Electrochemical Diffusion Study in Poly(Ethylene Glycol) Dimethacrylate-Based Hydrogels
"> Figure 1
<p>(<b>A</b>) Sensors covered with a hydrogel are overlayed with (<b>B</b>) MB(-conjugate) solution for (<b>C</b>) electrochemical diffusion monitoring with DPV.</p> "> Figure 2
<p>(<b>A</b>) Graphite sensor, (<b>B</b>) screen-printed sheet, and (<b>C</b>) peak currents measured on nine sensors of the screen-printed sheet.</p> "> Figure 3
<p>SEM images of vacuum-dried and lyophilized hydrogel structures.</p> "> Figure 4
<p>(<b>A</b>) Concentration-dependent measurement of MB-BSA and MB-IgG on unmodified sensors. (<b>B</b>) Normalization of the DPV peak current I<sub>peak</sub> with the DOL of 5.8 for MB-BSA and 3.8 for MB-IgG.</p> "> Figure 5
<p>(<b>A</b>) Detection of MB with and without a hydrogel coating. (<b>B</b>) Detection of MB-BSA (19.9 µmol/L) and MB-IgG (10 µmol/L) with and without a hydrogel coating.</p> "> Figure 6
<p>Plots of (<b>A</b>) I<sub>norm_max</sub> versus diffusivity and (<b>B</b>) diffusivity versus mesh size ξ.</p> "> Figure 7
<p>Diffusion study of MB-BSA in the wet (<b>A</b>), in the dry hydrogels (<b>B</b>), and out of the dry hydrogel (<b>C</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrochemical Sensors and Measurement Setup
2.3. Hydrogel Preparation
2.4. Gravimetric Hydrogel Characterization
2.5. Hydrogel Characterization with Scanning Electron Microscopy
2.6. Conjugation of Biomolecules with Methylene Blue
3. Results
3.1. Sensor Characterization
3.2. Gravimetric Hydrogel Characterization
3.3. Hydrogel Characterization with Scanning Electron Microscopy
3.4. MB-Conjugate Measurement without Hydrogel
3.5. Response of MB-Conjugates of Sensors with and without Hydrogel
3.6. Hydrgel Characteriazion with Different PEG-DMA Molecular Weights
3.7. MB-BSA Diffusion into and out of the Wet Hydrogel and of the Dry Hydrogel
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, E.R.; Joe, C.; Mitchell, R.J.; Gu, M.B. Biosensors for healthcare: Current and future perspectives. Trends Biotechnol. 2023, 41, 374–395. [Google Scholar] [CrossRef]
- Gonzalez-Macia, L.; Morrin, A.; Smyth, M.R.; Killard, A.J. Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst 2010, 135, 845. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.T.S.G.; Souto, D.E.P.; Barragan, J.T.C.; Giarola, J.D.F.; De Moraes, A.C.M.; Kubota, L.T. Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends. ChemElectroChem 2017, 4, 778–794. [Google Scholar] [CrossRef]
- Couto, R.A.S.; Lima, J.L.F.C.; Quinaz, M.B. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 2016, 146, 801–814. [Google Scholar] [CrossRef]
- Schrattenecker, J.D.; Heer, R.; Hainberger, R.; Fafilek, G. Impedimetric IgG-Biosensor with In-Situ Generation of the Redox-Probe. Proceedings 2017, 1, 534. [Google Scholar] [CrossRef]
- Schrattenecker, J.D.; Heer, R.; Melnik, E.; Maier, T.; Fafilek, G.; Hainberger, R. Hexaammineruthenium (II)/(III) as alternative redox-probe to Hexacyanoferrat (II)/(III) for stable impedimetric biosensing with gold electrodes. Biosens. Bioelectron. 2018, 127, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Nimse, S.B.; Sonawane, M.D.; Song, K.-S.; Kim, T. Biomarker detection technologies and future directions. Analyst 2016, 141, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Adornetto, G.; Palleschi, G. A review of experimental aspects of electrochemical immunosensors. Electrochim. Acta 2012, 84, 74–83. [Google Scholar] [CrossRef]
- Thoeny, V.; Melnik, E.; Asadi, M.; Mehrabi, P.; Schalkhammer, T.; Pulverer, W.; Maier, T.; Mutinati, G.C.; Lieberzeit, P.; Hainberger, R. Detection of breast cancer-related point-mutations using screen-printed and gold-plated electrochemical sensor arrays suitable for point-of-care applications. Talanta Open 2022, 100150. [Google Scholar] [CrossRef]
- Thoeny, V.; Melnik, E.; Huetter, M.; Asadi, M.; Mehrabi, P.; Schalkhammer, T.; Pulverer, W.; Maier, T.; Mutinati, G.C.; Lieberzeit, P.; et al. Recombinase polymerase amplification in combination with electrochemical readout for sensitive and specific detection of PIK3CA point mutations. Anal. Chim. Acta 2023, 1281, 341922. [Google Scholar] [CrossRef]
- Faustino, V.; Catarino, S.O.; Lima, R.; Minas, G. Biomedical microfluidic devices by using low-cost fabrication techniques: A review. J. Biomech. 2016, 49, 2280–2292. [Google Scholar] [CrossRef]
- Toren, P.; Smolka, M.; Haase, A.; Palfinger, U.; Nees, D.; Ruttloff, S.; Kuna, L.; Schaude, C.; Jauk, S.; Rumpler, M.; et al. High-throughput roll-to-roll production of polymer biochips for multiplexed DNA detection in point-of-care diagnostics. Lab Chip 2020, 20, 4106–4117. [Google Scholar] [CrossRef]
- Deng, J.; Jiang, X. Advances in Reagents Storage and Release in Self-Contained Point-of-Care Devices. Adv. Mater. Technol. 2019, 4, 1800625. [Google Scholar] [CrossRef]
- Smith, S.; Sewart, R.; Becker, H.; Roux, P.; Land, K. Blister pouches for effective reagent storage on microfluidic chips for blood cell counting. Microfluid. Nanofluid 2016, 20, 163. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Su, X.; Qiu, G.; Zhong, Q.; Li, T.; Zhang, D.; Zhang, S.; He, S.; Ge, S.; et al. Transferable, easy-to-use and room-temperature-storable PCR mixes for microfluidic molecular diagnostics. Talanta 2021, 235, 122797. [Google Scholar] [CrossRef]
- Zirath, H.; Schnetz, G.; Glatz, A.; Spittler, A.; Redl, H.; Peham, J.R. Bedside Immune Monitoring: An Automated Immunoassay Platform for Quantification of Blood Biomarkers in Patient Serum within 20 Minutes. Anal. Chem. 2017, 89, 4817–4823. [Google Scholar] [CrossRef]
- Zhao, Z.; Al-Ameen, M.A.; Duan, K.; Ghosh, G.; Lo, J.F. On-chip porous microgel generation for microfluidic enhanced VEGF detection. Biosens. Bioelectron. 2015, 74, 305–312. [Google Scholar] [CrossRef]
- Kirk, J.T.; Fridley, G.E.; Chamberlain, J.W.; Christensen, E.D.; Hochberg, M.; Ratner, D.M. Multiplexed inkjet functionalization of silicon photonic biosensors. Lab Chip 2011, 11, 1372. [Google Scholar] [CrossRef]
- Abe, K.; Hashimoto, Y.; Yatsushiro, S.; Yamamura, S.; Bando, M.; Hiroshima, Y.; Kido, J.; Tanaka, M.; Shinohara, Y.; Ooie, T.; et al. Simultaneous Immunoassay Analysis of Plasma IL-6 and TNF-α on a Microchip. PLoS ONE 2013, 8, e53620. [Google Scholar] [CrossRef]
- Melnik, E.; Muellner, P.; Mutinati, G.C.; Koppitsch, G.; Schrank, F.; Hainberger, R.; Laemmerhofer, M. Local functionalization of CMOS-compatible Si 3 N 4 Mach-Zehnder interferometers with printable functional polymers. Sens. Actuators B Chem. 2016, 236, 1061–1068. [Google Scholar] [CrossRef]
- Kurzhals, S.; Melnik, E.; Plata, P.; Cihan, E.; Herzog, P.; Felice, A.; Bocchino, A.; O’Mahony, C.; Mutinati, G.C.; Hainberger, R. Detection of lactate via amperometric sensors modified with direct electron transfer enzyme containing PEDOT:PSS and hydrogel inks. IEEE Sens. Lett. 2023, 7, 1–4. [Google Scholar] [CrossRef]
- Lee, J.; Ko, J.H.; Lin, E.-W.; Wallace, P.; Ruch, F.; Maynard, H.D. Trehalose hydrogels for stabilization of enzymes to heat. Polym. Chem. 2015, 6, 3443–3448. [Google Scholar] [CrossRef]
- Panescu, P.H.; Ko, J.H.; Maynard, H.D. Scalable Trehalose-Functionalized Hydrogel Synthesis for High-Temperature Protection of Enzymes. Macromol. Mater. Eng. 2019, 304, 1800782. [Google Scholar] [CrossRef]
- Mancini, R.J.; Lee, J.; Maynard, H.D. Trehalose glycopolymers for stabilization of protein conjugates to environmental stressors. J. Am. Chem. Soc. 2012, 134, 8474–8479. [Google Scholar] [CrossRef]
- Zhang, B.; Yao, H.; Qi, H.; Zhang, X.-L. Trehalose and alginate oligosaccharides increase the stability of muscle proteins in frozen shrimp (Litopenaeus vannamei). Food Funct. 2020, 11, 1270–1278. [Google Scholar] [CrossRef]
- Lesch, A.; Cortés-Salazar, F.; Amstutz, V.; Tacchini, P.; Girault, H.H. Inkjet printed nanohydrogel coated carbon nanotubes electrodes for matrix independent sensing. Anal. Chem. 2015, 87, 1026–1033. [Google Scholar] [CrossRef]
- Melnik, E.; Strasser, F.; Muellner, P.; Heer, R.; Mutinati, G.C.; Koppitsch, G.; Lieberzeit, P.; Laemmerhofer, M.; Hainberger, R. Surface Modification of Integrated Optical MZI Sensor Arrays Using Inkjet Printing Technology. Procedia Eng. 2016, 168, 337–340. [Google Scholar] [CrossRef]
- Bauer, M.; Duerkop, A.; Baeumner, A.J. Critical review of polymer and hydrogel deposition methods for optical and electrochemical bioanalytical sensors correlated to the sensor’s applicability in real samples. Anal. Bioanal. Chem. 2023, 415, 83–95. [Google Scholar] [CrossRef]
- Shafique, H.; de Vries, J.; Strauss, J.; Jahromi, A.K.; Moakhar, R.S.; Mahshid, S. Advances in the Translation of Electrochemical Hydrogel-Based Sensors. Adv. Healthc. Mater. 2023, 12, e2201501. [Google Scholar] [CrossRef]
- Tokuyama, H.; Nakahata, Y.; Ban, T. Diffusion coefficient of solute in heterogeneous and macroporous hydrogels and its correlation with the effective crosslinking density. J. Membr. Sci. 2020, 595, 117533. [Google Scholar] [CrossRef]
- Johnson, E.M.; Berk, D.A.; Jain, R.K.; Deen, W.M. Hindered diffusion in agarose gels: Test of effective medium model. Biophys. J. 1996, 70, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, J.; Zhang, Y.; Dong, D.; Zhang, E.; Ji, F.; Qin, Z.; Yang, J.; Yao, F. Establishment of a Physical Model for Solute Diffusion in Hydrogel: Understanding the Diffusion of Proteins in Poly(sulfobetaine methacrylate) Hydrogel. J. Phys. Chem. B 2017, 121, 800–814. [Google Scholar] [CrossRef] [PubMed]
- Axpe, E.; Chan, D.; Offeddu, G.S.; Chang, Y.; Merida, D.; Hernandez, H.L.; Appel, E.A. A Multiscale Model for Solute Diffusion in Hydrogels. Macromolecules 2019, 52, 6889–6897. [Google Scholar] [CrossRef] [PubMed]
- Deffo, G.; Nde Tene, T.F.; Medonbou Dongmo, L.; Zambou Jiokeng, S.L.; Tonleu Temgoua, R.C. Differential Pulse and Square-Wave Voltammetry as Sensitive Methods for Electroanalysis Applications; Elsevier: Oxford, UK, 2024; pp. 409–417. [Google Scholar] [CrossRef]
- Caccavo, D.; Cascone, S.; Lamberti, G.; Barba, A.A. Hydrogels: Experimental characterization and mathematical modelling of their mechanical and diffusive behaviour. Chem. Soc. Rev. 2018, 47, 2357–2373. [Google Scholar] [CrossRef] [PubMed]
- Bray, J.C.; Merrill, E.W. Poly(vinyl alcohol) hydrogels. Formation by electron beam irradiation of aqueous solutions and subsequent crystallization. J. Appl. Polym. Sci. 1973, 17, 3779–3794. [Google Scholar] [CrossRef]
- Hickey, A.S.; Peppas, N.A. Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques. J. Membr. Sci. 1995, 107, 229–237. [Google Scholar] [CrossRef]
- Lin, S.; Sangaj, N.; Razafiarison, T.; Zhang, C.; Varghese, S. Influence of physical properties of biomaterials on cellular behavior. Pharm. Res. 2011, 28, 1422–1430. [Google Scholar] [CrossRef] [PubMed]
- Selifonov, A.A.; Shapoval, O.G.; Mikerov, A.N.; Tuchin, V.V. Determination of the Diffusion Coefficient of Methylene Blue Solutions in Dentin of a Human Tooth using Reflectance Spectroscopy and Their Antibacterial Activity during Laser Exposure. Opt. Spectrosc. 2019, 126, 758–768. [Google Scholar] [CrossRef]
- Merrill, E.W.; Dennison, K.; Sung, C. Partitioning and diffusion of solutes in hydrogels of poly(ethylene oxide). Biomaterials 1993, 14, 1117–1126. [Google Scholar] [CrossRef]
- Gil, M.S.; Cho, J.; Thambi, T.; Giang Phan, V.H.; Kwon, I.; Lee, D.S. Bioengineered robust hybrid hydrogels enrich the stability and efficacy of biological drugs. J. Control. Release 2017, 267, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.; Obst, F.; Haefner, S.; Heroldt, T.; Peiter, M.; Simon, F.; Richter, A.; Voit, B.; Appelhans, D. Hydrogel/enzyme dots as adaptable tool for non-compartmentalized multi-enzymatic reactions in microfluidic devices. React. Chem. Eng. 2019, 4, 67–77. [Google Scholar] [CrossRef]
- Davari, N.; Bakhtiary, N.; Khajehmohammadi, M.; Sarkari, S.; Tolabi, H.; Ghorbani, F.; Ghalandari, B. Protein-Based Hydrogels: Promising Materials for Tissue Engineering. Polymers 2022, 14, 986. [Google Scholar] [CrossRef] [PubMed]
Freeze | Warm-Up | Main Drying | Post-Drying | |
---|---|---|---|---|
Time (min) | 90 | 30 | Setting: ∞ | 20 |
Temperature (°C) | −40 | −50 | −50 | 25 |
Vacuum (mbar) | 0.015 | 0.015 | ||
Pressure (mbar) | off | off |
Molecular Weight of PEG-DMA, Mw (kDa) | Molar Concentration in the Ink, MCI (µmol/L) | Swelling Ratio, SR = Wsh/Wp | Number-Average Molecular Weight of Polymer Chain between CrossLinks, (g/mol) | Mesh Size, ξ (nm) |
---|---|---|---|---|
1 | 54.1 | 14.43 | 407.37 | 3.58 |
2 | 27.1 | 11.66 | 630.38 | 4.46 |
3.4 | 15.9 | 9.53 | 900.61 | 5.15 |
10 | 5.4 | 9.24 | 1238.22 | 6.91 |
PEG-DMA (kDa) | Methylene Blue | MB-BSA | MB-IgG | |||
---|---|---|---|---|---|---|
Diffusivity (m2 × s−1) | Inorm_max ± sd, (nA/(µM MB) | Diffusivity (m2 × s−1) | Inorm_max ± sd, (nA/(µM MB) | Diffusivity (m2 × s−1) | Inorm_max ± sd, (nA/(µM MB) | |
no hydrogel | 1.6 × 10−8 | 4.8 × 10−12 | 1.5 × 10−11 | |||
1 | 3.3 × 10−11 | 17.8 ± 0.2 | 7.4 × 10−13 | 5.0 ± 0.2 | 3.7 × 10−12 | 2.6 ± 0.1 |
2 | 2.2 × 10−11 | 15.1 ± 0.6 | 2.0 × 10−12 | 6.5 ± 0.4 | 4.8 × 10−13 | 2.6 ± 0.1 |
3.4 | 6.1 × 10−11 | 26.4 ± 1.1 | 1.8 × 10−12 | 7.2 ± 0.9 | 6.4 × 10−13 | 5.1 ± 0.7 |
10 | 8.3 × 10−11 | 29.7 ± 1.2 | 2.5 × 10−12 | 9.0 ± 0.8 | 7.5 × 10−12 | 3.7 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melnik, E.; Kurzhals, S.; Mutinati, G.C.; Beni, V.; Hainberger, R. Electrochemical Diffusion Study in Poly(Ethylene Glycol) Dimethacrylate-Based Hydrogels. Sensors 2024, 24, 3678. https://doi.org/10.3390/s24113678
Melnik E, Kurzhals S, Mutinati GC, Beni V, Hainberger R. Electrochemical Diffusion Study in Poly(Ethylene Glycol) Dimethacrylate-Based Hydrogels. Sensors. 2024; 24(11):3678. https://doi.org/10.3390/s24113678
Chicago/Turabian StyleMelnik, Eva, Steffen Kurzhals, Giorgio C. Mutinati, Valerio Beni, and Rainer Hainberger. 2024. "Electrochemical Diffusion Study in Poly(Ethylene Glycol) Dimethacrylate-Based Hydrogels" Sensors 24, no. 11: 3678. https://doi.org/10.3390/s24113678
APA StyleMelnik, E., Kurzhals, S., Mutinati, G. C., Beni, V., & Hainberger, R. (2024). Electrochemical Diffusion Study in Poly(Ethylene Glycol) Dimethacrylate-Based Hydrogels. Sensors, 24(11), 3678. https://doi.org/10.3390/s24113678