Interpreting Stroke-Impaired Electromyography Patterns through Explainable Artificial Intelligence
<p>Conceptual diagram of an explainable EMG-based of stroke-impaired gait prediction model using XAI approaches. (<b>a</b>) The EMG Channel Description and sample EMG signal. (<b>b</b>) Feature extraction of EMG spectral features. (<b>c</b>) Feature reduction through feature selection approach. (<b>d</b>) Overview of various ML models with sample comparative performance matrices. (<b>e</b>) State-of-the-art explainable AI approaches (LIME, SHAP, Anchors) for interpretation of stroke prediction models.</p> "> Figure 2
<p>Performance parameters and Receiver Operating Characteristic (ROC) curves for k-fold (k = 10) cross-validated classification of stroke and healthy control groups using ML models. (<b>a</b>) Violin plot of performance parameters of k-fold cross-validated model for classification of stroke and healthy control groups using ML models. (<b>b</b>) Cross-validated ROC curve for Gradient Boosting (GBoost) Classifier; (<b>c</b>) cross-validated ROC curve for Random Forest (RF) classifier; (<b>d</b>) cross-validated ROC curve for Histogram Gradient Boosting (HistGBoost) Classifier. Area under ROC curve (AUC) is an indicator of prediction accuracy. The diagonal black dotted line is the reference line showing 50% accuracy.</p> "> Figure 3
<p>Receiver Operating Characteristic (ROC) curves for classification of stroke and healthy control groups using testing dataset. Area under ROC curve (AUC) is an indicator of prediction accuracy. The diagonal blue dotted line is the reference line showing 50% accuracy.</p> "> Figure 4
<p>Performance matrices of ML models for classification of stroke and healthy control groups using test dataset. (<b>a</b>) Accuracy of RF and GBoost models; (<b>b</b>) precision of RF and GBoost models; (<b>c</b>) recall of RF and GBoost models; (<b>d</b>) F1-score of RF and GBoost models; (<b>e</b>) confusion matrix of test dataset for GBoost classifier; (<b>f</b>) confusion matrix of test dataset for RF classifier; (<b>g</b>) confusion matrix of test dataset for HistGBoost classifier.</p> "> Figure 5
<p>SHAP plots interpreting the contributions of EMG features in ML models for classification of stroke and healthy control groups. (<b>a</b>) SHAP feature importance plot for GBoost classifier. (<b>b</b>) SHAP summary plot for GBoost classifier. (<b>c</b>) SHAP feature importance plot for Random Forest classifier. (<b>d</b>) SHAP summary plot for Random Forest classifier.</p> "> Figure 6
<p>Visualization of the local contribution of EMG features through the LIME approach in classifying a single test instance (predicted class = stroke) using (<b>a</b>) Gradient Boosting (GBoost) classifier, (<b>b</b>) the Random Forest (RF) classifier; (<b>c</b>) Histogram Gradient Boosting (HistGBoost) classifier. The orange marked cells represent the features that contributed most to classifying the stroke.</p> "> Figure 7
<p>Visualization of the local contribution of EMG features through the Anchors NLP XAI approach in classifying a single test instance (predicted class = stroke) using Gradient Boosting (GBoost) classifier.</p> ">
Abstract
:1. Introduction
- We introduced a comprehensive end-to-end framework integrating EMG-based machine learning and explainable AI models for predicting stroke-impaired gait patterns. Our approach utilizes data derived from a clinical experimental setup, specifically tailored for stroke prediction in real-life scenarios.
- Employing boosting machine learning algorithms, we effectively classify the gait patterns of both stroke patients and a healthy adult group by analyzing EMG spectral features. Notably, our study demonstrates an enhancement in classification performance compared to our prior report [30].
- To enhance clinical reasoning in the context of stroke-impaired gait, we employ Explainable Artificial Intelligence (XAI) methods such as SHAP, LIME, and Anchors. These methods shed light on the role of EMG variables in the stroke prediction ML models, providing valuable insights for a more nuanced understanding of the underlying mechanisms.
2. Related Studies
3. Materials and Methods
3.1. EMG Data Acquisition
3.2. Study Protocol and Cohort
3.3. Pre-Processing of EMG Data
3.4. EMG Feature Extraction
3.5. Feature Selection
3.6. SMOTE for Unbalanced Dataset
3.7. Machine Learning Algorithms
3.8. Hyperparameter Optimization
3.9. Model Performance Evaluation Matrices
3.10. Explainable Artificial Intelligence (XAI) Approaches
3.10.1. Shapley Additive Explanations (SHAP)
3.10.2. Interpretable Model-Agnostic Explanations (LIME)
3.10.3. Anchor
4. Results
4.1. Feature Selection Results
4.2. Class Balance and Hyperparameter Tuning
4.3. Performance of ML Models
4.3.1. Performance of Cross-Validated Model
4.3.2. Model Performance Using the Testing Dataset
4.4. Explainable AI Model through SHAP
4.4.1. SHAP Feature Importance Plot
4.4.2. SHAP Summary Plot
4.5. Explainable AI Model through LIME
4.6. Explainable AI Model through Anchors
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. World Health Statistics 2016: Monitoring Health for the SDGs Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Balami, J.S.; Chen, R.-L.; Grunwald, I.Q.; Buchan, A.M. Neurological complications of acute ischaemic stroke. Lancet Neurol. 2011, 10, 357–371. [Google Scholar] [CrossRef]
- Campbell, B.C.; De Silva, D.A.; Macleod, M.R.; Coutts, S.B.; Schwamm, L.H.; Davis, S.M.; Donnan, G.A. Ischaemic stroke. Nature Rev. Dis. Primers 2019, 5, 70. [Google Scholar] [CrossRef]
- Park, S.J.; Hussain, I.; Hong, S.; Kim, D.; Park, H.; Benjamin, H.C.M. Real-time Gait Monitoring System for Consumer Stroke Prediction Service. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 4–6 January 2020; pp. 1–4. [Google Scholar]
- Park, S.J.; Hong, S.; Kim, D.; Seo, Y.; Hussain, I.; Hur, J.H.; Jin, W. Development of a Real-Time Stroke Detection System for Elderly Drivers Using Quad-Chamber Air Cushion and IoT Devices; SAE: Warrendale, PA, USA, 2018. [Google Scholar]
- Kim, D.; Hong, S.; Hussain, I.; Seo, Y.; Park, S.J. Analysis of Bio-Signal Data of Stroke Patients and Normal Elderly People for Real-Time Monitoring. In Proceedings of the 20th Congress of the International Ergonomics Association, Florence, Italy, 26–30 August 2018; pp. 208–213. [Google Scholar]
- Hong, S.; Kim, D.; Park, H.; Seo, Y.; Hussain, I.; Park, S.J. Gait Feature Vectors for Post-stroke Prediction using Wearable Sensor. Sci. Emot. Sensib. 2019, 22, 55–64. [Google Scholar] [CrossRef]
- Solanki, D.; Kumar, S.; Shubha, B.; Lahiri, U. Implications of physiology-sensitive gait exercise on the lower limb electromyographic activity of hemiplegic post-stroke patients: A feasibility study in low resource settings. IEEE J. Transl. Eng. Health Med. 2020, 8, 1–9. [Google Scholar] [CrossRef]
- Infarinato, F.; Romano, P.; Goffredo, M.; Ottaviani, M.; Galafate, D.; Gison, A.; Petruccelli, S.; Pournajaf, S.; Franceschini, M. Functional Gait Recovery after a Combination of Conventional Therapy and Overground Robot-Assisted Gait Training Is Not Associated with Significant Changes in Muscle Activation Pattern: An EMG Preliminary Study on Subjects Subacute Post Stroke. Brain Sci. 2021, 11, 448. [Google Scholar] [CrossRef] [PubMed]
- Gemperline, J.J.; Allen, S.; Walk, D.; Rymer, W.Z. Characteristics of motor unit discharge in subjects with hemiparesis. Muscle Nerve 1995, 18, 1101–1114. [Google Scholar] [CrossRef] [PubMed]
- Phinyomark, A.; Thongpanja, S.; Hu, H.; Phukpattaranont, P.; Limsakul, C. The usefulness of mean and median frequencies in electromyography analysis. In Computational Intelligence in Electromyography Analysis-A Perspective on Current Applications and Future Challenges; IntechOpen: London, UK, 2012; pp. 195–220. [Google Scholar]
- Hussain, I.; Park, S.J. Big-ECG: Cardiographic Predictive Cyber-Physical System for Stroke Management. IEEE Access 2021, 9, 123146–123164. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.-J. HealthSOS: Real-Time Health Monitoring System for Stroke Prognostics. IEEE Access 2020, 8, 213574–213586. [Google Scholar] [CrossRef]
- Hussain, I.; Hossain, M.A.; Jany, R.; Bari, M.A.; Uddin, M.; Kamal, A.R.M.; Ku, Y.; Kim, J.-S. Quantitative Evaluation of EEG-Biomarkers for Prediction of Sleep Stages. Sensors 2022, 22, 3079. [Google Scholar] [CrossRef]
- Hussain, I.; Pandian, B.; Zeepvat, J.; Armoundas, A.A.; Boyer, R. Machine Learning-Based Detection of Intraoperative Ischemia Utilizing the VitalDB Database. Proc. Circ. 2023, 148, A12554. [Google Scholar] [CrossRef]
- Hussain, I. Secure, Sustainable Smart Cities and the Internet of Things: Perspectives, Challenges, and Future Directions. Sustainability 2024, 16, 1390. [Google Scholar] [CrossRef]
- Park, S.J.; Hong, S.; Kim, D.; Hussain, I.; Seo, Y. Intelligent In-Car Health Monitoring System for Elderly Drivers in Connected Car; Springer: Cham, Switzerland, 2018; pp. 40–44. [Google Scholar]
- Park, S.J.; Hong, S.; Kim, D.; Seo, Y.; Hussain, I. Knowledge Based Health Monitoring During Driving; Springer: Cham, Switzerland, 2018; pp. 387–392. [Google Scholar]
- Park, S.; Hong, S.; Kim, D.; Yu, J.; Hussain, I.; Park, H.; Benjamin, H. Development of intelligent stroke monitoring system for the elderly during sleeping. Sleep Med. 2019, 64, S294. [Google Scholar] [CrossRef]
- Park, H.; Hong, S.; Hussain, I.; Kim, D.; Seo, Y.; Park, S.J. Gait Monitoring System for Stroke Prediction of Aging Adults. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Washington, DC, USA, 24–28 July 2019; pp. 93–97. [Google Scholar]
- Hussain, I.; Hossain, M.A.; Park, S.-J. A Healthcare Digital Twin for Diagnosis of Stroke. In Proceedings of the 2021 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCON), Dhaka, Bangladesh, 4–5 December 2021. [Google Scholar]
- Hussain, I.; Young, S.; Park, S.-J. Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System. Sensors 2021, 21, 6985. [Google Scholar] [CrossRef]
- Islam, M.S.; Hussain, I.; Rahman, M.M.; Park, S.J.; Hossain, M.A. Explainable Artificial Intelligence Model for Stroke Prediction Using EEG Signal. Sensors 2022, 22, 9859. [Google Scholar] [CrossRef]
- Chen, H.; Lundberg, S.M.; Lee, S.-I. Explaining a series of models by propagating Shapley values. Nat. Commun. 2022, 13, 4512. [Google Scholar] [CrossRef]
- Hussain, I.; Jany, R.; Boyer, R.; Azad, A.K.M.; Alyami, S.A.; Park, S.J.; Hasan, M.M.; Hossain, M.A. An Explainable EEG-Based Human Activity Recognition Model Using Machine-Learning Approach and LIME. Sensors 2023, 23, 7452. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 17 August 2016; pp. 1135–1144. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. Anchors: High-precision model-agnostic explanations. Proc. AAAI Conf. Artif. Intell. 2018, 32, 1527–1535. [Google Scholar] [CrossRef]
- Kaczmarek-Majer, K.; Casalino, G.; Castellano, G.; Dominiak, M.; Hryniewicz, O.; Kamińska, O.; Vessio, G.; Díaz-Rodríguez, N. PLENARY: Explaining black-box models in natural language through fuzzy linguistic summaries. Inf. Sci. 2022, 614, 374–399. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Hussain, I.; Park, S.J. Prediction of myoelectric biomarkers in post-stroke gait. Sensors 2021, 21, 5334. [Google Scholar] [CrossRef] [PubMed]
- Frigo, C.; Crenna, P. Multichannel SEMG in clinical gait analysis: A review and state-of-the-art. Clin. Biomech. 2009, 24, 236–245. [Google Scholar] [CrossRef]
- Dreher, T.; Brunner, R.; Végvári, D.; Heitzmann, D.; Gantz, S.; Maier, M.; Braatz, F.; Wolf, S. The effects of muscle-tendon surgery on dynamic electromyographic patterns and muscle tone in children with cerebral palsy. Gait Posture 2013, 38, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Intiso, D.; Santilli, V.; Grasso, M.; Rossi, R.; Caruso, I. Rehabilitation of walking with electromyographic biofeedback in foot-drop after stroke. Stroke 1994, 25, 1189–1192. [Google Scholar] [CrossRef] [PubMed]
- van der Houwen, L.E.E.; Scholtes, V.A.; Becher, J.G.; Harlaar, J. Botulinum toxin A injections do not improve surface EMG patterns during gait in children with cerebral palsy—A randomized controlled study. Gait Posture 2011, 33, 147–151. [Google Scholar] [CrossRef]
- Rahnama, N.; Lees, A.; Reilly, T. Electromyography of selected lower-limb muscles fatigued by exercise at the intensity of soccer match-play. J. Electromyogr. Kinesiol. 2006, 16, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Van Mastrigt, N.M.; Celie, K.; Mieremet, A.L.; Ruifrok, A.C.; Geradts, Z. Critical review of the use and scientific basis of forensic gait analysis. Forensic Sci. Res. 2018, 3, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Asseldonk, E.H.F.v.; Veneman, J.F.; Ekkelenkamp, R.; Buurke, J.H.; Helm, F.C.T.v.d.; Kooij, H.v.d. The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 360–370. [Google Scholar] [CrossRef]
- Den Otter, A.; Geurts, A.; Mulder, T.; Duysens, J. Gait recovery is not associated with changes in the temporal patterning of muscle activity during treadmill walking in patients with post-stroke hemiparesis. Clin. Neurophysiol. 2006, 117, 4–15. [Google Scholar] [CrossRef]
- Cui, C.; Bian, G.-B.; Hou, Z.-G.; Zhao, J.; Su, G.; Zhou, H.; Peng, L.; Wang, W. Simultaneous recognition and assessment of post-stroke hemiparetic gait by fusing kinematic, kinetic, and electrophysiological data. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 856–864. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Garcia-Cossio, E.; Birbaumer, N.; Burdet, E.; Ramos-Murguialday, A. Is EMG a viable alternative to BCI for detecting movement intention in severe stroke? IEEE Trans. Biomed. Eng. 2018, 65, 2790–2797. [Google Scholar] [CrossRef]
- Saponas, T.S.; Tan, D.S.; Morris, D.; Balakrishnan, R. Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 10 April 2008; pp. 515–524. [Google Scholar]
- Williams, M.R.; Kirsch, R.F. Evaluation of head orientation and neck muscle EMG signals as command inputs to a human–computer interface for individuals with high tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 485–496. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Li, S.; Wang, Y.C.; Zhou, P. Examination of hand muscle activation and motor unit indices derived from surface EMG in chronic stroke. IEEE Trans. Biomed. Eng. 2014, 61, 2891–2898. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, X.; Wei, Z.; Chen, X.; Chen, X. Model-based sensitivity analysis of EMG clustering index with respect to motor unit properties: Investigating post-stroke FDI muscle. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1836–1845. [Google Scholar] [CrossRef]
- Li, X.; Holobar, A.; Gazzoni, M.; Merletti, R.; Rymer, W.Z.; Zhou, P. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition. IEEE Trans. Biomed. Eng. 2015, 62, 1242–1252. [Google Scholar] [CrossRef]
- Thongpanja, S.; Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Mean and median frequency of EMG signal to determine muscle force based on time-dependent power spectrum. Elektron. Ir Elektrotechnika 2013, 19, 51–56. [Google Scholar] [CrossRef]
- Toffola, E.D.; Sparpaglione, D.; Pistorio, A.; Buonocore, M. Myoelectric manifestations of muscle changes in stroke patients. Arch. Phys. Med. Rehabil. 2001, 82, 661–665. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D.; Yu, Z.; Chen, X.; Li, S.; Zhou, P. EMG-torque relation in chronic stroke: A novel EMG complexity representation with a linear electrode array. IEEE J. Biomed. Health Inform. 2016, 21, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Castiblanco, J.C.; Ortmann, S.; Mondragon, I.F.; Alvarado-Rojas, C.; Jöbges, M.; Colorado, J.D. Myoelectric pattern recognition of hand motions for stroke rehabilitation. Biomed. Signal Process. Control. 2020, 57, 101737. [Google Scholar] [CrossRef]
- Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 1999, 10, 626–634. [Google Scholar] [CrossRef] [PubMed]
- McCool, P.; Fraser, G.D.; Chan, A.D.C.; Petropoulakis, L.; Soraghan, J.J. Identification of Contaminant Type in Surface Electromyography (EMG) Signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Fraser, G.D.; Chan, A.D.; Green, J.R.; MacIsaac, D.T. Automated biosignal quality analysis for electromyography using a one-class support vector machine. IEEE Trans. Instrum. Meas. 2014, 63, 2919–2930. [Google Scholar] [CrossRef]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Bonato, P.; Roy, S.H.; Knaflitz, M.; Luca, C.J.d. Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions. IEEE Trans. Biomed. Eng. 2001, 48, 745–753. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.; Abe, N. A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 1999, 14, 1612. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Chen, H.; Lundberg, S.M.; Erion, G.; Kim, J.H.; Lee, S.-I. Forecasting adverse surgical events using self-supervised transfer learning for physiological signals. npj Digit. Med. 2021, 4, 167. [Google Scholar] [CrossRef] [PubMed]
- Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B 1974, 36, 111–133. [Google Scholar] [CrossRef]
- van Kammen, K.; Boonstra, A.M.; van der Woude, L.H.V.; Reinders-Messelink, H.A.; den Otter, R. Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers. J. NeuroEngineering Rehabil. 2017, 14, 32. [Google Scholar] [CrossRef]
- Knaflitz, M.; Merletti, R.; De Luca, C.J. Inference of motor unit recruitment order in voluntary and electrically elicited contractions. J. Appl. Physiol. 1990, 68, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Rasool, G.; Afsharipour, B.; Suresh, N.L.; Rymer, W.Z. Spatial analysis of multichannel surface EMG in hemiplegic stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1802–1811. [Google Scholar] [CrossRef] [PubMed]
- Lieber, R.L.; Steinman, S.; Barash, I.A.; Chambers, H. Structural and functional changes in spastic skeletal muscle. Muscle Nerve 2004, 29, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Lukács, M.; Vécsei, L.; Beniczky, S. Changes in muscle fiber density following a stroke. Clin. Neurophysiol. 2009, 120, 1539–1542. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, I.; Jany, R. Interpreting Stroke-Impaired Electromyography Patterns through Explainable Artificial Intelligence. Sensors 2024, 24, 1392. https://doi.org/10.3390/s24051392
Hussain I, Jany R. Interpreting Stroke-Impaired Electromyography Patterns through Explainable Artificial Intelligence. Sensors. 2024; 24(5):1392. https://doi.org/10.3390/s24051392
Chicago/Turabian StyleHussain, Iqram, and Rafsan Jany. 2024. "Interpreting Stroke-Impaired Electromyography Patterns through Explainable Artificial Intelligence" Sensors 24, no. 5: 1392. https://doi.org/10.3390/s24051392
APA StyleHussain, I., & Jany, R. (2024). Interpreting Stroke-Impaired Electromyography Patterns through Explainable Artificial Intelligence. Sensors, 24(5), 1392. https://doi.org/10.3390/s24051392