ECG-RNG: A Random Number Generator Based on ECG Signals and Suitable for Securing Wireless Sensor Networks
<p>ECG signal.</p> "> Figure 2
<p>Hardware for building an ECG-based RNG.</p> "> Figure 3
<p>Wavelet decomposition of a signal <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>[</mo> <mi>n</mi> <mo>]</mo> </mrow> </semantics></math>.</p> "> Figure 4
<p>Bias analysis.</p> "> Figure 5
<p>Hamming distance distribution.</p> "> Figure 6
<p>Throughput analysis.</p> "> Figure 7
<p><span class="html-italic">p</span>-values (DIEHARD and NIST suite tests).</p> ">
Abstract
:1. Introduction
2. Motivation and Related Work
3. Materials and Methods
Algorithm 1 ECG-RNG. |
|
4. Results and Analysis
4.1. Bias Analysis
4.2. Distinctiveness Analysis
4.3. Performance Analysis
4.4. Wavelet Family Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.; Salah, K. IoT security: Review, blockchain solutions, and open challenges. Future Gener. Comput. Syst. 2018, 82, 395–411. [Google Scholar] [CrossRef]
- Shakhov, V.; Koo, I. Depletion-of-Battery Attack: Specificity, Modelling and Analysis. Sensors 2018, 18, 1849. [Google Scholar] [CrossRef] [PubMed]
- Camara, C.; Peris-Lopez, P.; Tapiador, J.E. Security and privacy issues in implantable medical devices: A comprehensive survey. J. Biomed. Inform. 2015, 55, 272–289. [Google Scholar] [CrossRef] [PubMed]
- Pycroft, L.; Aziz, T.Z. Security of implantable medical devices with wireless connections: The dangers of cyber-attacks. Expert Rev. Med. Dev. 2018, 15, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Singelée, D.; Garcia, F.D.; Chothia, T.; Willems, R.; Preneel, B. On the (in)Security of the Latest Generation Implantable Cardiac Defibrillators and How to Secure Them. In Proceedings of the 32nd Annual Conference on Computer Security Applications (ACSAC ’16), Los Angeles, CA, USA, 5–8 December 2016; pp. 226–236. [Google Scholar] [CrossRef]
- Meng, W.; Li, W.; Su, C.; Zhou, J.; Lu, R. Enhancing Trust Management for Wireless Intrusion Detection via Traffic Sampling in the Era of Big Data. IEEE Access 2018, 6, 7234–7243. [Google Scholar] [CrossRef]
- Romaissa, B.; Eddine, B.D. In-Body Routing Protocols for Wireless Body Sensor Networks. In Proceedings of the 10th International Conference on Developments in eSystems Engineering (DeSE), Paris, France, 14–16 June 2017; pp. 160–165. [Google Scholar]
- Peter, S.; Pratap Reddy, B.; Momtaz, F.; Givargis, T. Design of Secure ECG-Based Biometric Authentication in Body Area Sensor Networks. Sensors 2016, 16, 570. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.Z.A.; Wang, G.; Wu, J.; Cao, J.; Liu, X.; Wang, T. Dependable Structural Health Monitoring Using Wireless Sensor Networks. IEEE Trans. Dependable Secure Comput. 2017, 14, 363–376. [Google Scholar] [CrossRef]
- Sharma, N.; Bhatt, R. Privacy Preservation in WSN for Healthcare Application. Procedia Comput. Sci. 2018, 132, 1243–1252. [Google Scholar] [CrossRef]
- Osanaiye, O.; Alfa, A.S.; Hancke, G.P. A Statistical Approach to Detect Jamming Attacks in Wireless Sensor Networks. Sensors 2018, 18, 1691. [Google Scholar] [CrossRef] [PubMed]
- Sasikala, E.; Rengarajan, N. An Intelligent Technique to Detect Jamming Attack in Wireless Sensor Networks (WSNs). Int. J. Fuzzy Syst. 2015, 17, 76–83. [Google Scholar] [CrossRef]
- Santoro, D.; Escudero-Andreu, G.; Kyriakopoulos, K.G.; Aparicio-Navarro, F.J.; Parish, D.J.; Vadursi, M. A hybrid intrusion detection system for virtual jamming attacks on wireless networks. Measurement 2017, 109, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Lu, Z.; Zou, X.; Liu, Z. PUFKEY: A High-Security and High-Throughput Hardware True Random Number Generator for Sensor Networks. Sensors 2015, 15, 26251–26266. [Google Scholar] [CrossRef] [PubMed]
- Maksutov, A.A.; Goryushkin, P.N.; Gerasimov, A.A.; Orlov, A.A. PRNG assessment tests based on neural networks. In Proceedings of the IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow, Russia, 29 January–1 February 2018; pp. 339–341. [Google Scholar] [CrossRef]
- Saleem, H.; Afzal, S.; Ahmed, N. Robust entropy harvester for analogue noise sources in TRNG. In Proceedings of the 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 9–13 January 2018; pp. 405–414. [Google Scholar] [CrossRef]
- Rawat, P.; Singh, K.D.; Chaouchi, H.; Bonnin, J.M. Wireless sensor networks: A survey on recent developments and potential synergies. J. Supercomput. 2014, 68, 1–48. [Google Scholar] [CrossRef]
- Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292–2330. [Google Scholar] [CrossRef]
- Dodangeh, P.; Jahangir, A.H. A biometric security scheme for wireless body area networks. J. Inf. Secur. Appl. 2018, 41, 62–74. [Google Scholar] [CrossRef]
- Kompara, M.; Hölbl, M. Survey on security in intra-body area network communication. Ad Hoc Netw. 2018, 70, 23–43. [Google Scholar] [CrossRef]
- Chen, G. Are electroencephalogram (EEG) signals pseudo-random number generators? J. Comput. Appl. Math. 2014, 268, 1–4. [Google Scholar] [CrossRef]
- Nguyen, D.; Tran, D.; Ma, W.; Nguyen, K. EEG-Based Random Number Generators. In Network and System Security (NSS); Springer: Berlin, Germany, 2017; pp. 248–256. [Google Scholar]
- Berkaya, S.K.; Uysal, A.K.; Gunal, E.S.; Ergin, S.; Gunal, S.; Gulmezoglu, M.B. A survey on ECG analysis. Biomed. Signal Process. Control 2018, 43, 216–235. [Google Scholar] [CrossRef]
- Pirbhulal, S.; Zhang, H.; Mukhopadhyay, S.C.; Li, C.; Wang, Y.; Li, G.; Wu, W.; Zhang, Y.T. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks. Sensors 2015, 15, 15067–15089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koya, A.M.; Deepthi, P.P. Anonymous hybrid mutual authentication and key agreement scheme for wireless body area network. Comput. Netw. 2018, 140, 138–151. [Google Scholar] [CrossRef]
- Rostami, M.; Juels, A.; Koushanfar, F. Heart-to-heart (H2H): Authentication for implanted medical devices. In Proceedings of the ACM SIGSAC Conference on Computer & Communications Security (CCS ’13), Berlin, Germany, 4–8 November 2013; ACM: New York, NY, USA, 2013; pp. 1099–1112. [Google Scholar] [CrossRef]
- Altop, D.K.; Levi, A.; Tuzcu, V. Deriving cryptographic keys from physiological signals. Pervasive Mob. Comput. 2017, 39, 65–79. [Google Scholar] [CrossRef]
- Moosavi, S.R.; Nigussie, E.; Virtanen, S.; Isoaho, J. Cryptographic key generation using ECG signal. In Proceedings of the 14th IEEE Annual Consumer Communications Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017; pp. 1024–1031. [Google Scholar] [CrossRef]
- Fratini, A.; Sansone, M.; Bifulco, P.; Cesarelli, M. Individual identification via electrocardiogram analysis. Biomed. Eng. Online 2015, 14, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odinaka, I.; Lai, P.H.; Kaplan, A.D.; O’Sullivan, J.A.; Sirevaag, E.J.; Rohrbaugh, J.W. ECG Biometric Recognition: A Comparative Analysis. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1812–1824. [Google Scholar] [CrossRef]
- Bao, S.D.; Poon, C.C.Y.; Zhang, Y.T.; Shen, L.F. Using the Timing Information of Heartbeats as an Entity Identifier to Secure Body Sensor Network. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Walker, J. Randomness Battery. 1998. Available online: http://www.fourmilab.ch/random/ (accessed on 15 August 2018).
- Ortiz-Martin, L.; Picazo-Sanchez, P.; Peris-Lopez, P.; Tapiador, J. Heartbeats Do Not Make Good Pseudo-Random Number Generators: An Analysis of the Randomness of Inter-Pulse Intervals. Entropy 2018, 20, 94. [Google Scholar] [CrossRef]
- Pirbhulal, S.; Zhang, H.; Wu, W.; Mukhopadhyay, S.C.; Zhang, Y.T. Heart-Beats Based Biometric Random Binary Sequences Generation to Secure Wireless Body Sensor Networks. IEEE Trans. Biomed. Eng. 2018. [Google Scholar] [CrossRef] [PubMed]
- HeartIn. Smart T-Shirt with ECG. 2018. Available online: https://www.heartin.net/bbb.html (accessed on 15 August 2018).
- Alves, A.P.; Silva, H.; Lourenco, A.; Fred, A.L. BITalino: A biosignal acquisition system based on Arduino. In Proceedings of the 6th Conference on Biomedical Electronics and Devices (BIODEVICES), Barcelona, Spain, 11–14 February 2013. [Google Scholar]
- Akansu, A.N.; Haddad, R.A. Chapter 6—Wavelet Transform. In Multiresolution Signal Decomposition, 2nd ed.; Academic Press: San Diego, CA, USA, 2001; pp. 391–442. [Google Scholar]
- Bassham, L.E.; Rukhin, A.L.; Soto, J.; Nechvatal, J.R.; Smid, M.E.; Barker, E.B.; Leigh, S.D.; Levenson, M.; Vangel, M.; Banks, D.L.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; Technical Report SP 800-22 Rev. 1a; National Institute of Standards & Technology: Gaithersburg, MD, USA, September 2010.
- Brown, R.G. Dieharder: A Random Number Test Suite v3.31.1. 2011. Available online: https://webhome.phy.duke.edu/~rgb/General/dieharder.php (accessed on 15 August 2018).
- Calleja, A.; Peris-Lopez, P.; Tapiador, J.E. Electrical Heart Signals can be Monitored from the Moon: Security Implications for IPI-Based Protocols. In Information Security Theory and Practice; Springer International Publishing: Cham, Switzerland, 2015; pp. 36–51. [Google Scholar]
- Anita, P.; Talele, K.T. ECG Feature Extraction Using Wavelet Based Derivative Approach. In Technology Systems and Management; Springer: Berlin/Heidelberg, Germany, 2011; pp. 239–247. [Google Scholar]
- Jung, W.H.; Lee, S.G. ECG Identification Based on Non-Fiducial Feature Extraction Using Window Removal Method. Appl. Sci. 2017, 7, 1205. [Google Scholar] [CrossRef]
- Singh, R.; Mehta, R.; Rajpal, N. Efficient wavelet families for ECG classification using neural classifiers. Procedia Comput. Sci. 2018, 132, 11–21. [Google Scholar] [CrossRef]
Approximately | IPI-Based Approach | Optimal Values |
---|---|---|
Entropy | 7.957724 | 8 |
Optimum | 0% | 0% |
compression | ||
Chi square | 493.49 | 256 |
(0.01%) | ([5–95%]) | |
Arithmetic mean value | 123.0993 | 127.5 |
Monte Carlo value | 3.158811 | 3.14159 |
Serial correlation | 0.031878 | 0 |
coefficient |
Statistic | Male | Female |
---|---|---|
Number | 101 | 101 |
Height | 176.8 | 162.3 |
Weight | 77.6 | 62.3 |
Body Mass | 24.7 | 23.7 |
Approximately | Level 1 | Level 2 | Level 3 | Level 4 |
---|---|---|---|---|
Frequency | 0.8165 (49/50) | 0.9558 (50/50) | 0.0200 (49/50) | 0.8514 (49/50) |
Block Frequency | 0.4190 (49/50) | 0.4190 (47/50) | 0.8832 (49/50) | 0.1917 (49/50) |
Cumulative Sums | 0.5207 (2/2) | 0.4356 (2/2) | 0.6101 (2/2) | 0.1563 (2/2) |
(49/50) | (50/50) | (49/50) | (49/50) | |
Runs | 0.6993 (48/50) | 0.6993 (50/50) | 0.4944 (50/50) | 0.4559 (50/50) |
Longest Run | 0.2897 (50/50) | 0.6993 (50/50) | 0.9915 (50/50) | 0.8832 (50/50) |
Rank | 0.08559 (50/50) | 0.5341 50/50 | 0.3505 (49/50) | 0.0352 (50/50) |
FFT | 0.1223 (50/50) | 0.0757 (49/50) | 0.5749 (49/50) | 0.2897 (50/50) |
Non-Overlapping | 0.4986 (148/148) | 0.4881 (148/148) | 0.5080 (148/148) | 0.5090 (148/148) |
Template | (>49/50) | (>49/50) | (>49/50) | (>49/50) |
Overlapping Template | 0.3838 (50/50) | 0.1719 (48/50) | 0.9558 (48/50) | 0.4190 (49/50) |
Universal | 0.3505 (50/50) | 0.0156 (50/50) | 0.3838 (48/50) | 0.9915 (49/50) |
Approximate Entropy | 0.0669 (48/50) | 0.9558 (49/50) | 0.6993 (50/50) | 0.1088 (50/50) |
Random Excursions | 0.2865 (8/8) | 0.1094 (8/8) | 0.3629 (8/8) | 0.4111 (8/8) |
(>36/38) | (>37/38) | (>33/34) | (>32/33) | |
Random Excursions Variant | 0.2867 (18/18) | 0.3328 (18/18) | 0.4612 (18/18) | 0.3969 (18/18) |
(>36/37) | (>37/38) | (>33/34) | (>32/33) | |
Serial | 0.6511 (2/2) | 0.9537 (2/2) | 0.1753 (2/2) | 0.5116 (2/2) |
(>49/50) | () | (49/50) | (49/50) | |
Linear Complexity | 0.0352 (50/50) | 0.2622 (50/50) | 0.5749 (49/50) | 0.9717 (50/50) |
Approximately | Level 1 | Level 2 | Level 3 | Level 4 |
---|---|---|---|---|
Birthdays | 0.68301545 | 0.61270139 | 0.80007480 | 0.94460956 |
OPERM5 | 0.01657098 | 0.76376607 | 0.77095792 | 0.0012866 |
32 × 32 Binary Rank | 0.73054931 | 0.93907677 | 0.93485678 | 0.40762130 |
6 × 8 Binary Rank | 0.03964233 | 0.63609809 | 0.01640541 | 0.78004161 |
Bitstream | 0.44644237 | 0.38432822 | 0.76304154 | 0.46452841 |
OQSO | 0.16901300 | 0.0000523 | 0.10390905 | 0.07871345 |
0.76574765 | 0.63218487 | 0.56716581 | 0.69843874 | |
DNA | 0.01104271 | 0.66337412 | 0.04864965 | 0.16432922 |
Count the 1’s (stream) | 0.64310466 | 0.75768749 | 0.14166650 | 0.64535121 |
Count the 1’s Test (bytes) | 0.61217963 | 0.12233837 | 0.45342646 | 0.31039533 |
Parking Lot | 0.01700299 | 0.72327165 | 0.45123033 | 0.61550204 |
Minimum Distance | 0.05835137 | 0.39712445 | 0.57168207 | 0.60978869 |
(2D Circle) | ||||
3D Sphere | 0.45525876 | 0.40382693 | 0.74404666 | 0.94736187 |
(Minimum Distance) | ||||
Squeeze Test | 0.51553404 | 0.0000231 | 0.26298106 | 0.87828628 |
Runs | 0.01450632 | 0.17897685 | 0.64894698 | 0.85809732 |
0.77031157 | 0.78097772 | 0.51236956 | 0.27052895 | |
Craps | 0.01027903 | 0.09666884 | 0.00901385 | 0.91551334 |
0.0042827 | 0.08596808 | 0.27730790 | 0.90795457 |
Approximately | Level 1 | Level 2 | Level 3 | Level 4 |
---|---|---|---|---|
Entropy | 7.999998 | 7.999998 | 7.999998 | 7.999998 |
Optimum | 0 % | 0 % | 0 % | 0 % |
Compression | ||||
Chi Square | 279.22 | 268.41 | 235.82 | 313.44 |
(14.24 %) | (26.99 %) | (80.01 %) | (0.73 %) | |
Arithmetic Mean Value | 127.4657 | 127.4731 | 127.4896 | 127.4931 |
Monte Carlo Value | 3.141955902 | 3.142772504 | 3.141912708 | 3.141860883 |
Serial Correlation | −0.000105 | 0.000022 | −0.000124 | 0.000058 |
Coefficient |
Approach | Efficiency | Throughput (60 PPMs) | Throughput (100 PPMs) |
---|---|---|---|
IPI-based approaches [27,31] | 4 bits/2 heart-beats | 2 bits /second | 3.3 bits/second |
Pirbhulal et al. [34] | 16 bits/2 heart-beats | 8 bits/second | 13.33 bits/second |
Our approach | 23 bytes/heart-beat | 184 bits/second | 306 bits/second |
Test | ENT | DIEHARDER | NIST | |
---|---|---|---|---|
Family | ||||
Daubechies (N = 4) | PASS (6/6) | PASS (15/15) | PASS (15/15) | |
Haar | PASS (6/6) | (12 PASS–2 WEAK–1 FAILED)/15 | PASS (15/15) | |
Coiflets (N = 3) | PASS (6/6) | (14 PASS–1 WEAK) /15 | PASS (15/15) | |
Symlets (N = 4) | PASS (6/6) | (13 PASS–2 WEAK) /15 | PASS (15/15) | |
Discrete Meyer | PASS (6/6) | PASS (15/15) | PASS (14/15) | |
Biorthogonal () | PASS (6/6) | (13 PASS–2 WEAK) /15 | PASS (12/15) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camara, C.; Peris-Lopez, P.; Martín, H.; Aldalaien, M. ECG-RNG: A Random Number Generator Based on ECG Signals and Suitable for Securing Wireless Sensor Networks. Sensors 2018, 18, 2747. https://doi.org/10.3390/s18092747
Camara C, Peris-Lopez P, Martín H, Aldalaien M. ECG-RNG: A Random Number Generator Based on ECG Signals and Suitable for Securing Wireless Sensor Networks. Sensors. 2018; 18(9):2747. https://doi.org/10.3390/s18092747
Chicago/Turabian StyleCamara, Carmen, Pedro Peris-Lopez, Honorio Martín, and Mu’awya Aldalaien. 2018. "ECG-RNG: A Random Number Generator Based on ECG Signals and Suitable for Securing Wireless Sensor Networks" Sensors 18, no. 9: 2747. https://doi.org/10.3390/s18092747
APA StyleCamara, C., Peris-Lopez, P., Martín, H., & Aldalaien, M. (2018). ECG-RNG: A Random Number Generator Based on ECG Signals and Suitable for Securing Wireless Sensor Networks. Sensors, 18(9), 2747. https://doi.org/10.3390/s18092747