Underwater Single-Photon 3D Reconstruction Algorithm Based on K-Nearest Neighbor
<p>Simple pixel accumulation depth estimation error.</p> "> Figure 2
<p>SPAD underwater optical imaging experimental system schematic diagram.</p> "> Figure 3
<p>Schematic diagram of PF32 SPAD photon time measurement.</p> "> Figure 4
<p>Data search process based on kd-tree.</p> "> Figure 5
<p>Diagram of KNN-based single-photon 3D reconstruction algorithm.</p> "> Figure 6
<p>Image of the detection target.</p> "> Figure 7
<p>K-value cross-validation results of real land-based target.</p> "> Figure 8
<p>(<b>a</b>) Depth ground truth; (<b>b</b>) depth profile reconstructed via pixel cross-correlation algorithm; (<b>c</b>) depth profile reconstructed via the ManiPoP algorithm; (<b>d</b>) depth profile reconstructed via the ManiPoP algorithm based on the KNN algorithm; (<b>e</b>) depth profile reconstructed via the pixel cross-correlation algorithm after simple pixel accumulation; and (<b>f</b>) depth profile reconstructed via the pixel cross-correlation algorithm based on the KNN algorithm.</p> "> Figure 9
<p>The area selected for error calculation.</p> "> Figure 10
<p>Comparison of simulated, underwater, single-photon, reconstructed depth profile and real, underwater, single-photon, reconstructed depth profile. (<b>a</b>) Simulation target; (<b>b</b>) depth profile reconstructed from real, underwater, single-photon data; and (<b>c</b>) depth profile reconstructed from simulated, underwater, single-photon data.</p> "> Figure 11
<p>Image of simulation target.</p> "> Figure 12
<p>(<b>a</b>) Simulated underwater target echo signal; (<b>b</b>) real underwater target echo signal.</p> "> Figure 13
<p>K-value cross-validation results of underwater simulation target.</p> "> Figure 14
<p>(<b>a</b>) Depth ground truth; (<b>b</b>) depth profile reconstructed via pixel cross-correlation algorithm; (<b>c</b>) depth profile reconstructed via ManiPoP algorithm; (<b>d</b>) depth profile reconstructed via ManiPoP algorithm based on KNN algorithm; (<b>e</b>) depth profile reconstructed via pixel cross-correlation algorithm after simple pixel accumulation; and (<b>f</b>) depth profile reconstructed via pixel cross-correlation algorithm based on KNN algorithm.</p> ">
Abstract
:1. Introduction
2. SPAD Underwater Optical Imaging Experimental System
3. Single-Photon 3D Reconstruction Algorithm Based on KNN
3.1. The Principle of the KNN Algorithm
- (1)
- Calculate the distance between each data point in the test set and every sample point in the training set;
- (2)
- Sort the obtained distances in ascending order;
- (3)
- Select the first K training samples that are closest to the test point and count the frequency of each class among these K neighbors;
- (4)
- Determine the class of the test point based on the decision rule.
3.2. Principle of Single-Photon 3D Reconstruction Algorithm Based on KNN
Algorithm 1 KNN-based pixel accumulation algorithm. |
Pixel Accumulation Algorithm Based on KNN Input: Single photon matrix X, Label matrix Y, Ground truth matrix Z 1: for = in Z do 2: 3: end for 4: P = fi,j, yi,j)} 5: for = in X do 6: 7: end for 8: B = 9: for in B do 10: NK← K nearest points in P 11: = 12: end for 13: for = in X do 14: if ∈() = then 15: = + 16: end if 17: end for Output: Data matrix Q |
4. Experimental Results and Analysis
4.1. Single-Photon Experiment with Real Land-Based Target
4.2. Underwater Simulation for Single-Photon Experiment
4.2.1. Simulation Experimental Scheme
4.2.2. Simulation Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halimi, A.; Maccarone, A.; Lamb, R.A.; Buller, G.S.; McLaughlin, S. Robust and guided bayesian reconstruction of single-photon 3d lidar data: Application to multispectral and underwater imaging. IEEE Trans. Comput. Imaging 2021, 7, 961–974. [Google Scholar] [CrossRef]
- Maccarone, A.; McCarthy, A.; Ren, X.; Warburton, R.E.; Wallace, A.M.; Moffat, J.; Petillot, Y.; Buller, G.S. Underwater depth imaging using time-correlated single-photon counting. Opt. Express 2015, 23, 33911–33926. [Google Scholar] [CrossRef] [PubMed]
- Ulku, A.C.; Bruschini, C.; Antolović, I.M.; Kuo, Y.; Ankri, R.; Weiss, S.; Michalet, X.; Charbon, E. A 512 × 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J. Sel. Top. Quantum Electron. 2018, 25, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ulku, A.; Ardelean, A.; Antolovic, M.; Weiss, S.; Charbon, E.; Bruschini, C.; Michalet, X. Wide-field time-gated SPAD imager for phasor-based FLIM applications. Methods Appl. Fluoresc. 2020, 8, 024002. [Google Scholar] [CrossRef] [PubMed]
- Greco, C.; Fiore, M.; Valenza, V.; Di Venanzio, C.; Rovera, G.; Ippolito, E.; Zollino, M.; D’Angelillo, R.M.; Giordano, A.; Ramella, S. Precision radiotherapy by SPECT lung functional imaging in NSCLC. J. Men’s Health 2022, 18, 101. [Google Scholar]
- Li, Z.; Lai, J.; Wang, C.; Yan, W.; Li, Z. Research on the optimal optical attenuation in a laser radar using a Geiger-mode APD. Appl. Opt. 2018, 57, 7415–7426. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, L.M.; Suhling, K. Wide-field TCSPC: Methods and applications. Meas. Sci. Technol. 2016, 28, 012003. [Google Scholar] [CrossRef]
- Burri, S.; Maruyama, Y.; Michalet, X.; Regazzoni, F.; Bruschini, C.; Charbon, E. Architecture and applications of a high resolution gated SPAD image sensor. Opt. Express 2014, 22, 17573–17589. [Google Scholar] [CrossRef]
- Fang, J.; Huang, K.; Wu, E.; Yan, M.; Zeng, H. Mid-infrared single-photon 3D imaging. Light. Sci. Appl. 2023, 12, 144. [Google Scholar] [CrossRef]
- Huang, K.; Fang, J.; Yan, M.; Wu, E.; Zeng, H. Wide-field mid-infrared single-photon upconversion imaging. Nat. Commun. 2022, 13, 1077. [Google Scholar] [CrossRef]
- Huang, K.; Wang, Y.; Fang, J.; Kang, W.; Sun, Y.; Liang, Y.; Hao, Q.; Yan, M.; Zeng, H. Mid-infrared photon counting and resolving via efficient frequency upconversion. Photonics Res. 2021, 9, 259–265. [Google Scholar] [CrossRef]
- Duntley, S.Q. Light in the sea. JOSA 1963, 53, 214–233. [Google Scholar] [CrossRef]
- Maccarone, A.; Acconcia, G.; Steinlehner, U.; Labanca, I.; Newborough, D.; Rech, I.; Buller, G.S. Custom-technology single-photon avalanche diode linear detector array for underwater depth imaging. Sensors 2021, 21, 4850. [Google Scholar] [CrossRef]
- Pitsch, C.; Walter, D.; Gasparini, L.; Bürsing, H.; Eichhorn, M. A Method to Correct the Temporal Drift of Single-Photon Detectors Based on Asynchronous Quantum Ghost Imaging. Sensors 2024, 24, 2578. [Google Scholar] [CrossRef]
- White, M.; Zhang, T.; Dave, A.; Ghajari, S.; Molnar, A.; Veeraraghavan, A. First-Arrival Differential Counting for SPAD Array Design. Sensors 2023, 23, 9445. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, L.; Xu, J.; Chiang, P.Y. A dToF Ranging Sensor with Accurate Photon Detector Measurements for LiDAR Applications. Sensors 2023, 23, 3011. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Kubota, H.; Fukushima, T.; Kondo, S.; Ta, T.T.; Okuni, H.; Watanabe, K.; Hirono, M.; Ojima, Y.; Kimura, K.; et al. A 20-ch TDC/ADC Hybrid Architecture LiDAR SoC for 240 × 96 Pixel 200-m Range Imaging With Smart Accumulation Technique and Residue Quantizing SAR ADC. IEEE J. Solid-State Circuits 2018, 53, 3026–3038. [Google Scholar] [CrossRef]
- McCarthy, A.; Ren, X.; Della Frera, A.; Gemmell, N.R.; Krichel, N.J.; Scarcella, C.; Ruggeri, A.; Tosi, A.; Buller, G.S. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector. Opt. Express 2013, 21, 22098–22113. [Google Scholar] [CrossRef] [PubMed]
- Maccarone, A.; Della Rocca, F.M.; McCarthy, A.; Henderson, R.; Buller, G.S. Three-dimensional imaging of stationary and moving targets in turbid underwater environments using a single-photon detector array. Opt. Express 2019, 27, 28437–28456. [Google Scholar] [CrossRef]
- Tachella, J.; Altmann, Y.; Ren, X.; McCarthy, A.; Buller, G.S.; Mclaughlin, S.; Tourneret, J.Y. Bayesian 3D reconstruction of complex scenes from single-photon lidar data. SIAM J. Imaging Sci. 2019, 12, 521–550. [Google Scholar] [CrossRef]
- Altmann, Y.; Ren, X.; McCarthy, A.; Buller, G.S.; McLaughlin, S. Lidar waveform-based analysis of depth images constructed using sparse single-photon data. IEEE Trans. Image Process. 2016, 25, 1935–1946. [Google Scholar] [CrossRef] [PubMed]
- Scholes, S.; Mora-Martín, G.; Zhu, F.; Gyongy, I.; Soan, P.; Leach, J. Simulating single-photon detector array sensors for depth imaging. arXiv 2022, arXiv:2210.05644. [Google Scholar]
System Parameter | Value |
---|---|
Laser | Pulse semiconductor diode (PicoQuant VisUV-532) |
Laser repetition rate | 10 MHz |
Illumination wavelength | 532 nm |
Average output power | 100 mW |
Laser pulse width | 72 ps full width at half maximum |
Image sensor | Photon Force PF32 SPAD array • 32 × 32 pixels • 20% (MLA) fill-factor • 50 m pixel pitch • Up to 225k frames per second |
Detection efficiency at = 532 nm | 28% |
TDC resolution | 10 bit |
TDC bin width | 55 ps |
SPAD jitter | 150 ps full width at half maximum |
System Parameter | Value | System Parameter | Value |
---|---|---|---|
Target size | 170 × 285 × 250 mm | Wavelength | 841 nm |
Exposure time | 30 ms | Laser repetition rate | 19.5 MHz |
Total scan time | 10 min | Average power | 240 W |
Algorithm | Accuracy | Time |
---|---|---|
KNN | 94.37% | 4.157 ms |
Random forest | 93.89% | 96.045 ms |
Naive Bayes | 95.17% | 5.340 ms |
AdaBoost | 95.03% | 220.755 ms |
Discriminant analysis | 94.91% | 55.462 ms |
Algorithm | Value |
---|---|
ManiPoP | 120.63 mm |
KNN-based ManiPoP | 88.26 mm |
Cross-correlation | 180.42 mm |
Cross-correlation after simple pixel accumulation | 89.15 mm |
KNN-based cross-correlation | 72.24 mm |
System Parameter | Value | System Parameter | Value |
---|---|---|---|
Pulse energy | 5 nJ | SPAD jitter | 200 ps FWHM |
Laser repetition rate | 10 MHz | Focal length | 50 mm |
TDC resolution | 55 ps | Aperture | F1.4 |
Illumination wavelength | 532 nm | Attenuation length | 6.5 AL |
Laser pulse width | 72 ps FWHM | Target reflectivity | 99% |
Exposure time | 20 ns | Absorption coefficient | 0.035 m−1 |
Detection efficiency at = 532 nm | 28% | Scattering coefficient | 0.4 m−1 |
Algorithm | Accuracy | Uncertainty Quality | Time |
---|---|---|---|
KNN | 80.61% | 0.36% | 4.298 ms |
Random forest | 77.84% | 0.26% | 120.354 ms |
Naive Bayes | 78.07% | 0.07% | 12.759 ms |
AdaBoost | 76.96% | 0.55% | 177.584 ms |
Discriminant analysis | 80.31% | 0.73% | 46.593 ms |
Algorithm | Value |
---|---|
ManiPoP | 0.9343 ± 0.0231 m |
KNN-based ManiPoP | 0.8755 ± 0.0076 m |
Cross-correlation | 0.8584 ± 0.0160 m |
Cross-correlation after simple pixel accumulation | 0.7765 ± 0.0076 m |
KNN-based cross-correlation | 0.6571 ± 0.0045 m |
RMSE/m | Algorithm | Cross-Correlation | Cross-Correlation after Simple Pixel Accumulation | KNN-Based Cross-Correlation |
---|---|---|---|---|
Target Distance | ||||
6.1 AL | 0.9767 ± 0.0075 | 0.8285 ± 0.0023 | 0.6985 ± 0.0031 | |
6.3 AL | 0.9847 ± 0.0070 | 0.8451 ± 0.0030 | 0.6830 ± 0.0029 | |
6.7 AL | 0.9834 ± 0.0068 | 0.8556 ± 0.0021 | 0.6965 ± 0.0035 | |
7.0 AL | 0.9872 ± 0.0072 | 0.8402 ± 0.0032 | 0.6779 ± 0.0032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Qiu, S.; Lu, T.; Kuang, Y.; Jin, W. Underwater Single-Photon 3D Reconstruction Algorithm Based on K-Nearest Neighbor. Sensors 2024, 24, 4401. https://doi.org/10.3390/s24134401
Wang H, Qiu S, Lu T, Kuang Y, Jin W. Underwater Single-Photon 3D Reconstruction Algorithm Based on K-Nearest Neighbor. Sensors. 2024; 24(13):4401. https://doi.org/10.3390/s24134401
Chicago/Turabian StyleWang, Hui, Su Qiu, Taoran Lu, Yanjin Kuang, and Weiqi Jin. 2024. "Underwater Single-Photon 3D Reconstruction Algorithm Based on K-Nearest Neighbor" Sensors 24, no. 13: 4401. https://doi.org/10.3390/s24134401
APA StyleWang, H., Qiu, S., Lu, T., Kuang, Y., & Jin, W. (2024). Underwater Single-Photon 3D Reconstruction Algorithm Based on K-Nearest Neighbor. Sensors, 24(13), 4401. https://doi.org/10.3390/s24134401