On the Sparse Beamformer Design
<p>Initial array configuration (Ex1).</p> "> Figure 2
<p>Final array configuration (Ex1).</p> "> Figure 3
<p>Amplitude of <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>(</mo> <mi mathvariant="bold-italic">r</mi> <mo>,</mo> <mi>f</mi> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>55</mn> <mo>.</mo> <mn>56</mn> </mrow> </semantics></math>% of zeroes for microphone arrays (Ex1).</p> "> Figure 4
<p>Stopband ripple for microphone arrays (Ex1).</p> "> Figure 5
<p>Amplitude of <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>(</mo> <mi mathvariant="bold-italic">r</mi> <mo>,</mo> <mi>f</mi> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>38</mn> <mo>.</mo> <mn>46</mn> </mrow> </semantics></math>% of zeroes for filters (Ex1).</p> "> Figure 6
<p>Stopband ripple for filters (Ex1).</p> "> Figure 7
<p>Initial array configuration (Ex2).</p> "> Figure 8
<p>Final array configuration (Ex2).</p> "> Figure 9
<p>Amplitude of <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>(</mo> <mi mathvariant="bold-italic">r</mi> <mo>,</mo> <mi>f</mi> <mo>)</mo> </mrow> </semantics></math>, 75% of zeroes for microphone arrays (Ex2).</p> "> Figure 10
<p>Stopband ripple for microphone arrays (Ex2).</p> "> Figure 11
<p>Amplitude of <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>(</mo> <mi mathvariant="bold-italic">r</mi> <mo>,</mo> <mi>f</mi> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>41</mn> <mo>.</mo> <mn>67</mn> </mrow> </semantics></math>% of zeroes for filters (Ex2).</p> "> Figure 12
<p>Stopband ripple for filters (Ex2).</p> ">
Abstract
:1. Introduction
2. Beamformer Design Formulation
3. Microphone Array Pruning Formulation
- Step 1:
- Set and solve the following two-stage optimization problem:If stopband ripple increases significantly, stop.
- Step 2:
- The microphones a and b are chosen to correspond to the smallest Euclidean distance
- Step 3:
- Prune the microphone , set , and return to Step 1.
- Step 0:
- Choose a finite reference set such that . Let be an optimal solution to and let be the set of associated multipliers. Set .
- Step 1:
- Find a set such thatIf such a point does not exist, then stop. Otherwise, put .
- Step 2:
- Let be an optimal solution to and let be the set of associated multipliers.
- Step 3:
- LetSet , and return to Step 1.
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brandstein, M.; Ward, D. Microphone Arrays: Signal Processing Techniques and Applications; Springer: Berlin, Germany, 2001. [Google Scholar]
- Kellermann, W. Beamforming for speech and audio signals. In Handbook of Signal Processing in Acoustics; Havelock, D., Kuwano, S., Vorlander, M., Eds.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Ryan, J.; Goubran, R. Array optimization applied in the near field of a microphone array. IEEE Trans. Speech Audio Process. 2000, 8, 173–178. [Google Scholar] [CrossRef]
- Kennedy, R.; Ward, D.; Abhayapala, T. Nearfield beamforming using radial reciprocity. IEEE Trans. Signal Process. 1999, 47, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.C.; Lian, Y. The optimum design of one and two-dimensional FIR filters using the frequency response masking technique. IEEE Trans. Circuits Syst. II 1993, 40, 88–95. [Google Scholar] [CrossRef]
- Lau, B.K.; Leung, Y.H.; Teo, K.L.; Sreeram, V. Minimax filters for microphone arrays. IEEE Trans. Circuits Syst. II 1999, 46, 1522–1525. [Google Scholar] [CrossRef]
- Chan, S.C.; Chen, H.H. Uniform concentric circular arrays with frequency-invariant characteristics-theory, design, adaptive beamforming and DOA estimation. IEEE Trans. Signal Process. 2007, 55, 165–177. [Google Scholar] [CrossRef]
- Nordholm, S.; Rehbock, V.; Teo, K.L.; Nordebo, S. Chebyshev approximation for the design of broadband beamformers in the near field. IEEE Trans. Circuits Syst. II 1998, 45, 141–143. [Google Scholar] [CrossRef]
- Yiu, K.F.C.; Grbic, N.; Teo, K.L.; Nordholm, S. A new design method for broadband microphone arrays for speech input in automobiles. IEEE Signal Proc. Lett. 2002, 9, 222–224. [Google Scholar] [Green Version]
- Yiu, K.F.C.; Yang, X.Q.; Nordholm, S.; Teo, K.L. Near-field broadband beamformer design via multidimensional semi-infinite linear programming techniques. IEEE Trans. Speech Audio Process. 2003, 11, 725–732. [Google Scholar]
- Feng, Z.G.; Yiu, K.F.C.; Nordholm, S. A two-stage method for the design of near-field broadband beamformer. IEEE Trans. Signal Process. 2011, 59, 3647–3656. [Google Scholar] [CrossRef]
- Feng, Z.G.; Yiu, K.F.C. The design of multi-dimensional acoustic beamformers via window functions. Digit. Signal Process. 2014, 29, 107–116. [Google Scholar] [CrossRef]
- Feng, Z.G.; Yiu, K.F.C.; Nordholm, S. Performance limit of broadband beamformer designs in space and frequency. J. Optim. Theory Appl. 2015, 164, 316–341. [Google Scholar] [CrossRef]
- Baran, T.; Wei, D.; Oppenheim, A.V. Linear programming algorithms for sparse filter design. IEEE Trans. Signal Process. 2010, 58, 1605–1617. [Google Scholar] [CrossRef]
- Jiang, A.; Kwan, H.K. Recent advances in sparse FIR filter design using l0 and l1 optimization techniques. In Trends in Digital Signal Processing; Lim, Y., Kwan, H.K., Siu, W.C., Eds.; Pan Stanford Publishing: Singapore, 2016. [Google Scholar]
- Zhang, L.P.; Wu, S.Y.; Lopez, M.A. Optimizing floating point units in hybrid FPGAs. SIAM J. Optim. 2010, 20, 2959–2977. [Google Scholar] [CrossRef]
- Yiu, K.F.C.; Gao, M.J.; Feng, Z.G. Design of near-field broadband beamformer using semi-definite programming. Int. J. Innov. Comput. Inf. Control 2012, 8, 3755–3768. [Google Scholar]
- Oliveri, G.; Donelli, M.; Massa, A. Linear array thinning exploiting almost difference sets. IEEE Trans. Antennas Propag. 2009, 57, 3800–3812. [Google Scholar] [CrossRef]
- Fernandez-Delgado, M.; Rodriguez-Gonzalez, J.; Iglesias, R.; Barro, S.; Ares-Pena, A. Fast array thinning using global optimization methods. J. Electromagn. Waves Appl. 2010, 24, 2259–2271. [Google Scholar] [CrossRef]
- Feng, Z.G.; Yiu, K.F.C.; Nordholm, S. Placement design of microphone arrays in near-field broadband beamformers. IEEE Trans. Signal Process. 2012, 60, 1195–1204. [Google Scholar] [CrossRef]
- Li, Z.B.; Yiu, K.F.C.; Feng, Z.G. A hybrid descent method with genetic algorithm for microphone array placement design. Appl. Soft Comput. 2013, 13, 1486–1490. [Google Scholar] [CrossRef]
- Honig, M.; Madhow, U.; Verdu, S. Blind adaptive multiuser detection. IEEE Trans. Inf. Theory 1995, 41, 944–960. [Google Scholar] [CrossRef] [Green Version]
- Darsena, D.; Verde, F. Minimum-mean-output-energy blind adaptive channel shortening for multicarrier simo transceivers. IEEE Trans. Signal Process. 2007, 55, 5755–5771. [Google Scholar] [CrossRef]
- Gao, M.J.; Yiu, K.F.C.; Wu, S.Y. A perturbation exchange algorithm for convex semi-infinite programming with applications in sparse beamformer. Pac. J. Optim. 2018, 14, 15–30. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Yiu, K.F.C.; Nordholm, S. On the Sparse Beamformer Design. Sensors 2018, 18, 3536. https://doi.org/10.3390/s18103536
Gao M, Yiu KFC, Nordholm S. On the Sparse Beamformer Design. Sensors. 2018; 18(10):3536. https://doi.org/10.3390/s18103536
Chicago/Turabian StyleGao, Mingjie, Ka Fai Cedric Yiu, and Sven Nordholm. 2018. "On the Sparse Beamformer Design" Sensors 18, no. 10: 3536. https://doi.org/10.3390/s18103536
APA StyleGao, M., Yiu, K. F. C., & Nordholm, S. (2018). On the Sparse Beamformer Design. Sensors, 18(10), 3536. https://doi.org/10.3390/s18103536