Custom-Technology Single-Photon Avalanche Diode Linear Detector Array for Underwater Depth Imaging
<p>Schematic of the experimental setup. The system comprised a pulsed laser diode source with central wavelength 670 nm, a SPAD detector linear array, and dedicated TCSPC electronics. The scan was performed by moving the target over the vertical direction with a motorized translational stage, and the light scattered by the target was collected by using two cylindrical lenses (CL1 and CL2).</p> "> Figure 2
<p>Instrumental response of the 16 detectors recorded in unfiltered tap water using an acquisition time of approximately 40 s.</p> "> Figure 3
<p>Targets used in the experiments. (<b>a</b>) Photograph of a plastic pipe connection. (<b>b</b>) Schematic of target used to investigate the depth resolution of the system in scattering environments. (<b>c</b>) Schematic of target used to investigate spatial resolution of the system in a number of scattering conditions.</p> "> Figure 4
<p>Depth (<b>top line</b>) and intensity (<b>bottom line</b>) profiles of the plastic pipe target in unfiltered tap water (1.2 AL). The acquisition time per line was varied by software from 10 ms to 1 μs, and the average optical power was equivalent to 9 μW. Under these conditions, the average target return rate for this measurement was approximately 1231 counts per pixel per 10 ms acquisition time, obtained performing the average over 8 SPAD detectors in the central part of the target.</p> "> Figure 5
<p>Depth (<b>top line</b>) and intensity (<b>bottom line</b>) profiles of the plastic pipe target in unfiltered tap water and several concentrations of scattering agent. The data were analyzed with the pixel-wise cross-correlation approach, the acquisition time per line was set to 10 ms, and the average optical power was adjusted from 9 μW to 15.4 mW, depending on the level of scattering in water. The average target return for each scan was obtained by averaging the count rate of the 8 SPAD detectors in the central part of the target over the 10 ms acquisition time.</p> "> Figure 6
<p>(<b>a</b>) Depth profile of the depth target in unfiltered tap water, equivalent to 1 AL between the system and the target. The figure shows the height of each block in mm with respect to the base of the target. (<b>b</b>) Depth profiles of the depth resolution target in unfiltered tap water and several concentrations of scattering agent. The data were analyzed with the pixel-wise cross-correlation approach, the acquisition time per line was set to 10 ms, and the average optical power was adjusted from 3.3 μW to 15.3 mW, depending on the level of scattering in water. The average target return per pixel was calculated over the entire array for each scan, from line 200 to 600, using an acquisition time of 10 ms.</p> "> Figure 7
<p>RMSE versus acquisition time for several underwater scattering environments. The colored regions of the graph highlight the achievable depth resolution for each RMSE range value.</p> "> Figure 8
<p>Intensity profiles of the variable lines resolution target (as shown in <a href="#sensors-21-04850-f003" class="html-fig">Figure 3</a>c) in unfiltered tap water and several concentrations of scattering agent. The acquisition time per line was set to 10 ms, and the average optical power was adjusted from 3.3 to 15.3 mW, depending on the level of scattering in water.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Detection Head
2.2. TCSPC Module
2.3. Experimental Setup
3. Results
3.1. Depth Imaging in Non-Scattering Water
3.2. Depth Imaging in Scattering Underwater Environments
3.3. Depth and Spatial Resolution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foley, B.; Mindell, D. Precision Survey and Archaeological Methodology in Deep Water. MTS J. 2002, 36, 13–20. [Google Scholar]
- Sanz, P.J.; Peñalver, A.; Sales, J.; Fernández, J.J.; Pérez, J.; Fornas, D.; García, J.C.; Marín, R. Multipurpose Underwater Manipulation for Archaeological Intervention. In Proceedings of the VI International Workshop on Marine Technology, Cartagena, Spain, 15–17 September 2015. [Google Scholar]
- Simetti, E. Autonomous Underwater Intervention. Curr. Robot. Rep. 2020, 1, 117–122. [Google Scholar] [CrossRef]
- Schjølberg, I.; Gjersvik, T.B.; Transeth, A.A.; Utne, I.B. Next Generation Subsea Inspection, Maintenance nad Repair Operations. In Proceedings of the 10th IFAC Conference on Control Applications in Marine Systems (CAMS), Trondheim, Norway, 13–16 September 2016. [Google Scholar]
- Ji, Z.; Leu, M.C. Design of optical triangulation devices. Opt. Laser Technol. 1989, 21, 339–341. [Google Scholar] [CrossRef]
- Massot-Campos, M.; Oliver-Codina, G. Optical sensors and methods for underwater 3D reconstruction. Sensors 2015, 15, 31525–31557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaffe, J.S. Performance bounds on synchronous laser line scan systems. Opt. Express 2005, 13, 738–748. [Google Scholar] [CrossRef]
- McLeod, D.; Jacobson, J.; Hardy, M.; Embry, C. Autonomous Inspection using an Underwater 3D LiDAR. In Proceedings of the OCEANS 2013, San Diego, CA, USA, 23–27 September 2013. [Google Scholar]
- Hildebrandt, M.; Kerdels, J.; Albiez, J.; Kirchner, F. A practical underwater 3D-Laserscanner. In Proceedings of the OCEANS 2008, Quebec City, QC, Canada, 15–18 September 2008. [Google Scholar]
- Palomer, A.; Ridao, P.; Forest, J.; Ribas, D. Underwater Laser Scanner: Ray-Based Model and Calibration. IEEE/ASME Trans. Mechatron. 2019, 24, 1986–1997. [Google Scholar] [CrossRef]
- Palomer, A.; Ridao, P.; Youakim, D.; Ribas, D.; Forest, J.; Petillot, Y. 3D Laser Scanner for Underwater Manipulation. Sensors 2018, 18, 1086. [Google Scholar] [CrossRef] [Green Version]
- Palomer, A.; Ridao, P.; Ribas, D. Inspection of an underwater structure using point--cloud SLAM with an AUV and a laser scanner. J. Field Robot. 2019, 36, 1333–1344. [Google Scholar] [CrossRef]
- Watson, J.; Zielinski, O. Underwater 3D vision, ranging and range gating. In Subsea Optics and Imaging; Series in Electronic and Optical Materials; Woodhead Publishing Limited: Sawston, UK, 2013; pp. 400–401. [Google Scholar]
- Evans, P.M.; Klepsvik, J.O.; Bjarnar, M.L. New technology for subsea laser imaging and ranging system for inspection and mapping. Sens. Rev. 1998, 18, 97–107. [Google Scholar] [CrossRef]
- Bodemann, A.; Thornton, B.; Ura, T. Generation of High-resolution Three-dimensional Reconstructions of the Seafloor in Color using a Single Camera and Structured Light. J. Field Robot. 2016, 34, 833–851. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.; Almeida, J.; Almeida, C.; Dias, A.; Dias, N.; Aaltonen, J.; Heininen, A.; Koskinen, K.T.; Rossi, C.; Dominguez, S.; et al. UX 1 system design—A robotic system for underwater mining exploration. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018. [Google Scholar]
- Maccarone, A.; McCarthy, A.; Ren, X.; Warburton, R.E.; Wallace, A.M.; Moffat, J.; Petillot, Y.; Buller, G.S. Underwater depth imaging using time-correlated single-photon counting. Opt. Express 2015, 23, 33911–33926. [Google Scholar] [CrossRef] [PubMed]
- Becker, W. Advanced Time-Correlated Single Photon Counting Techniques; Springer: Berlin, Germany, 2005. [Google Scholar]
- Pellegrini, S.; Buller, G.S.; Smith, J.M.; Wallace, A.M.; Cova, S. Laser-based distance measurements using picosecond resolution time-correlated single-photon counting. Meas. Sci. Technol. 2000, 11, 712–716. [Google Scholar] [CrossRef]
- Tobin, R.; Halimi, A.; McCarthy, A.; Ren, X.; McEwan, K.J.; McLaughlin, S.; Buller, G.S. Long-range depth profiling of camouflaged targets using single-photon detection. Opt. Eng. 2017, 57, 031303. [Google Scholar]
- Henriksson, M.; Larsson, H.; Grönwall, C.; Tolt, G. Continuously scanning time-correlated single-photon-counting single-pixel 3-D lidar. Opt. Eng. 2016, 56, 031204. [Google Scholar] [CrossRef]
- Tobin, R.; Halimi, A.; McCarthy, A.; Laurenzis, M.; Christnacher, F.; Buller, G.S. Three-dimensional single-photon imaging through obscurants. Opt. Express 2019, 27, 4590–4611. [Google Scholar] [CrossRef] [PubMed]
- Tobin, R.; Halimi, A.; McCarthy, A.; Soan, P.; Buller, G.S. Robust real--time 3D imaging of moving scenes through atmospheric obscurant using single--photon LiDAR. Sci. Rep. 2021, 11, 11236. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, A.; Ren, X.; Della Frera, A.; Gemmell, N.R.; Krichel, N.J.; Scarcella, C.; Ruggeri, A.; Tosi, A.; Buller, G.S. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector. Opt. Express 2013, 21, 22098–22114. [Google Scholar] [CrossRef] [Green Version]
- Pawlikowska, A.; Halimi, A.; Lamb, R.; Buller, G.S. Single-photon three-dimensional imaging at up to 10 kilometers range. Opt. Express 2017, 25, 11919–11931. [Google Scholar] [CrossRef] [PubMed]
- Maccarone, A.; McCarthy, A.; Halimi, A.; Tobin, R.; Wallace, A.M.; Petillot, Y.; Buller, G.S. Depth imaging in highly scattering underwater environments using time correlated single photon counting. In Proceedings of the SPIE Security and Defence, Edinburgh, UK, 25 October 2016. [Google Scholar]
- Maccarone, A.; Mattioli Della Rocca, F.; McCarthy, A.; Henderson, R.; Buller, G.S. Three-dimensional imaging of stationary and moving targets in turbid underwater environments using a single-photon detector array. Opt. Express 2019, 27, 28437–28456. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.K.; Johnston, N.; Mattioli Della Rocca, F.; Chen, H.; Day-Uei Li, D.; Hungerford, G.; Hirsch, R.; McLoskey, D.; Yip, P.; Birch, D.J.S. A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology. IEEE J. Solid-State Circ. 2019, 54, 1907–1916. [Google Scholar] [CrossRef] [Green Version]
- Ulku, A.C.; Bruschini, C.; Antolović, I.M.; Kuo, Y.; Ankri, R.; Weiss, S.; Michalet, X.; Charbon, E. A 512× 512 SPAD image sensor with integrated gating for widefield FLIM. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 6801212. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, F.; Acconcia, G.; Gulinatti, A.; Ghioni, M.; Rech, I.; Osellame, R. Recent Advances and Future Perspectives of Single--Photon Avalanche Diodes for Quantum Photonics Applications. Adv. Quantum Technol. 2020, 4, 2000102. [Google Scholar] [CrossRef]
- Rech, I.; Marangoni, S.; Resnati, D.; Ghioni, M.; Cova, S. Multipixel single-photon avalanche diode array for parallel photon counting applications. J. Mod. Opt. 2009, 56, 326–333. [Google Scholar] [CrossRef]
- Gulinatti, A.; Rech, I.; Maccagnani, P.; Ghioni, M.; Cova, S. Large-area avalanche diodes for picosecond time-correlated photon counting. In Proceedings of the ESSDERC, Grenoble, France, 12–16 September 2005. [Google Scholar]
- Ceccarelli, F.; Acconcia, G.; Labanca, I.; Gulinatti, A.; Ghioni, M.; Rech, I. 152-dB Dynamic Range with a Large-Area Custom-Technology Single-Photon Avalanche Diode. IEEE Photonics Technol. Lett. 2018, 30, 391–394. [Google Scholar] [CrossRef]
- Acconcia, G.; Ghioni, M.; Rech, I. 37ps-Precision Time-Resolving Active Quenching Circuit for High-Performance Single Photon Avalanche Diodes. IEEE Photonics J. 2018, 10, 6804713. [Google Scholar] [CrossRef]
- Acconcia, G.; Cominelli, A.; Ghioni, M.; Rech, I. Fast fully-integrated front-end circuit to overcome pile-up limits in time-correlated single photon counting with single photon avalanche diodes. Opt. Express 2018, 26, 15398–15410. [Google Scholar] [CrossRef] [PubMed]
- Crotti, M.; Rech, I.; Acconcia, G.; Gulinatti, A.; Ghioni, M. A 2-GHz Bandwidth, Integrated Transimpedance Amplifier for Single-Photon Timing Applications. IEEE Trans. VLSI Syst. 2015, 23, 2819–2828. [Google Scholar] [CrossRef]
- Acconcia, G.; Cominelli, A.; Rech, I.; Ghioni, M. High-efficiency integrated readout circuit for single photon avalanche diode arrays in fluorescence lifetime imaging. Rev. Sci. Instrum. 2016, 87, 113110. [Google Scholar] [CrossRef]
- Cominelli, A.; Acconcia, G.; Peronio, P.; Rech, I.; Ghioni, M. Readout Architectures for High Efficiency in Time-Correlated Single Photon Counting Experiments—Analysis and Review. IEEE Photonics J. 2017, 9, 3900615. [Google Scholar] [CrossRef] [Green Version]
- Cuccato, A.; Antonioli, S.; Crotti, M.; Labanca, I.; Gulinatti, A.; Rech, I.; Ghioni, M. Complete and Compact 32-Channel System for Time-Correlated Single-Photon Counting Measurements. IEEE Photonic J. 2013, 5, 6801514. [Google Scholar] [CrossRef]
- Peronio, P.; Labanca, I.; Acconcia, G.; Ruggeri, A.; Lavdas, A.A.; Hicks, A.A.; Pramstaller, P.P.; Ghioni, M.; Rech, I. 32-channel time-correlated-single-photon-counting system for high-throughput lifetime imaging. Rev. Sci. Instrum. 2017, 88, 083704. [Google Scholar] [CrossRef] [PubMed]
- Ghioni, M.; Gulinatti, A.; Rech, I.; Maccagnani, P.; Cova, S. Large-area low-jitter silicon single photon avalanche diodes. In Proceedings of the SPIE Quantum Sensing and Nanophotonic Devices V. Proceedings in Quantum Sensing and Nanophotonic Devices V, San Jose, CA, USA, 1 February 2008. [Google Scholar]
- Acconcia, G.; Labanca, I.; Rech, I.; Gulinatti, A.; Ghioni, M. Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes. Rev. Sci. Instrum. 2017, 88, 026103. [Google Scholar] [CrossRef] [PubMed]
- Crotti, M.; Rech, I.; Ghioni, M. Four channel, 40 ps resolution, fully integrated time-to-amplitude converter for time-resolved photon counting. IEEE J. Solid-State Circuits 2012, 47, 699–708. [Google Scholar] [CrossRef]
- Duntley, S.Q. Light in the sea. J. Opt. Soc. Am. 1963, 53, 214–234. [Google Scholar] [CrossRef]
- Tachella, J.; Altmann, Y.; Mellado, N.; McCarthy, A.; Tobin, R.; Buller, G.S.; Tourneret, J.-Y.; McLaughlin, S. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers. Nat. Commun. 2019, 10, 4984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laux, A.; Billmers, R.; Mullen, L.; Concannon, B.; Davis, J.; Prentice, J.; Contarino, V. The a, b, c s of oceanographic lidar predictions: A significant step toward closing the loop between theory and experiment. J. Mod. Opt. 2002, 49, 439–451. [Google Scholar] [CrossRef]
- Halimi, A.; Maccarone, A.; McCarthy, A.; McLaughlin, S.; Buller, G.S. Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments. IEEE Trans. Comput. Imaging 2017, 3, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Altmann, Y.; Maccarone, A.; McCarthy, A.; McLaughlin, S.; Buller, G.S. Spectral Classification of Sparse Photon Depth Images. Opt. Express 2018, 26, 5514–5530. [Google Scholar] [CrossRef]
- Wallace, A.M.; McCarthy, A.; Nichol, C.J.; Ren, X.; Morak, S.; Martinez-Ramirez, D.; Woodhouse, I.H.; Buller, G.S. Design and evaluation of multispectral LiDAR for the recovery of arboreal parameters. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4942–4954. [Google Scholar] [CrossRef] [Green Version]
- Halimi, A.; Altmann, Y.; McCarthy, A.; Ren, X.; Tobin, R.; Buller, G.S.; McLaughlin, S. Restoration of intensity and depth images constructed using sparse single-photon data. In Proceedings of the European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 29 August–2 September 2016. [Google Scholar]
- Altmann, Y.; Ren, X.; McCarthy, A.; Buller, G.S.; McLaughlin, S. Lidar waveform based analysis of depth images constructed using sparse single-photon data. IEEE Trans. Image Process. 2016, 25, 1935–1946. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Laser source | Laser diode (PicoQuant, Germany) |
Illumination wavelength | 670 nm |
Repetition rate | 40 MHz |
Average optical power | 3.3 μW–15 mW (power varied with ND filters at the output of the laser head) |
Stand-off distance in water | 1.65 m |
Illumination beam at target | 35 × 2 mm |
Detector | 16 × 1 silicon SPAD detector fabricated in custom technology |
Timing module | Dedicated TCSPC electronics |
Histogram bin width | 1.6 ps in average |
Instrumental response at FWHM (includes laser, detectors, and timing electronics) | 121 ps on average across the array |
Optical field of view (full-angle) | 18.9 × 0.4 mrad |
Dark counts | 923.8 cps |
Overall background light in clear water (incl. dark counts) | 1354.6 cps |
Scan area | 33 × 100 mm |
Target speed | 10 mm/s |
Attenuation Lengths | Average Optical Power (mW) from Source | Average Target Return Per Pixel in 10 ms Acquisition | SBR |
---|---|---|---|
1.2 | 0.009 | 1231 | 6.8 |
4.7 | 1.7 | 498 | 6.0 |
5.3 | 14.2 | 605 | 4.3 |
6.2 | 14.7 | 301 | 3.4 |
6.8 | 14.4 | 167 | 2.5 |
7.5 | 15.1 | 101 | 1.9 |
8 | 14.5 | 78 | 1.5 |
8.3 | 15.4 | 66 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maccarone, A.; Acconcia, G.; Steinlehner, U.; Labanca, I.; Newborough, D.; Rech, I.; Buller, G.S. Custom-Technology Single-Photon Avalanche Diode Linear Detector Array for Underwater Depth Imaging. Sensors 2021, 21, 4850. https://doi.org/10.3390/s21144850
Maccarone A, Acconcia G, Steinlehner U, Labanca I, Newborough D, Rech I, Buller GS. Custom-Technology Single-Photon Avalanche Diode Linear Detector Array for Underwater Depth Imaging. Sensors. 2021; 21(14):4850. https://doi.org/10.3390/s21144850
Chicago/Turabian StyleMaccarone, Aurora, Giulia Acconcia, Ulrich Steinlehner, Ivan Labanca, Darryl Newborough, Ivan Rech, and Gerald S. Buller. 2021. "Custom-Technology Single-Photon Avalanche Diode Linear Detector Array for Underwater Depth Imaging" Sensors 21, no. 14: 4850. https://doi.org/10.3390/s21144850
APA StyleMaccarone, A., Acconcia, G., Steinlehner, U., Labanca, I., Newborough, D., Rech, I., & Buller, G. S. (2021). Custom-Technology Single-Photon Avalanche Diode Linear Detector Array for Underwater Depth Imaging. Sensors, 21(14), 4850. https://doi.org/10.3390/s21144850