Transformable Quadruped Wheelchairs Capable of Autonomous Stair Ascent and Descent
"> Figure 1
<p>Transformable quadruped wheelchair.</p> "> Figure 2
<p>Example of chair transformation.</p> "> Figure 3
<p>Wheeled transportation.</p> "> Figure 4
<p>Dimensions of Unitree B2.</p> "> Figure 5
<p>Dimensions of transformable quadruped wheelchair (top, vertical; bottom, horizontal).</p> "> Figure 6
<p>Weight setting of various parts.</p> "> Figure 7
<p>Left front leg joint.</p> "> Figure 8
<p>Chair armrest and body joints.</p> "> Figure 9
<p>Typical gaits of a quadruped mechanism.</p> "> Figure 10
<p>An example of trajectory generated by the TG.</p> "> Figure 11
<p>PMTG structure.</p> "> Figure 12
<p>Structure of PMTG used in this research.</p> "> Figure 13
<p>Reinforcement learning for optimization of policy network.</p> "> Figure 14
<p>Width, height, and yaw angle of TG.</p> "> Figure 15
<p>TG for forward/backward and rotational movements.</p> "> Figure 16
<p>The output trajectory of the final TG when the direction of travel is straight ahead (1, 0).</p> "> Figure 17
<p>The output trajectory of the final TG when the direction of travel is backward (−1, 0).</p> "> Figure 18
<p>Output trajectory of the final TG when the direction of travel is right (0, 0.5).</p> "> Figure 19
<p>The output trajectory of the final TG when the direction of travel is diagonally right (0.5, 0.5).</p> "> Figure 20
<p>Staircase kick and tread.</p> "> Figure 21
<p>A 3D model of the staircase.</p> "> Figure 22
<p>Tesla Bot in quadruped wheelchair.</p> "> Figure 23
<p>Field used in stair-ascending motion acquisition experiment.</p> "> Figure 24
<p>Curriculum changes.</p> "> Figure 25
<p>Reward graph in the stair-ascending motion acquisition experiment.</p> "> Figure 26
<p>Field used in stair-descending motion acquisition experiment.</p> "> Figure 27
<p>Reward graph in stair-descending motion acquisition experiment.</p> "> Figure A1
<p>ArticulationBody component.</p> "> Figure A2
<p>LiDAR component provided by VTC on Unity.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Stair-Climbing Wheelchairs
2.2. Quadruped Robots and Their Extensions
2.3. Gait Control by Reinforcement Learning
2.4. Adaptation of Simulation Results to Real-World Environment
3. Transformable Quadruped Wheelchair
3.1. Overview
3.2. Hardware Configuration
4. Control of Quadruped Robot Gait
4.1. Overview
4.2. Trajectory Generator
4.3. Policies Modulating Trajectory Generators
5. Simulation Environment for Quadruped Wheelchair
5.1. Implementation
5.2. Creating a Quadruped Wheelchair with Unity
5.3. Direction Control by Navigation System
5.4. Overview of Simulation Environment
6. Stair-Climbing Experiment
6.1. Experiment for Acquiring Behavior in Staircase Ascent
6.2. Reward Function
6.2.1. Immediate Reward
6.2.2. Reward for Reaching Goal:
6.2.3. Reward for Tracking Movement Speed:
6.2.4. Reward for Tracking Rotation Speed:
6.2.5. Moving and Rotating Deviation Penalty:
6.2.6. Penalty for Falling Down:
6.3. Experimental Results 1
6.4. Discussion
6.5. Experiment for Acquiring Behavior in Staircase Descent
6.6. Experimental Results 2
7. Concluding Remarks
8. Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Actuator Implementation
Appendix B. Sensor Implementation
Appendix B.1. LiDAR Component Provided by VTC on Unity
Appendix B.2. IMU Implementation
Appendix B.3. Force Sensor Implementation
References
- Li, W.; Wei, L.; Zhang, X. A Wheels-on-Knees Quadruped Assistive Robot to Carry Loads. Appl. Sci. 2022, 12, 9239. [Google Scholar] [CrossRef]
- Maurya, S.K. Design and Application of Crawler Robot. In Proceedings of the 6th National Conference on Advancements in Simulation and Experimental Techniques in Mechanical Engineering (NCASEme), Chandigarh University, Chandigarh, India, 30–31 August 2019. [Google Scholar]
- Quaglia, G.; Franco, W.; Oderio, R. Wheelchair.q, a Motorized Wheelchair with Stair Climbing Ability. Mech. Mach. Theory. 2011, 46, 1601–1609. [Google Scholar] [CrossRef]
- Sen, M.A.; Bakircioglu, V.; Kalyoncu, M. Inverse Kinematic Analysis of a Quadruped Robot. Int. J. Sci. Technol. Res. 2017, 6, 285–289. [Google Scholar]
- Hutter, M.; Gehring, C.; Lauber, A.; Gunther, F.; Bellicoso, C.D.; Tsounis, V.; Fankhauser, P.; Diethelm, R.; Bachmann, S.; Bloesch, M.; et al. ANYmal—Toward Legged Robots for Harsh Environments. Adv. Robot. 2017, 31, 918–931. [Google Scholar] [CrossRef]
- Swiss-Mile. The Future of Robotic Mobility. Available online: https://www.swiss-mile.com/ (accessed on 22 May 2024).
- Bjelonic, M.; Sankar, P.K.; Bellicoso, C.D.; Vallery, H.; Hutter, M. Rolling in the Deep—Hybrid Locomotion for Wheeled-Legged Robots Using Online Trajectory Optimization. IEEE Robot. Autom. Lett. 2020, 5, 3626–3633. [Google Scholar] [CrossRef]
- Kashiri, N.; Cordasco, S.; Guria, P.; Margan, A.; Tsagarakis, N.G.; Baccelliere, L.; Muratore, L.; Laurenzi, A.; Ren, Z.; Hoffman, E.M.; et al. CENTAURO: A Hybrid Locomotion and High Power Resilient Manipulation Platform. IEEE Robot. Autom. Lett. 2019, 4, 1595–1602. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep Reinforcement Learning. arXiv 2013. [Google Scholar] [CrossRef]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017. [Google Scholar] [CrossRef]
- Shahid, A.A.; Piga, D.; Braghin, F.; Roveda, L. Continuous Control Actions Learning and Adaptation for Robotic Manipulation through Reinforcement Learning. Auton. Robots. 2022, 46, 483–498. [Google Scholar] [CrossRef]
- Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient Algorithms. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014. [Google Scholar]
- Bellman, R. A Markovian Decision Process. J. Math. Mech. 1957, 6, 679–684. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018. [Google Scholar]
- Heess, N.; TB, D.; Sriram, S.; Lemmon, J.; Merel, J.; Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Eslami, S.M.A.; et al. Emergence of Locomotion Behaviours in Rich Environments. arXiv 2017. [Google Scholar] [CrossRef]
- Xie, Z.; Berseth, G.; Clary, P.; Hurst, J.; van de Panne, M. Feedback Control for Cassie with Deep Reinforcement Learning. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018. [Google Scholar]
- Hyun, D.J.; Seok, S.; Lee, J.; Kim, S. High Speed Trot-Running: Implementation of a Hierarchical Controller Using Proprioceptive Impedance Control on the MIT Cheetah. Int. J. Robot. Res. 2014, 33, 1417–1445. [Google Scholar] [CrossRef]
- Iscen, A.; Caluwaerts, K.; Tan, J.; Zhang, T.; Coumans, E.; Sindhwani, V.; Vanhoucke, V. Policies Modulating Trajectory Generators. arXiv 2019. [Google Scholar] [CrossRef]
- Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning Quadrupedal Locomotion over Challenging Terrain. Sci. Robot. 2020, 5, eabc5986. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhou, B.; Zeng, H.; Wang, F.; Dong, Y.; Li, J.; Wang, K.; Tian, H.; Meng, M.Q.-H. Reinforcement Learning with Evolutionary Trajectory Generator: A General Approach for Quadrupedal Locomotion. IEEE Robot. Autom. Lett. 2021, 7, 3085–3092. [Google Scholar] [CrossRef]
- Gangapurwala, S.; Geisert, M.; Orsolino, R.; Fallon, M.; Havoutis, I. RLOC: Terrain-Aware Legged Locomotion Using Reinforcement Learning and Optimal Control. IEEE Trans. Robot. 2022, 38, 2908–2927. [Google Scholar] [CrossRef]
- Bellegarda, G.; Ijspeert, A. CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion. arXiv 2022. [Google Scholar] [CrossRef]
- Ijspeert, A.J. Central Pattern Generators for Locomotion Control in Animals and Robots: A Review. Neural Netw. 2008, 21, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Fu, Z.; Pathak, D.; Malik, J. RMA: Rapid Motor Adaptation for Legged Robots. In Proceedings of the Robotics: Science and Systems (RSS 2021), Virtual, 12–16 July 2021. [Google Scholar]
- Peng, X.B.; Coumans, E.; Zhang, T.; Lee, T.-W.; Tan, J.; Levine, S. Learning Agile Robotic Locomotion Skills by Imitating Animals. In Proceedings of the Robotics: Science and Systems (RSS 2020), Virtual, 12–16 July 2020. [Google Scholar]
- Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017. [Google Scholar] [CrossRef]
- Peng, X.B.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Sim-to-Real Transfer of Robotic Control with Dynamics Randomization. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australi, 21–25 May 2018; pp. 3803–3810. [Google Scholar]
- Tan, J.; Zhang, T.; Coumans, E.; Iscen, A.; Bai, Y.; Hafner, D.; Bohez, S.; Vanhoucke, V. Sim-to-Real: Learning Agile Locomotion for Quadruped Robots. In Proceedings of the Robotics: Science and Systems (RSS 2018), Pittsburgh, PA, USA, 26–30 June 2018; Carnegie Mellon University: Pittsburgh, PA, USA. [Google Scholar] [CrossRef]
- Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum Learning. In Proceedings of the 26th Annual International Conference on Machine Learning; ACM: Montreal, QC, Canada, 2009; pp. 41–48. [Google Scholar]
- Margolis, G.B.; Yang, G.; Paigwar, K.; Chen, T.; Agrawal, P. Rapid Locomotion via Reinforcement Learning. In Proceedings of the Robotics: Science and Systems (RSS 2022), New York, NY, USA, June 27–1 July 2022. [Google Scholar]
- Unitree B2 Go Beyond the Limits. Available online: https://m.unitree.com/b2/ (accessed on 24 March 2024).
- Unitree B2-W. Available online: https://m.unitree.com/b2-w/ (accessed on 22 May 2024).
- Geva, Y.; Shapiro, A. A Novel Design of a Quadruped Robot for Research Purposes. Int. J. Adv. Robot. Syst. 2014, 11, 95. [Google Scholar] [CrossRef]
- Yan, W.; Pan, Y.; Che, J.; Yu, J.; Han, Z. Whole-Body Kinematic and Dynamic Modeling for Quadruped Robot under Different Gaits and Mechanism Topologies. PeerJ Comput. Sci. 2021, 7, e821. [Google Scholar] [CrossRef]
- Nobili, S.; Camurri, M.; Barasuol, V.; Focchi, M.; Caldwell, D.; Semini, C.; Fallon, M. Heterogeneous Sensor Fusion for Accurate State Estimation of Dynamic Legged Robots. In Proceedings of the Robotics: Science and Systems (RSS 2017), 12–16 July 2017. [Google Scholar]
- Ilyas, M.; Cho, J.S.; Park, S.; Baeg, S.-H. Attitude Stabilization of Quadruped Walking Robot. In Proceedings of the IEEE ISR 2013, Seoul, Republic of Korea, 24–26 October 2013; IEEE: Seoul, Republic of Korea; pp. 1–6. [Google Scholar]
- Unitree_Ros. Available online: https://github.com/unitreerobotics/unitree_ros (accessed on 24 March 2024).
- RS-Bpearl. Available online: https://www.robosense.ai/en/rslidar/RS-Bpearl/ (accessed on 24 March 2024).
- Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv 2018. arXiv:1803.01271. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015. [Google Scholar] [CrossRef]
- Unity. Available online: https://unity.com/ (accessed on 24 March 2024).
- GAZEBO Robot Simulation Made Easy. Available online: https://classic.gazebosim.org/ (accessed on 24 March 2024).
- PyBullet, A Python Module for Physics Simulation for Games, Robotics and Machine Learning. Available online: https://github.com/bulletphysics/bullet3 (accessed on 24 March 2024).
- Unity Machine Learning Agents. Available online: https://unity.com/ja/products/machine-learning-agents (accessed on 24 March 2024).
- Robotics Simulation. Available online: https://github.com/Unity-Technologies/Unity-Robotics-Hub (accessed on 24 March 2024).
- NavMeshComponents. Available online: https://github.com/Unity-Technologies/NavMeshComponents (accessed on 24 March 2024).
- Tesla Bot FBX. Available online: https://sketchfab.com/3d-models/tesla-bot-fbx-627f9141da354a97acc7835c458df8f8 (accessed on 24 March 2024).
- Vtc_unity. Available online: https://github.com/Field-Robotics-Japan/vtc_unity (accessed on 24 March 2024).
Parameter | Minimum Value | Title 3 |
---|---|---|
Kick height | 0.01 cm | 12 cm |
Distance to goal Weight of passenger | 0.1 m 10 kg | 7 m 57 kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akamisaka, A.; Nagao, K. Transformable Quadruped Wheelchairs Capable of Autonomous Stair Ascent and Descent. Sensors 2024, 24, 3675. https://doi.org/10.3390/s24113675
Akamisaka A, Nagao K. Transformable Quadruped Wheelchairs Capable of Autonomous Stair Ascent and Descent. Sensors. 2024; 24(11):3675. https://doi.org/10.3390/s24113675
Chicago/Turabian StyleAkamisaka, Atsuki, and Katashi Nagao. 2024. "Transformable Quadruped Wheelchairs Capable of Autonomous Stair Ascent and Descent" Sensors 24, no. 11: 3675. https://doi.org/10.3390/s24113675
APA StyleAkamisaka, A., & Nagao, K. (2024). Transformable Quadruped Wheelchairs Capable of Autonomous Stair Ascent and Descent. Sensors, 24(11), 3675. https://doi.org/10.3390/s24113675