Design and Analysis of a True Random Number Generator Based on GSR Signals for Body Sensor Networks
"> Figure 1
<p>Electrodes placement for GSR acquisition.</p> "> Figure 2
<p>GSR signal.</p> "> Figure 3
<p>Random numbers generated by the proposed GSR-RNG.</p> "> Figure 4
<p>Bias analysis.</p> "> Figure 5
<p>Hamming distance distribution.</p> "> Figure 6
<p>Original and encrypted statistical histograms.</p> ">
Abstract
:1. Introduction
1.1. Related Work
1.2. Galvanic Skin Response
2. Methods and Materials
2.1. Dataset Description
- The Affective Pacman (AffPac) dataset [55]. Twelve healthy users (aged 27 ± 3.9; 25% female) participated in the experiment. Several physiological signals were recorded simultaneously, including EEG, EOG and GSR signals.
- DEAP dataset [56]. Thirty-two healthy participants (aged 28 ± 9; 50% female) volunteered for the experiment. The subjects watched several music videos while the physiological signals (e.g., EEG and GSR) were acquired.
- AMIGOS dataset [57]. Forty healthy users participated in the experiment (aged 30.5 ± 9.5; 32.5% female). The participants watched short (16) and long (4) emotional videos. Three neuro-physiological signals (i.e., EEG, ECG and GSR signals) were recorded using wearable sensors. In our experiments, we discarded three files (subjects) because of their short length.
2.2. Methods
Algorithm 1 GSR-TRNG. |
1: procedure Pre-processing() |
2: Down-sampling to 128 Hz |
3: Low-pass filter () |
4: procedure GetEntropy() |
5: Split into N-seconds - (N=4 in our experiments) |
6: for each GSR-window() do |
7: Hilbert Transform: |
8: Entropy Extraction: |
3. Results
3.1. Source Entropy Analysis
3.2. Randomness Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, J.; Ma, Q.; Chan, A.H.; Man, S. Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Appl. Ergon. 2019, 75, 162–169. [Google Scholar] [CrossRef]
- Wu, W.; Pirbhulal, S.; Sangaiah, A.K.; Mukhopadhyay, S.C.; Li, G. Optimization of signal quality over comfortability of textile electrodes for ECG monitoring in fog computing based medical applications. Future Gener. Comput. Syst. 2018, 86, 515–526. [Google Scholar] [CrossRef]
- Wu, F.; Wu, T.; Yuce, M.R. An Internet-of-Things (IoT) Network System for Connected Safety and Health Monitoring Applications. Sensors 2018, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Kompara, M.; Islam, S.H.; Hölbl, M. A robust and efficient mutual authentication and key agreement scheme with untraceability for WBANs. Comput. Netw. 2019, 148, 196–213. [Google Scholar] [CrossRef]
- Yessad, N.; Bouchelaghem, S.; Ouada, F.S.; Omar, M. Secure and reliable patient body motion based authentication approach for medical body area networks. Pervasive Mob. Comput. 2017, 42, 351–370. [Google Scholar] [CrossRef]
- Fortino, G.; Ghasemzadeh, H.; Gravina, R.; Liu, P.X.; Poon, C.C.Y.; Wang, Z. Advances in multi-sensor fusion for body sensor networks: Algorithms, architectures, and applications. Inf. Fusion 2019, 45, 150–152. [Google Scholar] [CrossRef]
- Ambigavathi, M.; Sridharan, D. Energy efficient and load balanced priority queue algorithm for Wireless Body Area Network. Future Gener. Comput. Syst. 2018, 88, 586–593. [Google Scholar] [CrossRef]
- Labati, R.D.; Muñoz, E.; Piuri, V.; Sassi, R.; Scotti, F. Deep-ECG: Convolutional Neural Networks for ECG biometric recognition. Pattern Recognit. Lett. 2018. [Google Scholar] [CrossRef]
- Ribeiro Pinto, J.; Cardoso, J.S.; Lourenço, A. Evolution, Current Challenges, and Future Possibilities in ECG Biometrics. IEEE Access 2018, 6, 34746–34776. [Google Scholar] [CrossRef]
- Nakamura, T.; Goverdovsky, V.; Mandic, D.P. In-Ear EEG Biometrics for Feasible and Readily Collectable Real-World Person Authentication. IEEE Trans. Inf. Forensics Secur. 2018, 13, 648–661. [Google Scholar] [CrossRef]
- Chan, H.L.; Kuo, P.C.; Cheng, C.Y.; Chen, Y.S. Challenges and Future Perspectives on Electroencephalogram-Based Biometrics in Person Recognition. Front. Neuroinform. 2018, 12, 66. [Google Scholar] [CrossRef]
- Camara, C.; Peris-Lopez, P.; Gonzalez-Manzano, L.; Tapiador, J. Real-time electrocardiogram streams for continuous authentication. Appl. Soft Comput. 2018, 68, 784–794. [Google Scholar] [CrossRef]
- Pinto, J.R.; Cardoso, J.S.; Lourenço, A.; Carreiras, C. Towards a Continuous Biometric System Based on ECG Signals Acquired on the Steering Wheel. Sensors 2017, 17, 2228. [Google Scholar] [CrossRef]
- Wang, M.; Abbass, H.A.; Hu, J. Continuous authentication using EEG and face images for trusted autonomous systems. In Proceedings of the 14th Annual Conference on Privacy, Security and Trust (PST), Auckland, New Zealand, 12–14 December 2016; pp. 368–375. [Google Scholar] [CrossRef]
- Wang, M.; Abbass, H.A.; Hu, J. EEG-based biometrics for person identification and continuous authentication. In Information Security: Foundations, Technologies and Applications; Security, Institution of Engineering and Technology: Stevenage, UK, 2018; pp. 311–346. [Google Scholar] [CrossRef]
- Rostami, M.; Juels, A.; Koushanfar, F. Heart-to-heart (H2H): Authentication for Implanted Medical Devices. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security (CCS’13), Berlin, Germany, 4–8 November 2013; ACM: New York, NY, USA, 2013; pp. 1099–1112. [Google Scholar]
- Venkatasubramanian, K.K.; Venkatasubramanian; Banerjee, A.; Gupta, S.K.S. EKG-based key agreement in Body Sensor Networks. In Proceedings of the IEEE INFOCOM Workshops, Phoenix, AZ, USA, 13–18 April 2008; pp. 1–6. [Google Scholar]
- Kim, J.; Cho, K.; Kim, Y.K.; Lim, K.S.; Shin, S.U. Study on peak misdetection recovery of key exchange protocol using heartbeat. J. Supercomput. 2018. [Google Scholar] [CrossRef]
- Camara, C.; Peris-Lopez, P.; Martín, H.; Aldalaien, M. ECG-RNG: A Random Number Generator Based on ECG Signals and Suitable for Securing Wireless Sensor Networks. Sensors 2018, 18, 2747. [Google Scholar] [CrossRef]
- Chen, G. Are electroencephalogram (EEG) signals pseudo-random number generators? J. Comput. Appl. Math. 2014, 268, 1–4. [Google Scholar] [CrossRef]
- Gavas, R.D.; Navalyal, G.U. Fast and secure random number generation using low-cost EEG and pseudo random number generator. In Proceedings of the International Conference on Smart Technologies For Smart Nation (SmartTechCon), Bengaluru, India, 17–19 August 2017; pp. 369–374. [Google Scholar]
- Nguyen, D.; Tran, D.; Ma, W.; Nguyen, K. EEG-Based Random Number Generators. In Proceedings of the Network and System Security (NSS), Helsinki, Finland, 21–23 August 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 248–256. [Google Scholar]
- Tuncer, S.A.; Kaya, T. True Random Number Generation from Bioelectrical and Physical Signals. Comput. Math. Methods Med. 2018, 2018, 3579575. [Google Scholar]
- Marin, E.; Singelée, D.; Garcia, F.D.; Chothia, T.; Willems, R.; Preneel, B. On the (in)security of the Latest Generation Implantable Cardiac Defibrillators and How to Secure Them. In Proceedings of the Annual Conference on Computer Security Applications (ACSAC), Los Angeles, CA, USA, 5–9 December 2016; ACM: New York, NY, USA, 2016; pp. 226–236. [Google Scholar]
- Slotwiner, D.J.; Deering, F.; Fu, K.; Russo, A.M.; Walsh, M.N.; Van Hare, G.F. Cybersecurity Vulnerabilities of Cardiac Implantable Electronic Devices. Heart Rhythm 2018, 15, e61–e67. [Google Scholar] [CrossRef]
- Food and Drug Administration. FDA Warns Patients, Providers about Cybersecurity Concerns with Certain Medtronic Implantable Cardiac Devices. 2018. Available online: https://www.fda.gov/NewsEvents/Newsroom/FDAInBrief/ucm623191.htm (accessed on 26 April 2019).
- Camara, C.; Peris-Lopez, P.; Tapiador, J.E. Security and privacy issues in implantable medical devices: A comprehensive survey. J. Biomed. Inform. 2015, 55, 272–289. [Google Scholar] [CrossRef] [Green Version]
- Halperin, D.; Heydt-Benjamin, T.S.; Fu, K.; Kohno, T.; Maisel, W.H. Security and Privacy for Implantable Medical Devices. IEEE Pervasive Comput. 2008, 7, 30–39. [Google Scholar] [CrossRef]
- Zhang, M.; Raghunathan, A.; Jha, N.K. MedMon: Securing Medical Devices Through Wireless Monitoring and Anomaly Detection. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 871–881. [Google Scholar] [CrossRef]
- Zheng, G.; Yang, W.; Valli, C.; Qiao, L.; Shankaran, R.; Orgun, M.A.; Mukhopadhyay, S.C. Finger-to-Heart(F2H): Authentication for Wireless Implantable Medical Devices. IEEE J. Biomed. Health Inform. 2018. [Google Scholar] [CrossRef]
- Hei, X.; Du, X. IMD Access Control During Emergencies. In Security for Wireless Implantable Medical Devices; Springer: New York, NY, USA, 2013; pp. 19–35. [Google Scholar] [CrossRef]
- Zheng, G.; Fang, G.; Shankaran, R.; Orgun, M.A. Encryption for Implantable Medical Devices Using Modified One-Time Pads. IEEE Access 2015, 3, 825–836. [Google Scholar] [CrossRef]
- Srinivas, J.; Das, A.K.; Kumar, N.; Rodrigues, J. Cloud Centric Authentication for Wearable Healthcare Monitoring System. IEEE Trans. Dependable Secur. Comput. 2018. [Google Scholar] [CrossRef]
- Challa, S.; Das, K.; Odelu, V.; Kumar, N.; Kumari, S.; Khan, M.K.; Vasilakos, A.V. An efficient ECC-based provably secure three-factor user authentication and key agreement protocol for wireless healthcare sensor networks. Comput. Electr. Eng. 2018, 69, 534–554. [Google Scholar] [CrossRef]
- Wazid, M.; Das, A.K.; Kumar, N.; Conti, M.; Vasilakos, A.V. A Novel Authentication and Key Agreement Scheme for Implantable Medical Devices Deployment. IEEE J. Biomed. Health Inform. 2018, 22, 1299–1309. [Google Scholar] [CrossRef]
- Jang, C.S.; Lee, D.; Han, J.W.; Park, J.H. Hybrid security protocol for wireless body area networks. Wirel. Commun. Mob. Comput. 2011, 11, 277–288. [Google Scholar] [CrossRef]
- Rasmussen, K.B.; Castelluccia, C.; Heydt-Benjamin, T.S.; Capkun, S. Proximity-based Access Control for Implantable Medical Devices. In Proceedings of the 16th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 9–13 November 2009; ACM: New York, NY, USA, 2009; pp. 410–419. [Google Scholar] [CrossRef]
- Pirbhulal, S.; Zhang, H.; Wu, W.; Mukhopadhyay, S.C.; Zhang, Y. Heartbeats Based Biometric Random Binary Sequences Generation to Secure Wireless Body Sensor Networks. IEEE Trans. Biomed. Eng. 2018, 65, 2751–2759. [Google Scholar] [CrossRef]
- Seepers, R.M.; Strydis, C.; Sourdis, I.; Zeeuw, C.I.D. On Using a Von Neumann Extractor in Heart-Beat-Based Security. In Proceedings of the IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015; Volume 1, pp. 491–498. [Google Scholar] [CrossRef]
- Ortiz-Martin, L.; Picazo-Sanchez, P.; Peris-Lopez, P.; Tapiador, J. Heartbeats Do Not Make Good Pseudo-Random Number Generators: An Analysis of the Randomness of Inter-Pulse Intervals. Entropy 2018, 20, 94. [Google Scholar] [CrossRef]
- Chizari, H.; Lupu, E. Extracting Randomness from The Trend of IPI for Cryptographic Operators in Implantable Medical Devices. arXiv 2018, arXiv:1806.10984. [Google Scholar]
- Hastings, M.; Fried, J.; Heninger, N. Weak Keys Remain Widespread in Network Devices. In Proceedings of the 2016 Internet Measurement Conference (IMC’16), Santa Monica, CA, USA, 14–16 November 2016; ACM: New York, NY, USA, 2016; pp. 49–63. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Bosque, M.; Pérez-Resa, A.; Sánchez-Azqueta, C.; Aldea, C.; Celma, S. Chaos-Based Bitwise Dynamical Pseudorandom Number Generator On FPGA. IEEE Trans. Instrum. Meas. 2019, 68, 291–293. [Google Scholar] [CrossRef]
- Melià-Seguí, J.; Garcia-Alfaro, J.; Herrera-Joancomartí, J. J3Gen: A PRNG for Low-Cost Passive RFID. Sensors 2013, 13, 3816–3830. [Google Scholar] [CrossRef] [Green Version]
- Abutaleb, M.M. A novel true random number generator based on QCA nanocomputing. Nano Commun. Netw. 2018, 17, 14–20. [Google Scholar] [CrossRef]
- Grujić, M.; Rožić, V.; Yang, B.; Verbauwhede, I. A Closer Look at the Delay-Chain based TRNG. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Low, P.A. Chapter 51—Sweating. In Primer on the Autonomic Nervous System, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012; pp. 249–251. [Google Scholar] [CrossRef]
- Felten, D.L.; O’Banion, M.K.; Maida, M.S. 9—Peripheral Nervous System. In Netter’s Atlas of Neuroscience, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 153–231. [Google Scholar] [CrossRef]
- Lonsdale, D.; Marrs, C. Chapter 2—The Autonomic Nervous System and Its Functions. In Thiamine Deficiency Disease, Dysautonomia, and High Calorie Malnutrition; Academic Press: Cambridge, MA, USA, 2017; pp. 27–57. [Google Scholar] [CrossRef]
- Rea, P. Introduction to the Nervous System. In Clinical Anatomy of the Cranial Nerves; Rea, P., Ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar] [CrossRef]
- Bayo-Monton, J.L.; Martinez-Millana, A.; Han, W.; Fernandez-Llatas, C.; Sun, Y.; Traver, V. Wearable Sensors Integrated with Internet of Things for Advancing eHealth Care. Sensors 2018, 18, 1851. [Google Scholar] [CrossRef]
- Zangróniz, R.; Martínez-Rodrigo, A.; Pastor, J.M.; López, M.T.; Fernández-Caballero, A. Electrodermal Activity Sensor for Classification of Calm/Distress Condition. Sensors 2017, 17, 2324. [Google Scholar] [CrossRef]
- Brown, R.G. Dieharder: A Random Number Test Suite v3.31.1. 2011. Available online: https://webhome.phy.duke.edu/~rgb/General/dieharder.php (accessed on 26 April 2019).
- Bassham, L.E.; Rukhin, A.L.; Soto, J.; Nechvatal, J.R.; Smid, M.E.; Barker, E.B.; Leigh, S.D.; Levenson, M.; Vangel, M.; Banks, D.L.; et al. SP 800-22 Rev. 1a. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; Technical Report; 2010. Available online: https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf (accessed on 26 April 2019).
- Reuderink, B.; Poel, M.; Nijholt, A. The Impact of Loss of Control on Movement BCIs. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 628–637. [Google Scholar] [CrossRef] [Green Version]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Miranda Correa, J.A.; Abadi, M.K.; Sebe, N.; Patras, I. AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups. IEEE Trans. Affect. Comput. 2018. [Google Scholar] [CrossRef]
- Turan, M.S.; Barker, E.; Kelsey, J.; McKay, K.; Baish, M.; Boyle, M. NIST Special Publication 800-90B. Recommendation for the Entropy Sources Used for Random Bit Generation; 2018. Available online: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf (accessed on 26 April 2019).
- Walker, J. Randomness Battery. 1998. Available online: http://www.fourmilab.ch/random/ (accessed on 26 April 2019).
- Özkaynak, F. Role of NPCR and UACI tests in security problems of chaos based image encryption algorithms and possible solution proposals. In Proceedings of the International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, 5–7 October 2017; pp. 621–624. [Google Scholar] [CrossRef]
- Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI Randomness Tests for Image Encryption. Cyber J. Multidiscip. J. Sci. Technol. 2011, 31–38. Available online: https://pdfs.semanticscholar.org/2b47/9abce221135af6065f9f8352e09cbfb5733a.pdf (accessed on 26 April 2019).
- Rožić, V.; Yang, B.; Dehaene, W.; Verbauwhede, I. Iterating Von Neumann’s post-processing under hardware constraints. In Proceedings of the IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA, 3–5 May 2016; pp. 37–42. [Google Scholar]
- Li, C.; Wang, Q.; Jiang, J.; Guan, N. A metastability-based true random number generator on FPGA. In Proceedings of the IEEE 12th International Conference on ASIC (ASICON), Guiyang, China, 25–28 October 2017; pp. 738–741. [Google Scholar]
- Altop, D.K.; Levi, A.; Tuzcu, V. Deriving cryptographic keys from physiological signals. Pervasive Mob. Comput. 2017, 39, 65–79. [Google Scholar] [CrossRef]
Method | Min-Entropy |
---|---|
Most Common Value Estimate | 0.99876 |
Collision Estimate | 0.966577 |
Markov Estimate | 0.999052 |
Compression Estimate | 1 |
t-Tuple Estimate | 0.935861 |
LRS Estimate | 0.965143 |
MultiMCW Prediction Estimate: | 0.999605 |
Lag Prediction Estimate | 0.999152 |
MultiMMC Prediction Estimate | 0.998977 |
LZ78Y Prediction Estimate | 0.998780 |
Overall estimation | 0.935861 |
File ID | Result |
---|---|
File-1 | Pass |
File-2 | Pass |
File-3 | Pass |
File-4 | Pass |
File-5 | Pass |
Final min-entropy estimation | 0.94 |
Entropy | 7.999994 |
Optimum compression | 0% |
Chi square | 235.33 (80.64%) |
Arithmetic mean value | 127.4990 |
Monte Carlo value | 3.143071846 (error 0.05%) |
Serial correlation coefficient | −0.000129 |
(a) DIEHARD Results | |
Birthdays | 0.1079 |
OPERM5 | 0.1265 |
32x32 Binary Rank | 0.5070 |
6x8 Binary Rank | 0.6194 |
Bitstream | 0.1318 |
OPSO | 0.0386 |
OQSO | 0.1792 |
DNA | 0.1792 |
Count the 1s (stream) | 0.9853 |
Count the 1s Test (byte) | 0.2096 |
Parking Lot | 0.0667 |
Minimum Distance | 0.5923 |
(2d Circle) | |
3d Sphere | 0.9626 |
(Minimum Distance) | |
Squeeze Test | 0.8645 |
Sum Test | 0.0340 |
Runs | 0.2381 (up) |
0.6902 (down) | |
Craps | 0.5847 (wins) |
0.3163 (throws) | |
(b) NIST Results | |
Frequency | 0.7792 (98/100) |
Block Frequency | 0.6787 (99/100) |
Cumulative Sums | 0.2974 (2/2) |
(99/100) | |
Runs | 0.2368 (98/100) |
Longest Run | 0.7197 (100/100) |
Rank | 0.3345 (98/100) |
FFT | 0.8831 (99/100) |
Non-Overlapping | 0.5181 (148/149) |
Template | (>99/100) |
Overlapping Template | 0.5749 (100/100) |
Universal | 0.3838 (99/100) |
Approximate Entropy | 0.0909 (100/100) |
Random Excursions | 0.6781 (8/8) |
(>61/62) | |
Random Excursions | 0.5799 (18/18) |
Variant | (>36/37) |
Serial | 0.8188 (2/2) |
(>99/100) | |
Linear Complexity | 0.1296 (100/100) |
NPCR | UACI | |
---|---|---|
File-1 | 99.6139% | 33.6028% |
File-2 | 99.6185% | 33.6315% |
File-3 | 99.5911% | 33.2750% |
File-4 | 99.6124% | 33.4287% |
File-5 | 99.6139% | 33.4694% |
Optimal value (256 × 256) [61] | ||
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camara, C.; Martín, H.; Peris-Lopez, P.; Aldalaien, M. Design and Analysis of a True Random Number Generator Based on GSR Signals for Body Sensor Networks. Sensors 2019, 19, 2033. https://doi.org/10.3390/s19092033
Camara C, Martín H, Peris-Lopez P, Aldalaien M. Design and Analysis of a True Random Number Generator Based on GSR Signals for Body Sensor Networks. Sensors. 2019; 19(9):2033. https://doi.org/10.3390/s19092033
Chicago/Turabian StyleCamara, Carmen, Honorio Martín, Pedro Peris-Lopez, and Muawya Aldalaien. 2019. "Design and Analysis of a True Random Number Generator Based on GSR Signals for Body Sensor Networks" Sensors 19, no. 9: 2033. https://doi.org/10.3390/s19092033
APA StyleCamara, C., Martín, H., Peris-Lopez, P., & Aldalaien, M. (2019). Design and Analysis of a True Random Number Generator Based on GSR Signals for Body Sensor Networks. Sensors, 19(9), 2033. https://doi.org/10.3390/s19092033