[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
submit Submit login
Vol. 149
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-10-31
Compact Waveguided Metamaterials for Suppression of Mutual Coupling in Microstrip Array
By
Progress In Electromagnetics Research, Vol. 149, 183-192, 2014
Abstract
In this paper, suppression of mutual coupling is achieved using compact waveguided metamaterials in between elements of a densely packed microstrip array. Both the E-plane internally folded complementary split ring resonator and the H-plane internally folded complementary split ring resonator are employed to reduce the mutual coupling between adjacent elements. Coupling suppression of 18 dB and 9 dB, for elements in the E-plane and H-plane, respectively, is demonstrated. Due to the compact size of the waveguided metamaterials, the edge-to-edge separation between elements is kept at only 0.093λ0. With the same elements spacing, a 2×2 array is also simulated with compact WG-MTMs. The proposed structure reduces the array size and enables the implementation of compact Multiple-Input-Multiple-Output systems.
Citation
Zeeshan Qamar, and Hyun Chang Park, "Compact Waveguided Metamaterials for Suppression of Mutual Coupling in Microstrip Array," Progress In Electromagnetics Research, Vol. 149, 183-192, 2014.
doi:10.2528/PIER14063002
References

1. Ludwig, A., "Mutual coupling, gain and directivity of an array of two identical antennas," IEEE Transaction on Antennas and Propagation, Vol. 24, No. 6, 837-841, 1976.
doi:10.1109/TAP.1976.1141440

2. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letter, Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

3. Nikolic, M., A. Djordjevic, and A. Neorai, "Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling," IEEE Transaction on Antennas and Propagation, Vol. 52, No. 11, 3469-3476, 2005.
doi:10.1109/TAP.2005.858847

4. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transaction on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

5. Coulombe, M., S. F. Koodiani, and C. Caloz, "Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances," IEEE Transaction on Antennas and Propagation, Vol. 58, No. 4, 1076-1086, 2010.
doi:10.1109/TAP.2010.2041152

6. Assimonis, S. D., V. Y. Traianos, and S. A. Christos, "Computational investigation and design of planar EBG structures for coupling reduction in antenna applications," IEEE Transaction on Magnetics, Vol. 48, No. 2, 771-774, 2012.
doi:10.1109/TMAG.2011.2172680

7. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas and Wireless Propagation Letter, Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

8. Chiu, C. Y., C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Transaction on Antennas and Propagation, Vol. 55, No. 6, 1732-1738, 2007.
doi:10.1109/TAP.2007.898618

9. Buell, K., H. Mosallaei, and K. Sarabandi, "Metamaterial insulator enabled superdirective array," IEEE Transaction on Antennas and Propagation, Vol. 55, No. 4, 1074-1085, 2007.
doi:10.1109/TAP.2007.893373

10. Liu, R., X. M. Yang, J. G. Gollub, J. J. Mock, T. J. Cui, and D. R. Smith, "Gradient index circuit by waveguided metamaterials," Applied Physics Letter, Vol. 94, No. 7, 073506, 2009.
doi:10.1063/1.3081399

11. Yang, X. M., Q. H. Sun, Y. Jing, Q. Cheng, X. Y. Zhou, H. W. Kong, and T. J. Cui, "Increasing the bandwidth of microstrip patch antenna by loading compact artificial magneto-dielectrics," IEEE Transaction on Antennas and Propagation, Vol. 59, No. 2, 373-378, 2011.
doi:10.1109/TAP.2010.2096388

12. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas and Wireless Propagation Letter, Vol. 11, 389-391, 2012.
doi:10.1109/LAWP.2012.2193111

13. Han, X., H. Hafdallah Ouslimani, T. Zhang, and A. C. Priou, "CSRRS for efficient reduction of the electromagnetic interferences and mutual coupling in microstrip circuits," Progress In Electromagnetics Research B, Vol. 42, 291-309, 2012.
doi:10.2528/PIERB12052406

14. Xu, H. X., G. M. Wang, and M. Q. Qi, "Hilbert-shaped magnetic waveguided metamaterials for electromagnetic coupling reduction of microstrip antenna array," IEEE Transaction on Magnetics, Vol. 49, No. 4, 1526-1529, 2013.
doi:10.1109/TMAG.2012.2230272

15. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

16. Schurig, D., J. J.Mock, and D. R. Smith, "Electric-field coupled resonators for negative permittivity metamaterials," Applied Physics Letter, Vol. 88, 041109, 2006.
doi:10.1063/1.2166681

17. Wu, Q., P. Pan, F. Y. Meng, L. W. Li, and I. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Applied Physics A, Vol. 87, No. 2, 151-156, 2007.
doi:10.1007/s00339-006-3820-9

18. Smith, D. R., J. GolIub, J. J. Mock, W. J. Padila, and D. Schurig, "Calculation and measurement of bianisotropy in a split ring resonator metamaterial," Journal of Applied Physics, Vol. 100, No. 19, 024507, 2006.
doi:10.1063/1.2218033

19. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of materials from reflection and transmission coefficients," Physics Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

20. Gu, S., J. P. Barrett, T. H. Hand, B. I. Popa, and S. A. Cummer, "A broadband low-reflection metamaterial absorber," Journal of Applied Physics, Vol. 108, No. 6, 064913, 2010.
doi:10.1063/1.3485808

21. Hou, D. B., S. Xiao, B.-Z. Wang, L. Jiang, J. Wang, and W. Hong, "Elimination of scan blindness with compact defected ground structures in microstrip phased array," IET Microwaves, Antennas and Propagation, Vol. 3, No. 2, 269-275, 2009.
doi:10.1049/iet-map:20080037