Visual Strain Sensors Based on Fabry–Perot Structures for Structural Integrity Monitoring
<p>Fabrication of F–P-based flexible visual strain sensor. (<b>a</b>) Principle of the phenomenon of hygroscopic coloration in the longhorn beetle; (<b>b</b>) Interference effects of incident light in the F-P structure; (<b>c</b>) Demonstration of different colors produced by SBS thickness variation; (<b>d</b>) Preparation process of F-P-based visualized strain sensors.</p> "> Figure 2
<p>(<b>a</b>) Color transition upon strain application; (<b>b</b>) reflection curves and colors at varying SBS thicknesses; (<b>c</b>) color patterns for different SBS thicknesses; (<b>d</b>) electric field distribution with a 1000 nm indium tin oxide layer; and (<b>e</b>) reflectance changes with wavelength and SBS thickness. All structures have a top GST layer of 5 nm and a bottom layer of 10 nm; (<b>f</b>) flowchart of color–structural parameters’ degree of strain conversion.</p> "> Figure 3
<p>(<b>a</b>) reflectance spectra and colors with varied GST-B thicknesses; (<b>b</b>) reflectance spectra and colors with varied GST-T thicknesses; (<b>c</b>) electric field at peak wavelengths for different GST-B and GST-T thicknesses; and (<b>d</b>) colors for various SBS thicknesses.</p> "> Figure 4
<p>(<b>a</b>) CIE-1931 coordinates for RGB with an upper GST layer of 5 nm and a lower layer of 10 nm, and (<b>b</b>) reflectance spectra and color blocks for RGB. SBS thicknesses of the F–P structures corresponding to the R, G, and B colors exhibited in <a href="#sensors-24-03676-f004" class="html-fig">Figure 4</a>a and <a href="#sensors-24-03676-f004" class="html-fig">Figure 4</a>b are 172 nm, 264 nm, and 209 nm, respectively.</p> "> Figure 5
<p>Comparison of strain color coordinate distributions of visual strain sensors designed in this and other studies in CIE-1931 color diagrams [<a href="#B25-sensors-24-03676" class="html-bibr">25</a>,<a href="#B26-sensors-24-03676" class="html-bibr">26</a>,<a href="#B27-sensors-24-03676" class="html-bibr">27</a>,<a href="#B28-sensors-24-03676" class="html-bibr">28</a>,<a href="#B29-sensors-24-03676" class="html-bibr">29</a>].</p> "> Figure 6
<p>(<b>a</b>) sensor with a 300 nm SBS cavity under strain; (<b>b</b>) sensor with a 180 nm SBS cavity under strain; (<b>c</b>) CIE-1931 coordinates for a 300 nm SBS cavity at different strains; and (<b>d</b>) CIE-1931 coordinates for a 180 nm SBS cavity at different strains.</p> "> Figure 7
<p>Color distribution in simulated cracks: visual strain sensor color variations for simulated cracks.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. Simulation and Methods
3. Results and Discussion
3.1. Characteristics of the Visual Strain Sensor
3.2. Effects of Upper and Lower Double-GST Layers
3.3. Visualizing the Color Representation of Strain Sensors
3.4. Demonstration of a Structural Health Monitoring Application of Visual Strain Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Chen, A.; Han, S.; Wu, Q.; Zhu, J.; Zhang, J.; Chen, Y.; Liu, J.; Guan, L. Tough and Robust Mechanically Interlocked Gel–Elastomer Hybrid Electrode for Soft Strain Gauge. Adv. Sci. 2023, 10, e2301116. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yin, R.; Zhao, Y.; Liu, H.; Zhang, D.; Shi, X.; Zhang, B.; Liu, C.; Shen, C. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem. Eng. J. 2021, 420, 127720. [Google Scholar] [CrossRef]
- Ostachowicz, W.; Soman, R.; Malinowski, P. Optimization of sensor placement for structural health monitoring: A review. Struct. Health Monit. 2019, 18, 963–988. [Google Scholar] [CrossRef]
- Giammarini, M.; Isidori, D.; Pieralisi, M.; Cristalli, C.; Fioravanti, M.; Concettoni, E. Design of a low cost and high performance wireless sensor network for structural health monitoring. Microsyst. Technol. 2016, 22, 1845–1853. [Google Scholar] [CrossRef]
- Onuma, H.; Shin, K.J.; Managi, S. Reduction of future disaster damages by learning from disaster experiences. Nat. Hazards 2017, 87, 1435–1452. [Google Scholar] [CrossRef]
- Lee, M.; Hong, J.H.; Kim, K.Y. Estimating Damage Costs from Natural Disasters in Korea. Nat. Hazards Rev. 2017, 18, 04017016. [Google Scholar] [CrossRef]
- Rice, J.A.; Mechitov, K.A.; Sim, S.H.; Spencer, B.F., Jr.; Agha, G.A. Enabling framework for structural health monitoring using smart sensors. Struct. Control. Health Monit. 2011, 18, 574–587. [Google Scholar] [CrossRef]
- Ikemoto, Y.; Suzuki, S.; Okamoto, H.; Murakami, H.; Asama, H.; Morishita, S.; Mishima, T.; Lin, X.; Itoh, H. Force sensor system for structural health monitoring using passive RFID tags. Sens. Rev. 2009, 29, 127–136. [Google Scholar] [CrossRef]
- McConney, M.E.; Rumi, M.; Godman, N.P.; Tohgha, U.N.; Bunning, T.J. Photoresponsive Structural Color in Liquid Crystalline Materials. Adv. Opt. Mater. 2019, 7, 1900429. [Google Scholar] [CrossRef]
- Kishino, M.; Akamatsu, N.; Taguchi, R.; Hisano, K.; Tsutsumi, O.; Shishido, A. Out-of-plane Strain Measurement of A Silicone Elastomer by means of A Cholesteric Liquid Crystal Sensor. J. Photopolym. Sci. Technol. 2020, 33, 81–84. [Google Scholar] [CrossRef]
- Kizhakidathazhath, R.; Geng, Y.; Jampani, V.S.R.; Charni, C.; Sharma, A.; Lagerwall, J.P.F. Facile Anisotropic Deswelling Method for Realizing Large-Area Cholesteric Liquid Crystal Elastomers with Uniform Structural Color and Broad-Range Mechanochromic Response. Adv. Funct. Mater. 2020, 30, 1909537. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Li, Q. Liquid Crystals: Versatile Self-Organized Smart Soft Materials. Chem. Rev. 2022, 122, 4887–4926. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Wang, Y.; Zhao, Y.; Shang, L. Cholesteric Cellulose Liquid Crystals with Multifunctional Structural Colors. Adv. Funct. Mater. 2022, 32, 2107242. [Google Scholar] [CrossRef]
- Choi, J.; Choi, Y.; Lee, J.H.; Kim, M.C.; Park, S.; Hyun, K.; Lee, K.M.; Yoon, T.H.; Ahn, S.K. Direct-Ink-Written Cholesteric Liquid Crystal Elastomer with Programmable Mechanochromic Response. Adv. Funct. Mater. 2023, 34, 2310658. [Google Scholar] [CrossRef]
- Snitzer, E. Fiber Optic Sensors for Displacement, Temperature, and Strain. J. Opt. Soc. Am. 1981, 12, 1565. [Google Scholar]
- Abe, T.; Mitsunaga, Y.; Koga, H. Strain Sensor Using Twisted Optical Fibers. Opt. Lett. 1984, 9, 373–374. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Ye, S.; Ge, J. From Metastable Colloidal Crystalline Arrays to Fast Responsive Mechanochromic Photonic Gels: An Organic Gel for Deformation-Based Display Panels. Adv. Funct. Mater. 2014, 24, 3197–3205. [Google Scholar] [CrossRef]
- Li, Z.; Butun, S.; Aydin, K. Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films. ACS Photonics 2015, 2, 183–188. [Google Scholar] [CrossRef]
- Yang, C.; Shen, W.; Zhang, Y.; Li, K.; Fang, X.; Zhang, X.; Liu, X. Compact Multilayer Film Structure for Angle Insensitive Color Filtering. Sci. Rep. 2015, 5, 9285. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, F.; Zhang, Y.; Zhang, L.; Lian, Y.; Yin, B. Stacked Ge2Sb2Te5/Indium Tin Oxide Nanoscale-Thick Interference Units for Increased Saturation Reflective Colors and Shortwave Infrared Shielding. ACS Appl. Nano Mater. 2022, 5, 10303–10310. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Liu, F.R.; Zhang, Y.Z.; Zhang, L.L.; Lian, Y.B.; Yin, B.S.; Ma, Q.L.; Rao, K. Enhancing the adjustable range of saturation in color reflectors using a phase-change material as an effective absorption base. J. Phys. D Appl. Phys. 2022, 55, 375105. [Google Scholar] [CrossRef]
- SAKURAI, S.; AIDA, S.; NOMURA, S. Mechanical properties of polystyrene-block-polybutadiene-block-polystyrene triblock copolymers crosslinked in the disordered state. Polymer 1999, 40, 2071–2076. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, L.; Ma, Z.; Li, Y. Effects of molecular weight and arm number on properties of star-shape styrene–butadiene–styrene triblock copolymer. J. Appl. Polym. Sci. 2005, 95, 832–840. [Google Scholar] [CrossRef]
- Kumagai, H.; Sato, N.; Takeoka, S.; Sawada, K.; Fujie, T.; Takahashi, K. Optomechanical characterization of freestanding stretchable nanosheet based on polystyrene-polybutadiene-polystyrene copolymer. Appl. Phys. Express 2017, 10, 11601. [Google Scholar] [CrossRef]
- Jeong, S.M.; Song, S.; Kim, H.; Joo, K.I.; Takezoe, H. Mechanoluminescence Color Conversion by Spontaneous Fluorescent-Dye-Diffusion in Elastomeric Zinc Sulfide Composite. Adv. Funct. Mater. 2016, 26, 4848–4858. [Google Scholar] [CrossRef]
- Jeong, S.M.; Song, S.; Joo, K.I.; Kim, J.; Hwang, S.H.; Jeong, J.; Kim, H. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ. Sci. 2014, 7, 3338–3346. [Google Scholar] [CrossRef]
- Wu, C.; Zeng, S.; Wang, Z.; Wang, F.; Zhou, H.; Zhang, J.; Ci, Z.; Sun, L. Efficient Mechanoluminescent Elastomers for Dual-Responsive Anti-Counterfeiting Device and Stretching/Strain Sensor with Multi-Mode Sensibility. Adv. Funct. Mater. 2018, 28, 1803168. [Google Scholar] [CrossRef]
- Pan, M.; Li, X.B.; Ong, C.; Chen, X.; Wang, L.; Chen, X.; Li, Y. Robust and Flexible Colloidal Photonic Crystal Films with Bending Strain–Independent Structural Colors for Anticounterfeiting. Part. Part. Syst. Charact. 2020, 37, 1900495. [Google Scholar] [CrossRef]
- Song, S.; Ma, X.; Pu, M.; Li, X.; Liu, K.; Gao, P.; Zhao, Z.; Wang, Y.; Wang, C.; Luo, X. Actively Tunable Structural Color Rendering with Tensile Substrate. Adv. Opt. Mater. 2017, 5, 1600829. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Liu, F.; Xu, G.; Yin, B.; Liu, M.; Xiong, Y.; Wang, F. Visual Strain Sensors Based on Fabry–Perot Structures for Structural Integrity Monitoring. Sensors 2024, 24, 3676. https://doi.org/10.3390/s24113676
Chen Q, Liu F, Xu G, Yin B, Liu M, Xiong Y, Wang F. Visual Strain Sensors Based on Fabry–Perot Structures for Structural Integrity Monitoring. Sensors. 2024; 24(11):3676. https://doi.org/10.3390/s24113676
Chicago/Turabian StyleChen, Qingyuan, Furong Liu, Guofeng Xu, Boshuo Yin, Ming Liu, Yifei Xiong, and Feiying Wang. 2024. "Visual Strain Sensors Based on Fabry–Perot Structures for Structural Integrity Monitoring" Sensors 24, no. 11: 3676. https://doi.org/10.3390/s24113676
APA StyleChen, Q., Liu, F., Xu, G., Yin, B., Liu, M., Xiong, Y., & Wang, F. (2024). Visual Strain Sensors Based on Fabry–Perot Structures for Structural Integrity Monitoring. Sensors, 24(11), 3676. https://doi.org/10.3390/s24113676