis
3.4. X-Ray Diffraction Analysis
3.5. Solubility Analysis
3.6. Electrical Conductivity Measurements
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lakshmi, G.B.V.S.; Dhillon, A.; Siddiqui, A.M.; Zulfequar, M.; Avasthi, D.K. RF-plasma polymerization and characterization of polyaniline. Eur. Polym. J. 2009, 45, 2873–2877. [Google Scholar] [CrossRef]
- Cruz, G.J.; Morales, J.; Castillo-Ortega, M.M.; Olayo, R. Synthesis of polyaniline films by plasma polymerization. Synth. Met. 1997, 88, 213–218. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Song, M.; Shin, H.S. Metal Oxide Nanomaterials, Conducting Polymers and Their Nanocomposites for Solar Energy. In Solar Cells-Research and Application Perspectives; Intech: Rijeka, Croatia, 2013; Chapter 8. [Google Scholar]
- Chaudhari, S.; Sainkar, S.R.; Patil, P.P. Anticorrosive properties of electro synthesized poly(o-anisidine) coatings on copper from aqueous salicylate medium. J. Phys. D Appl. Phys. 2007, 40, 520–533. [Google Scholar] [CrossRef]
- Gong, X.; Dai, L.; Mau, A.W.; Griesser, H.J. Plasma-Polymerized Polyaniline Films: Synthesis and Characterization. J. Polym. Sci. A 1998, 36, 633–643. [Google Scholar] [CrossRef]
- Staicu, D.; Butoi, B.; Armeanu, C.; Barna, E.S. Influence of the key deposition control parameters on the structure of thin films in a direct current cold plasma reactor for photonics applications. Dig. J. Nanomater. Biostruct. 2016, 11, 1375–1382. [Google Scholar]
- Butoi, B.; Berezovski, C.; Staicu, D.; Berezovski, R.; Marin, A.M.; Barna, E.S. Direct Current Plasma Polymerization Reactor for Thin Duromer Film Deposition. J. Optoelectron. Adv. Mater. 2014, 16, 1212–1217. [Google Scholar]
- Jatratkar, A.A.; Yadav, J.B.; Deshmukh, R.R.; Barshilia, H.C.; Puri, V.; Puri, R.K. Impact of low-pressure glow-discharge pulsed plasma polymerization on properties of polyaniline thin films. Phys. Scr. 2016, 91, 125501. [Google Scholar] [CrossRef]
- Shi, G.; Rouabhia, M.; Wang, Z.; Dao, L.H.; Zhang, Z. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials 2004, 25, 2477–2488. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zong, C.; Han, X.; Ji, H.; Wang, J.; Yang, X.; Lu, C. Redox-Switchable Surface Wrinkling on Polyaniline Film. Macromol. Rapid Commun. 2016, 37, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Sapurina, I.Y.; Shishov, M.A. Oxidative Polymerization of Aniline: Molecular Synthesis of Polyaniline and the Formation of Supramolecular Structures. In New Polymers for Special Applications; InTech: Rijeka, Croatia, 2012; Chapter 9; ISBN 978-953-51-0744-6. [Google Scholar]
- Groza, A.; Surmeian, A.; Diplasu, C.; Luculescu, C.; Chapon, P.; Tempez, A.; Ganciu, M. Physico-chemical processes occurring during polymerization of liquid polydimethylsiloxane films on metal substrates under atmospheric pressure air corona discharges. Surf. Coat. Technol. 2012, 212, 145–151. [Google Scholar] [CrossRef]
- Groza, A.; Ciobanu, C.S.; Popa, C.L.; Iconaru, S.L.; Chapon, L.; Luculescu, C.; Ganciu, M.; Predoi, D. Structural properties and antifungal activity against Candida albicans biofilm of different composite layers based on Ag/Zn doped hydroxyapatite-polydimethylsiloxanes. Polymers 2016, 8, 131. [Google Scholar] [CrossRef]
- Wang, X.; Grundmeier, G. Morphology and Patterning Processes of Thin Organosilicon and Perfluorinated Bi-Layer Plasma Polymer Films. Plasma Process. Polym. 2006, 3, 39–47. [Google Scholar] [CrossRef]
- Tsai, T.C.; Staack, D. Low-Temperature Polymer Deposition in Ambient Air Using a Floating-electrode Dielectric Barrier Discharge Jet. Plasma Process. Polym. 2011, 8, 523–534. [Google Scholar] [CrossRef]
- Du, X.; Xu, Y.; Xiong, L.; Bai, Y.; Zhu, J.; Mao, S. Polyaniline with high crystallinity degree: Synthesis, structure, and electrochemical properties. J. Appl. Polym. Sci. 2014, 131, 40827. [Google Scholar] [CrossRef]
- Jarad, A.N.; Ibrahim, K.; Ahmed, N.M. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application. AIP Conf. Proc. 2016, 1733, 020020. [Google Scholar]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Tamirisa, P.A.; Liddell, K.C.; Pedrow, P.D.; Osman, M.A. Pulsed-Plasma-Polymerized Aniline Thin Films. J. Appl. Polym. Sci. 2004, 93, 1317–1325. [Google Scholar] [CrossRef]
- Ohsaka, T.; Ohnuki, Y.; Oyama, N.; Katagiri, G.; Kamisako, K. IR absorbtion spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerization of aniline. J. Electroanal. Chem. Interfacial Electrochem. 1984, 161, 399–405. [Google Scholar] [CrossRef]
- Nabid, M.R.; Zamiraei, Z.; Sedghi, R. Water-soluble Aniline/o-Anisidine Copolymer: Enzymatic Synthesis and Characterization. Iran. Polym. J. 2010, 19, 699–706. [Google Scholar]
- Shah, K.; Iroh, J. Poly(o-anisidine) Coatings Electrodeposited onto AL-2024: Synthesis, Characterization, and Corrosion Protection Evaluation. Adv. Polym. Technol. 2004, 23, 291–297. [Google Scholar] [CrossRef]
- Mote, V.D.; Purushotham, Y.; Dole, B.N. Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6. [Google Scholar] [CrossRef]
- Özdemir, C.; Kaplan Can, H.; Colak, N.; Güner, A. Synthesis, Characterization, and Comparison of Self-Doped, Doped, and Undoped Forms of Polyaniline, Poly(o-anisidine), and Poly[aniline-co-(o-anisidine)]. J. Appl. Polym. Sci. 2006, 99, 2182–2192. [Google Scholar] [CrossRef]
Sample No. | Voltage (V) | Current Intensity (mA) | Anode-Substrate Distance (cm) | Substrate Inclination Angle | Monomer Temperature (°C) | Time (min) |
---|---|---|---|---|---|---|
PANI 1 | 1000 | 20 | 10 | 0° | 20 | 10 |
PANI 2 | 1000 | 20 | 10 | 45° | 20 | 10 |
PANI 3 | 1000 | 20 | 10 | 0° | 50 | 10 |
PANI 4 | 1000 | 20 | 10 | 45° | 50 | 10 |
PANI 5 | 1000 | 20 | 10 | 90° | 50 | 10 |
PANI 6 | 1000 | 30 | 5 | 0° | 50 | 10 |
PANI 7 | 1000 | 20 | 5 | 90° | 50 | 10 |
PANI 8 | 1200 | 30 | 5 | 90° | 50 | 10 |
POA | 1200 | 30 | 5 | 90° | 50 | 10 |
Sample | PANI 1 | PANI 2 | PANI 3 | PANI 4 | PANI 5 | PANI 6 | PANI 7 | PANI 8 | POA |
---|---|---|---|---|---|---|---|---|---|
Peak to peak (nm) | 2.484 | 8.532 | 6.48 | 382.96 | 996.3 | 14.04 | 968.436 | 1217.38 | 8.1 |
Average (nm) | 0.393 | 21.492 | 0.956 | 85.04 | 167.92 | 2.49 | 156.724 | 247.65 | 1.85 |
Wavenumber (cm−1) | IR Vibrational Unit |
---|---|
3370, 3200, 3023 | N–H stretching vibrations [16,18] |
2961, 2921 | C–H stretching vibrations in CH3 [16] |
2862 | C–H vibrations in CH2 [16] |
1650 | C=N stretching vibrations of quinoid ring [16] |
1597 | C=C stretching vibrations of quinoid ring [5,16,19] |
1515, 1496, 1450 | C=C stretching vibrations of benzoid ring [1,5,16] |
1405 | C–N+ stretching vibrations [16] |
1373 | C–H symmetric deformation vibrations in –CH3 [19] |
1310 | C–N stretching vibrations of aromatic ring [19] |
1255 | C–N stretching vibrations in aromatic primary amine [16,20] |
1173, 1109, 1026 | In-plane bending vibrations of aromatic C–H [19] |
1155 | C–N stretching vibrations in benzoid ring [17] |
1070 | Quinoid ring –NH+– benzoid ring stretching vibrations [16] |
995, 971, 909 | C–H out of plane bending vibrations [18] |
873, 692 | meta substitutions, 1,3 disubstitution in benzene ring [18] |
830, 554 | para substitutions, 1,4 disubstitution in benzene ring [2,18] |
747, 506 | ortho substitutions, 1,2 disubstitution in benzene ring [16,19] |
613 | vibrations in the aryl nitro compounds [5] |
Wavenumber cm−1 | IR Vibrational Unit |
---|---|
3350 | N–H stretching vibrations [18,21] |
2930, 2882 | C–H stretching vibrations in CH3 [20] |
1597 | C=C stretching vibrations of quinoid groups [18,21] |
1501, 1455 | C=C stretching vibration of benzoid groups [4,18,21] |
1335 | N–H group vibration [22] |
1270, 1240 | Carboxyl groups vibrations on benzene ring [4,22] |
1217, 1177, 1152 | 1,2,4 trisubstituted benzene ring [21] |
1117, 1020 | 1,4 substitution on the benzene ring [4] |
848, 805, 740 | 1,2 and 1,3-substitutions on benzene ring [4] |
550 | 1,4 disubstitution on benzene ring [2,20] |
hkl | Diffraction Peak (2θ) | d (nm) | Lattice Strain |
---|---|---|---|
PANI (010) | 15.03 | 15.21 | 0.0182 |
PANI (005) | 23.99 | 99.07 | 0.0018 |
PANI (111) | 26.07 | 109.77 | 0.0015 |
PANI (022) | 89.51 | 31.07 | 0.0015 |
PANI (200) | 40.81 | 3.95 | 0.0238 |
Sample | Organic Solvent | ||||
---|---|---|---|---|---|
CH3OH | C2H6O | CHCl3 | C3H6O | H2O | |
PANI 1 | p | p | p | s | i |
PANI 2 | p | p | p | s | i |
PANI 3 | p | p | p | s | i |
PANI 4 | p | p | p | s | i |
PANI 5 | p | p | p | s | i |
PANI 6 | p | p | p | s | i |
PANI 7 | p | p | p | s | i |
PANI 8 | p | p | p | s | i |
POA | s | s | s | s | i |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butoi, B.; Groza, A.; Dinca, P.; Balan, A.; Barna, V. Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine) Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration. Polymers 2017, 9, 732. https://doi.org/10.3390/polym9120732
Butoi B, Groza A, Dinca P, Balan A, Barna V. Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine) Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration. Polymers. 2017; 9(12):732. https://doi.org/10.3390/polym9120732
Chicago/Turabian StyleButoi, Bogdan, Andreea Groza, Paul Dinca, Adriana Balan, and Valentin Barna. 2017. "Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine) Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration" Polymers 9, no. 12: 732. https://doi.org/10.3390/polym9120732
APA StyleButoi, B., Groza, A., Dinca, P., Balan, A., & Barna, V. (2017). Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine) Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration. Polymers, 9(12), 732. https://doi.org/10.3390/polym9120732