Directional Modulation-Enhanced Multiple Antenna Arrays for Secure and Precise Wireless Transmission
<p>System model.</p> "> Figure 2
<p>The principle of secure and precise wireless transmission for three antenna arrays with the help of AN-aided DM technique.</p> "> Figure 3
<p>The architecture of the BS for the proposed DM scheme based on a single-carrier multiple antenna arrays model.</p> "> Figure 4
<p>The architecture of the LU for the proposed DM based on a single-carrier multiple antenna arrays.</p> "> Figure 5
<p>The architecture of the BS for the proposed DM based on a multi-carrier multiple antenna arrays model.</p> "> Figure 6
<p>The architecture of the LU for the proposed DM based on a multi-carrier multiple antenna arrays model.</p> "> Figure 7
<p>The locations of the LU, the potential Eve, and three transmit antenna arrays.</p> "> Figure 8
<p>SER performance versus SNR per bit (dB) with various power allocation factors for the proposed DM schemes and the conventional DM scheme: (<b>a</b>) the LU; (<b>b</b>) the Eve in Location 1; and (<b>c</b>) the Eve in Location 2.</p> "> Figure 9
<p>SER performance versus azimuth angle for the proposed DM schemes, where <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>10</mn> <msub> <mo form="prefix">log</mo> <mn>10</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>E</mi> <mrow> <mi>b</mi> <mo>/</mo> </mrow> </msub> <msub> <mi>N</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>10</mn> <mspace width="3.33333pt"/> <mi>dB</mi> </mrow> </semantics></math>.</p> "> Figure 10
<p>Achievable rate of the proposed DM schemes: (<b>a</b>) achievable rate of the LU versus SNR; (<b>b</b>) achievable rate of the Eve in Location 1 versus SNR; (<b>c</b>) achievable rate of the Eve in Location 2 versus SNR; and (<b>d</b>) secrecy rate performance of the proposed DM schemes.</p> "> Figure 11
<p>Robustness of the proposed DM schemes with various estimation errors of the desired directions.</p> ">
Abstract
:1. Introduction
2. Principle of Multiple Antenna Arrays based DM Transmission
2.1. System Model
2.2. The Principle of Secure and Precise DM Transmission
3. Secure and Precise DM Scheme Based on A Single-Carrier Multiple Antenna Arrays Model
3.1. The Architecture of BS Based on a Single-Carrier Multiple Antenna Arrays Model
3.2. The Architecture of the LU Based on a Single-Carrier Multiple Antenna Arrays Model
4. Secure and Precise DM Scheme Based on A Multi-Carrier Multiple Antenna Arrays Model
4.1. The Architecture of the BS Based on a Multi-Carrier Multiple Antenna Arrays Model
4.2. The Architecture of the LU Based on a Multi-Carrier Multiple Antenna Arrays Model
5. Performance Analysis
5.1. SER
5.2. Secrecy Rate
5.2.1. Single-Carrier DM Scheme
5.2.2. Multi-Carrier DM Scheme
5.3. Robustness
5.4. Comparisons for Multiple Antenna Arrays DM and Single Antenna Array DM Schemes
6. Simulation Results and Discussions
6.1. SER
6.2. Secrecy Rate
6.3. Robustness
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zou, Y.L.; Zhu, J.; Wang, X.B.; Hanzo, L. A survey on wireless security: Technical challenges, recent advances, and future trends. Proc. IEEE 2016, 104, 1727–1765. [Google Scholar] [CrossRef]
- Stallings, W. Cryptography and Network Security: Priciples and Practice; Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Mollin, R.A. An Introduction to Cryptography; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Chen, X.M.; Ng, D.W.K.; Gerstacker, W.H.; Chen, H.S. A survey on multiple-antenna techniques for physical layer security. IEEE Commun. Surv. Tutor. 2016, 19, 1027–1053. [Google Scholar] [CrossRef]
- Trappe, W. The challenges facing physical layer security. IEEE Commun. Mag. 2015, 53, 16–20. [Google Scholar] [CrossRef]
- Ding, Y.; Fusco, V. A review of directional modulation technology. Int. J. Microw. Wirel. Technol. 2016, 8, 981–993. [Google Scholar] [CrossRef]
- Babakhani, A.; Rutledge, D.B.; Hajimiri, A. Transmitter architectures based on near-field direct antenna modulation. IEEE J. Solid-State Circuits 2008, 43, 2674–2692. [Google Scholar] [CrossRef]
- Babakhani, A.; Rutledge, D.B.; Hajimiri, A. Near-field direct antenna modulation. IEEE Microw. Mag. 2009, 10, 36–46. [Google Scholar] [CrossRef]
- Daly, M.P.; Bernhard, J.T. Directional modulation technique for phased arrays. IEEE Trans. Antennas Propag. 2009, 57, 2633–2640. [Google Scholar] [CrossRef]
- Daly, M.P.; Daly, E.L.; Bernhard, J.T. Demonstration of directional modulation using a phased array. IEEE Trans. Antennas Propag. 2010, 58, 1545–1550. [Google Scholar] [CrossRef]
- Hong, T.; Song, M.Z.; Liu, Y. Dual-beam directional modulation technique for physical-layer secure communication. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1417–1420. [Google Scholar] [CrossRef]
- Ding, Y.; Fusco, V. Directional modulation transmitter radiation pattern considerations. IET Microw. Antennas Propag. 2013, 7, 1201–1206. [Google Scholar] [CrossRef]
- Ding, Y.; Fusco, V. Constraining directional modulation transmitter radiation patterns. IET Microw. Antennas Propag. 2014, 8, 1408–1415. [Google Scholar] [CrossRef] [Green Version]
- Valliappan, N.; Lozano, A.; Heath, R.W. Antenna subset modulation for secure millimeter-wave wireless communication. IEEE Trans. Commun. 2013, 61, 3231–3245. [Google Scholar] [CrossRef]
- Ding, Y.; Fusco, V. BER-driven synthesis for directional modulation secured wireless communication. Int. J. Microw. Wirel. Technol. 2013, 6, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.; Song, M.Z.; Liu, Y. RF Directional modulation technique using a switched antenna array for communication and direction-finding applications. Prog. Electromagn. Res. 2011, 120, 195–213. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Xie, J. Directional modulation technique for linear sparse arrays. IEEE Access 2019, 7, 13230–13240. [Google Scholar] [CrossRef]
- Hong, T.; Shi, X.P.; Liang, X.S. Synthesis of sparse linear array for directional modulation via convex optimization. IEEE Trans. Antennas Propag. 2018, 66, 3959–3972. [Google Scholar] [CrossRef]
- Zhu, Q.J.; Yang, S.W.; Yao, R.L. Directional modulation based on 4-D antenna arrays. IEEE Trans. Antennas Propag. 2013, 62, 621–628. [Google Scholar] [CrossRef]
- Alrabadi, O.N.; Pedersen, G.F. Directional space-time modulation: A novel approach for secured wireless communication. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 3554–3558. [Google Scholar]
- Ding, Y.; Fusco, V. A vector approach for the analysis and synthesis of directional modulation transmitters. IEEE Trans. Antennas Propag. 2014, 62, 361–370. [Google Scholar] [CrossRef]
- Ding, Y.; Fusco, V. Orthogonal vector approach for synthesis of multi-beam directional modulation transmitters. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1330–1333. [Google Scholar] [CrossRef]
- Hu, J.S.; Shu, F.; Li, J. Robust synthesis method for secure directional modulation with imperfect direction angle. IEEE Commun. Lett. 2016, 20, 1084–1087. [Google Scholar] [CrossRef]
- Shu, F.; Wu, X.M.; Li, J.H.; Chen, R.Q.; Vucetic, B. Robust synthesis scheme for secure multi-beam directional modulation in broadcasting systems. IEEE Access 2016, 4, 6614–6623. [Google Scholar] [CrossRef]
- Xie, T.; Zhu, J.; Li, Y. Artificial-noise-aided zero-forcing synthesis approach for secure multi-beam directional modulation. IEEE Commun. Lett. 2018, 22, 276–279. [Google Scholar] [CrossRef]
- Shu, F.; Xu, L.; Wang, J.Z.; Zhu, W.; Zhou, X.B. Artificial-noise-aided secure multicast precoding for directional modulation systems. IEEE Trans. Veh. Technol. 2018, 67, 6658–6662. [Google Scholar] [CrossRef]
- Christopher, R.M.; Borah, D.K. Iterative convex optimization of multi-beam directional modulation with artificial noise. IEEE Commun. Lett. 2018, 22, 1712–1715. [Google Scholar] [CrossRef]
- Wang, W.Q. DM using FDA antenna for secure transmission. IET Microw. Antennas Propag. 2017, 11, 336–345. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhu, J.; Xie, T.; Luo, J.; Xu, Z. Time-invariant angle-range dependent directional modulation based on time-modulated frequency diverse arrays. IEEE Access 2017, 5, 26279–26290. [Google Scholar] [CrossRef]
- Hu, J.S.; Yan, S.H.; Shu, F.; Wang, J.Z.; Li, J.; Zhang, Y.J. Artificial-noise-aided secure transmission with directional modulation based on random frequency diverse arrays. IEEE Access 2017, 5, 1658–1667. [Google Scholar] [CrossRef]
- Lin, J.R.; Li, Q.; Yang, J.T.; Shao, H.Z.; Wang, W.Q. Physical-Layer security for proximal legitimate user and eavesdropper: A frequency diverse array beamforming approach. IEEE Trans. Inf. Forensics Secur. 2018, 13, 671–684. [Google Scholar] [CrossRef]
- Hafez, M.; Yusuf, M.; Khattab, T. Secure spatial multiple access using directional modulation. IEEE Trans. Wirel. Commun. 2018, 17, 563–573. [Google Scholar] [CrossRef]
- Shi, H.Z.; Alan, T. Secure physical-layer communication based on directly modulated antenna arrays. In Proceedings of the 2012 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 12–13 November 2012; pp. 1–4. [Google Scholar]
- Ding, Y.; Fusco, V. A synthesis-free directional modulation transmitter using retrodirective array. IEEE J. Sel. Top. Signal Process. 2017, 11, 428–441. [Google Scholar] [CrossRef]
- Hafez, M.; Khattab, T.; Elfouly, T. Secure multiple-users transmission using multi-path directional modulation. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–5. [Google Scholar]
- Ding, Y.; Fusco, V. MIMO-inspired synthesis of directional modulation systems. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 580–584. [Google Scholar] [CrossRef]
- Kalantari, A.; Soltanalian, M.; Maleki, S. Directional modulation via symbol-level precoding: A way to enhance security. IEEE J. Sel. Top. Signal Process. 2016, 10, 1478–1493. [Google Scholar] [CrossRef]
- Ding, Y.; Fusco, V. Directional modulation enhanced retrodirective array. Electron. Lett. 2015, 51, 118–120. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W. Antenna array based positional modulation with a two-ray multi-path model. In Proceedings of the IEEE Sensor Array and Multichannel Signal Process, Workshop (SAM), Sheffield, UK, 8–11 July 2018; pp. 203–207. [Google Scholar]
- Shu, F.; Shen, T.; Xu, L.; Qin, Y.L.; Wang, S.M.; Jin, S.; You, X.H.; Wang, J.Z. Directional Modulation: A Physical-Layer Security Solution to B5G and Future Wireless Networks. IEEE Netw. 2019, 1–6. [Google Scholar] [CrossRef]
- Singh, J.; Ramakrishna, S. On the feasibility of codebook-based beamforming in millimeter wave systems with multiple antenna arrays. IEEE Trans. Wirel. Commun. 2015, 14, 2670–2683. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W. Positional modulation design based on multiple phased antenna arrays. IEEE Access 2019, 7, 33898–33905. [Google Scholar] [CrossRef]
- Wang, W.Q.; Zheng, Z. Hybrid MIMO and phased-array directional modulation for physical layer security in mmWave wireless communications. IEEE J. Sel. Areas Commun. 2018, 36, 1383–1396. [Google Scholar] [CrossRef]
- Ding, Y. Establishing metrics for assessing the performance of directional modulation systems. IEEE Trans. Antennas Propag. 2014, 62, 2745–2755. [Google Scholar] [CrossRef]
- Cahn, C. Performance of digital phase-modulation communication systems. IRE Trans. Commun. Syst. 1959, 7, 3–6. [Google Scholar] [CrossRef]
- Zhou, C.W.; Gu, Y.; Zhang, Y.D.; Shi, Z.; Jin, T.; Wu, X. Compressive sensing-based coprime array direction-of-arrival estimation. IET Commun. 2017, 11, 1719–1724. [Google Scholar] [CrossRef]
- Shu, F.; Qin, Y.; Liu, T.; Gui, L.; Zhang, Y.; Li, J.; Han, Z. Low-complexity and high-resolution DOA estimation for hybrid analog and digital massive MIMO receive array. IEEE Trans. Commun. 2018, 66, 2487–2501. [Google Scholar] [CrossRef]
- Zhou, C.W.; Gu, Y.; Fan, X.; Shi, Z.; Mao, G.; Zhang, Y.D. Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Trans. Signal Process. 2018, 66, 5956–5971. [Google Scholar] [CrossRef]
- Zhou, C.W.; Gu, Y.; Shi, Z.; Zhang, Y.D. Off-grid direction-of-arrival estimation using coprime array interpolation. IEEE Signal Process. Lett. 2018, 25, 1710–1714. [Google Scholar] [CrossRef]
- Coluccia, A.; Fascista, A. On the hybrid TOA/RSS range estimation in wireless sensor networks. IEEE Trans. Wirel. Commun. 2018, 17, 361–371. [Google Scholar] [CrossRef]
- Zhou, C.W.; Gu, Y.; He, S.; Shi, Z. A robust and efficient algorithm for coprime array adaptive beamforming. IEEE Trans. Veh. Technol. 2018, 67, 1099–1112. [Google Scholar] [CrossRef]
- Farahani, H.S.; Veysi, M.; Kamyab, M.; Tadjalli, A. Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 57–59. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Khalily, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Limiti, E. Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate. IEEE Access 2019, 7, 5182–51840. [Google Scholar]
- Yang, X.; Liu, Y.; Xu, Y.X. Isolation enhancement in patch antenna array with fractal UC-EBG structure and cross slot. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2175–2178. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Khalily, M.; Virdee, B.S. Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading. IEEE Access 2019, 7, 23606–23614. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; See, C.H. High-isolation leaky-wave array antenna based on CRLH-metamaterial implemented on SIW with 30 frequency beam-scanning capability at millimetre-waves. Electronics 2019, 8, 642. [Google Scholar] [CrossRef]
- Qamar, Z.; Park, H.C. Compact waveguided metamaterials for suppression of mutual coupling in microstrip array. Prog. Electromagn. Res. 2014, 149, 183–192. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Shukla, P. Interaction between closely packed array antenna elements using meta-surface for applications such as MIMO systems and synthetic aperture radars. Radio Sci. 2018, 53, 1368–1381. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; See, C.H.; Virdee, B.S. Meta-surface wall suppression of mutual coupling between microstrip patch antenna arrays for THz-band applications. Prog. Electromagn. Res. Lett. 2018, 75, 105–111. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virde, B.S.; Shukla, P. Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays. Electronics 2018, 7, 198. [Google Scholar] [CrossRef]
- Farsi, S.; Aliakbarian, H.; Schreurs, D. Mutual coupling reduction between planar antennas by using a simple microstrip U-Section. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1501–1503. [Google Scholar] [CrossRef]
Items | Single-Carrier DM | Multi-Carrier DM | Single Array DM [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27] |
---|---|---|---|
Multiple antenna arrays | Yes | Yes | No |
Multiple carriers | No | Yes | No |
Artificial noise | Yes | Yes | Yes |
Precoding vector | Yes | Yes | Yes |
Orthogonal matrix | Yes | Yes | Yes |
Receiver complexity | |||
Transmitter complexity | |||
Cost | High | Higher | Low |
Precise transmission | Yes | Yes | No |
Neighbor security | Yes | Yes | No |
Parameters | Value |
---|---|
Number of ULA, K | 3 |
Number of ULA elements, N | 21 |
Single carrier frequency, | 30 GHz |
Inter-array spacing, D | |
Inter-element spacing, d | |
Multiple carrier frequencies, , , | 30 GHz, 30.1 GHz, 30.2 GHz |
Total transmit power per symbol, | 1 |
Number of LU | 1 |
Number of Eve | 1 |
Location of the 1st array , | |
Location of the 2nd array , | |
Location of the 3rd array , | |
Location 1 for the Eve , | |
Location 2 for the Eve , | |
Modulation mode | QPSK |
Information rate | 20 Mbps |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Le, M.; Li, B.; Wang, J.; Peng, J. Directional Modulation-Enhanced Multiple Antenna Arrays for Secure and Precise Wireless Transmission. Sensors 2019, 19, 4833. https://doi.org/10.3390/s19224833
Zhang W, Le M, Li B, Wang J, Peng J. Directional Modulation-Enhanced Multiple Antenna Arrays for Secure and Precise Wireless Transmission. Sensors. 2019; 19(22):4833. https://doi.org/10.3390/s19224833
Chicago/Turabian StyleZhang, Wei, Mingnan Le, Bin Li, Jun Wang, and Jinye Peng. 2019. "Directional Modulation-Enhanced Multiple Antenna Arrays for Secure and Precise Wireless Transmission" Sensors 19, no. 22: 4833. https://doi.org/10.3390/s19224833
APA StyleZhang, W., Le, M., Li, B., Wang, J., & Peng, J. (2019). Directional Modulation-Enhanced Multiple Antenna Arrays for Secure and Precise Wireless Transmission. Sensors, 19(22), 4833. https://doi.org/10.3390/s19224833