Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips
<p>Schematic description of the process for SERS (Surface-enhanced Raman spectroscopy) substrate preparation. See detailed description of the process in the main text.</p> "> Figure 2
<p>SEM images of the SERS substrates Klarite 312 and SK307. The images were obtained with scanning electron microscope Magellan (FEI, Hillsboro, OR, USA; TLD; 1–2 kV; 6.3–25 pA; 2.6–3.0 mm WD; 15,000–20,000× magnification). SK307 has about twice the number of pyramids per unit area than Klarite 312. This was achieved both with smaller pyramids and narrower gaps between them. The granularity of the Au surface is essential for SERS activity. The scale-bars are 1 μm.</p> "> Figure 3
<p>(<b>A</b>). Schematic image of the PDMS chip for microfluidic SERS. The chip is square shaped, with square substrate chamber in the center, with 3 inlets (left) and 1 outlet (right) for capillary tubes. Dimensions are in millimeters. (<b>B</b>). Photograph of the complete microfluidic chip with the SERS substrate in the microfluidic chamber on a microscope slide covered by a cover slip and the capillary tubing connected.</p> "> Figure 4
<p>Schematic of the experimental setup for microfluidic SERS based quantitative detection of TCP (1,2,3-trichloropropane) and other chloroalkanes. The microfluidic chip with the SERS substrate is placed under the objective of the Raman microspectroscope and connected to the syringe pumps by capillary tubes. The syringe pumps and the spectroscope are controlled with the PC.</p> "> Figure 5
<p>Comparison of conventional Raman spectrum of TCP with SERS on Klarite 312 and SK307. Conventional Raman spectrum was recorded from neat TCP, molar concentration 9.4 M. SERS spectra were recorded from 0.01 M (10 mM) TCP solutions on Klarite 312 and SK307. The horizontal axis represents Raman shift, while the vertical axis shows Raman (SERS) signal intensity. All the spectra were recorded with identical settings, as described in <a href="#sec2dot4-sensors-18-03212" class="html-sec">Section 2.4</a>. The SERS peaks representing C-Cl stretching in TCP are present at 663 cm<sup>−1</sup>, 721 cm<sup>−1</sup>, 740 cm<sup>−1</sup>, and 754 cm<sup>−1</sup>. They are red shifted by about 1 cm<sup>−1</sup> relative to the conventional Raman.</p> "> Figure 6
<p>Spectral maps of TCP concentration gradients on SERS substrates Klarite 312 and SK307. TCP concentrations were 10.0, 7.5, 5.0, 2.5, and 0.0 mM. Vertical axis represents time ordered spectra (15 s/spectrum). Horizontal axis represents the Raman shift [cm<sup>−1</sup>]. The intensity of Raman signal is color-coded, see the side bar. The maps were created from spectra collected under identical conditions, except for a small difference in timing (50 versus 45 min total time). SK307 has stronger signal, more linear response to concentration changes and its signal loss is slower than with Klarite 312.</p> "> Figure 7
<p>Comparison of TCP signal from SERS substrates Klarite 312 and SK307. Dependence of Raman signal intensity on TCP concentration. Raman intensity I<sub>663</sub> represents the Raman signal magnitude at the indicated Raman shift. With Klarite 312, the response is not linear and the signal decays by 30% within 3 cycles. SK307 has nearly linear response and the signal decreases by only 12% within 3 cycles. This represents signal degradation 26% per hour. The linear regression (grey lines) yielded the regression coefficients R<sup>2</sup>. Their magnitude is proportional to the linearity of the data distribution. Each data point was averaged from 6 measurements. Error bars: 95% confidence interval.</p> "> Figure 8
<p>The effect of cross gradient of NaCl and TCP on SERS intensity with SK307 substrate. The horizontal axis represents the combinations of TCP and NaCl concentrations (in mM). Vertical axis shows the Raman intensity I<sub>650–680</sub>. The Raman intensity of the TCP signal increased significantly when 50 mM NaCl was present in the samples. Each data-point was averaged from 10 measurements. Error bars: 95% confidence interval.</p> "> Figure 9
<p>Spectral map of SK307 SERS signal of 10 mM TCP in cycling pH. Vertical axis represents time ordered spectra (30 s/spectrum). Horizontal axis represents the Raman shift. The intensity of the Raman signal is color-coded. Signal intensity is highest at pH 8.0 (red), decreases at pH 6.0 (orange) and is minimal at pH 4.0 (green-blue).</p> "> Figure 10
<p>The pH dependence of the SERS signal from 10 mM TCP on SK307 substrate. We used data from 3 subsequent cycles of pH changes to plot the dependence. The regression curve approximates the relation between pH and the SERS signal. Each data point was averaged from 6 measurements. Error bars: 95% confidence interval.</p> "> Figure 11
<p>SERS of TCP on SK307 substrate: TCP calibration series (blue circles) and a separately injected sample (red square) of TCP solution (2 mM). Raman intensity I<sub>655–670</sub> (vertical axis) represents numerical integral of the Raman intensity between the indicated Raman shifts. TCP concentration is shown on the horizontal axis. We were able to reliably detect 0.2 mM TCP in water. Calibration yields a linear dependence over the course of all calibration points even at concentrations reaching LOD. Each calibration data-point was averaged from 10 measurements. The data-point of the separately injected sample was averaged from 25 measurements. Error-bars: 95% confidence interval.</p> "> Figure 12
<p>Spectral maps of 10 mM solutions of DCP (2,3-dichloropropanol) and CHCl<sub>3</sub> (trichloromethane) on SK307 during 3× repeated step gradient from 0 to 10 mM and back to 0 with 2.5 mM steps. Vertical axis represents time ordered spectra (15 s/spectrum). Horizontal axis represents the Raman shift. The intensity of Raman signal is color-coded.</p> "> Figure 13
<p>Time course of the SK307 SERS signal from TCP, DCP, and CHCl<sub>3</sub> solutions during 3× repeated step gradient from 0 to 10 mM and back to 0 with 2.5 mM steps. Raman shift of the projected signal (in cm<sup>−1</sup>) is given in brackets along with the sample name. Note the various dynamics of the signal change. The pumping programs and spectral acquisition parameters were identical in all three samples.</p> "> Figure 14
<p>SK307 SERS spectra of 10 mM solutions of TCP, DCP, and CHCl<sub>3</sub>. Horizontal axis represents Raman shift, while the vertical axes show Raman (SERS) signal intensity separately for TCP (<b>Left</b>) and for DCP, and CHCl<sub>3</sub> (<b>Right</b>). All the annotated peaks represent C-Cl bond stretching. The differences in Raman shift are caused by alternative conformations of the atoms in the respective molecule.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the SERS Substrate
2.2. Fabrication of the Microfluidic Chip
2.3. Insertion of the Sers Substrate into the Microfluidic Chip and Completion of the Fabrication
2.4. The Experimental Setup
2.5. Experimental Protocol
2.6. Spectra and Data Processing
2.7. Gas Chromatography-Mass Spectroscopy
3. Results
3.1. SERS Spectra of Tcp-Comparison of Sers Substrates SK307 with Klarite 312
3.2. Influence of Dissolved Salt on the TCP SERS Signal from SK307
3.3. Influence of pH on the TCP SERS Signal from SK307
3.4. Measurement of Submillimolar Concentrations of TCP and a Simulated Sampling
3.5. Other Analytes
3.6. Retention of TCP in the Microfluidic System
4. Discussion
4.1. Using the Microfluidic SERS Detector with SK307 for Environmental Monitoring
4.2. Gradual Loss of the SERS Signal over Time
Author Contributions
Funding
Conflicts of Interest
References
- Wachsmann-Hogiu, S.; Weeks, T.; Huser, T. Chemical analysis in vivo and in vitro by Raman spectroscopy - from single cells to humans. Curr. Opin. Biotechnol. 2009, 20, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Paudel, A.; Raijada, D.; Rantanen, J. Raman spectroscopy in pharmaceutical product design. Adv. Drug Deliv. Rev. 2015, 89, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Mallick, B.; Lakshmanna, A.; Radhalakshmi, V.; Umapathy, S. Design and development of stimulated Raman spectroscopy apparatus using a femtosecond laser system. Curr. Sci. 2008, 95, 1551–1559. [Google Scholar]
- Smekal, A. Zur quantentheorie der dispersion. Naturwissenschaftliche 1923, 11, 873–875. [Google Scholar] [CrossRef]
- Raman, C.V.; Krishnan, K.S. A new type of secondary radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Duyne, R.P.V. Surface Raman spectroelectrochemistry: Part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfaces Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Creighton, J.A.; Blatchford, C.G.; Albrecht, M.G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 1979, 75, 790–798. [Google Scholar] [CrossRef]
- Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999, 99, 2957–2976. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Duyne, R.P.V. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Xu, H.; Aizpurua, J.; Kall, M.; Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 2000, 62, 4318–4324. [Google Scholar] [CrossRef]
- Yu, X.; Cai, H.; Zhang, W.; Li, X.; Pan, N.; Luo, Y.; Wang, X.; Hou, J.G. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano 2011, 5, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.J.; Lin, M.; Hu, Z.; Li, H. Evaporation-controlled chemical enhancement of SERS using a soft polymer substrate. Chem. Commun. (Camb.) 2009, 41, 6246–6248. [Google Scholar] [CrossRef] [PubMed]
- Hakonen, A.; Svedendahl, M.; Ogier, R.; Yang, Z.J.; Lodewijks, K.; Verre, R.; Shegai, T.; Andersson, P.O.; Kall, M. Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography. Nanoscale 2015, 7, 9405–9410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, S.A. Plasmonic field enhancement and SERS in the effective mode volume picture. Opt. Express 2006, 14, 1957–1964. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.C.; Reader-Harris, P.; Mazilu, M.; Mariggio, S.; Corda, D.; Di Falco, A. Reproducible surface-enhanced Raman quantification of biomarkers in multicomponent mixtures. ACS Nano 2014, 8, 2575–2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, M.D.; Khadka, S.; Craig, G.A.; Mason, M.D. Effect of local heating on the SERS efficiency of optically trapped prismatic nanoparticles. J. Phys. Chem. C 2008, 112, 11751–11757. [Google Scholar] [CrossRef]
- Hakonen, A.; Wang, F.C.; Andersson, P.O.; Wingfors, H.; Rindzevicius, T.; Schmidt, M.S.; Soma, V.R.; Xu, S.; Li, Y.Q.; Boisen, A.; et al. Hand-held femtogram detection of hazardous picric acid with hydrophobic Ag nanopillar SERS substrates and mechanism of elasto-capillarity. ACS Sens. 2017, 2, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Hakonen, A.; Wu, K.; Stenbek Schmidt, M.; Andersson, P.O.; Boisen, A.; Rindzevicius, T. Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers. Talanta 2018, 189, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Endo, T.; Imai, H.; Kido, M.; Jeong, H.; Ohno, Y. Effectiveness of surface enhanced Raman spectroscopy of tear fluid with soft substrate for point-of-care therapeutic drug monitoring. SPIE BiOS 2016, 97150E. [Google Scholar] [CrossRef]
- Wen, N.; Zhao, Z.; Fan, B.; Chen, D.; Men, D.; Wang, J.; Chen, J. Development of droplet microfluidics enabling high-throughput single-cell analysis. Molecules 2016, 21, 881. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; He, L. Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr. Rev. Food Sci. Food Saf. 2014, 13, 317–328. [Google Scholar] [CrossRef]
- Zhou, Q.; Meng, G.; Liu, J.; Huang, Z.; Han, F.; Zhu, C.; Kim, D.J.; Kim, T.; Wu, N. A hierarchical nanostructure-based surface-enhanced Raman scattering sensor for preconcentration and detection of antibiotic pollutants. Adv. Mat. Technol. 2017, 2, 1700028. [Google Scholar] [CrossRef]
- White, I.M.; Yazdi, S.H.; Yu, W.W. Optofluidic SERS: Synergizing photonics and microfluidics for chemical and biological analysis. Microfluid. Nanofluid. 2012, 13, 205–216. [Google Scholar] [CrossRef]
- Yazdi, S.H.; White, I.M. Multiplexed detection of aquaculture fungicides using a pump-free optofluidic SERS microsystem. Analyst 2013, 138, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jing, N.; Chou, I.H.; Cote, G.L.; Kameoka, J. An optofluidic device for surface enhanced Raman spectroscopy. Lab Chip 2007, 7, 630–632. [Google Scholar] [CrossRef] [PubMed]
- Parisi, J.; Su, L.; Lei, Y. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing. Lab Chip 2013, 13, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.; Ye, J. Reproducibility in surface-enhanced Raman spectroscopy. J. Shanghai Jiaotong Univ. (Sci.) 2014, 19, 681–690. [Google Scholar] [CrossRef]
- Reyer, A.; Prinz, A.; Giancristofaro, S.; Schneider, J.; Bertoldo Menezes, D.; Zickler, G.; Bourret, G.R.; Musso, M.E. Investigation of mass-produced substrates for reproducible surface-enhanced Raman scattering measurements over large areas. ACS Appl. Mat. Interfaces 2017, 9, 25445–25454. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, P.; Kurumbang, N.P.; Bendl, J.; Brezovsky, J.; Prokop, Z.; Damborsky, J. Maximizing the efficiency of multienzyme process by stoichiometry optimization. ChemBioChem. 2014, 15, 1891–1895. [Google Scholar] [CrossRef] [PubMed]
- Kurumbang, N.P.; Dvorak, P.; Bendl, J.; Brezovsky, J.; Prokop, Z.; Damborsky, J. Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant. ACS Synth. Biol. 2014, 3, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, P.; Bidmanova, S.; Damborsky, J.; Prokop, Z. Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane. Environ. Sci. Technol. 2014, 48, 6859–6866. [Google Scholar] [CrossRef] [PubMed]
- Perney, N.M.B.; Baumberg, J.J.; Zoorob, M.E.; Charlton, M.D.B.; Mahnkopf, S.; Netti, C.M. Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering. Opt. Express 2006, 14, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, L.S.; Piazzetta, M.H.O.; Duarte-Junior, G.F.; Coltro, W.K.T.; Carrilho, E.; Gobbi, A.L.; Lima, R.S. Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices. Sci. Rep. 2016, 6, 26032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIlvaine, T.C. A buffer solution for colorimetric comparison. J. Biol. Chem. 1921, 49, 183–186. [Google Scholar]
- Brandt, N.N.; Brovko, O.O.; Chikishev, A.Y.; Paraschuk, O.D. Optimization of the rolling-circle filter for Raman background subtraction. Appl. Spectrosc. 2006, 60, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.T.; Haes, A.J. Impacts of pH and intermolecular interactions on surface-enhanced Raman scattering chemical enhancements. J. Phys. Chem. C 2018, 122, 14846–14856. [Google Scholar] [CrossRef]
- Bi, L.; Wang, Y.; Yang, Y.; Li, Y.; Mo, S.; Zheng, Q.; Chen, L. Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform. ACS Appl. Mater. Interf. 2018, 10, 15381–15387. [Google Scholar] [CrossRef] [PubMed]
- Hardy, M.; Doherty, M.D.; Krstev, I.; Maier, K.; Moller, T.; Muller, G.; Dawson, P. Detection of low-concentration contaminants in solution by exploiting chemical derivatization in surface-enhanced Raman spectroscopy. Anal. Chem. 2014, 86, 9006–9012. [Google Scholar] [CrossRef] [PubMed]
- Thorbjornsrud, J.; Ellestad, O.; Klaboe, P.; Torgrimsen, T. Substituted propanes: VI. the vibrational spectra and conformations of 1,3-dichloro-, 1,3-bromochloro-, 1,3-dibromo- and 1,3-diiodo-propane. J. Mol. Struct. 1973, 15, 61–76. [Google Scholar] [CrossRef]
- Pavlova, M.; Klvana, M.; Prokop, Z.; Chaloupkova, R.; Banas, P.; Otyepka, M.; Wade, R.C.; Tsuda, M.; Nagata, Y.; Damborsky, J. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat. Chem. Biol. 2009, 5, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, P.; Chrast, L.; Nikel, P.I.; Fedr, R.; Soucek, K.; Sedlackova, M.; Chaloupkova, R.; de Lorenzo, V.; Prokop, Z.; Damborsky, J. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(de3) carrying a synthetic metabolic pathway. Microb. Cell. Factories 2015, 14, 201. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, P.; Nikel, P.I.; Damborsky, J.; de Lorenzo, V. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol. Adv. 2017, 35, 845–866. [Google Scholar] [CrossRef]
- Huang, W.; Jing, Q.; Du, Y.; Zhang, B.; Meng, X.; Sun, M.; Schanze, K.S.; Gao, H.; Xu, P. An in situ SERS study of substrate-dependent surface plasmon induced aromatic nitration. J. Mater. Chem. C 2015, 3, 5285–5291. [Google Scholar] [CrossRef]
- Ankudze, B.; Pakkanen, T.T. Gold nanoparticle decorated Au-Ag alloy tubes: A bifunctional substrate for label-free and in situ surface-enhanced Raman scattering based reaction monitoring. Appl. Surf. Sci. 2018, 453, 341–349. [Google Scholar] [CrossRef]
- Oo, S.Z.; Charlton, M.D.B.; Eustace, D.; Chen, R.Y.; Pearce, S.J.; Pollard, M.E. Optimization of SERS enhancement from nanostructured metallic substrate based on arrays of inverted rectangular pyramids and investigation of effect of lattice non-symmetry. Proc. SPIE 2012, 8234, 8234–8237. [Google Scholar] [CrossRef]
- Fukami, K.; Chourou, M.L.; Miyagawa, R.; Munoz Noval, A.; Sakka, T.; Manso-Silvan, M.; Martin-Palma, R.J.; Ogata, Y.H. Gold nanostructures for surface-enhanced Raman spectroscopy, prepared by electrodeposition in porous silicon. Materials 2011, 4, 791–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandarenka, H.V.; Girel, K.V.; Zavatski, S.A.; Panarin, A.; Terekhov, S.N. Progress in the development of SERS-active substrates based on metal-coated porous silicon. Materials 2018, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Mullen, K.; Carron, K. Adsorption of chlorinated ethylenes at 1-octadecanethiol-modified silver surfaces. Anal. Chem. 1994, 66, 478–483. [Google Scholar] [CrossRef]
- Storey, J.M.E.; Shelton, R.D.; Barber, T.E.; Wachter, E.A. Electrochemical SERS detection of chlorinated hydrocarbons in aqueous solutions. Appl. Spectrosc. 1994, 48, 1265–1271. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilát, Z.; Kizovský, M.; Ježek, J.; Krátký, S.; Sobota, J.; Šiler, M.; Samek, O.; Buryška, T.; Vaňáček, P.; Damborský, J.; et al. Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips. Sensors 2018, 18, 3212. https://doi.org/10.3390/s18103212
Pilát Z, Kizovský M, Ježek J, Krátký S, Sobota J, Šiler M, Samek O, Buryška T, Vaňáček P, Damborský J, et al. Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips. Sensors. 2018; 18(10):3212. https://doi.org/10.3390/s18103212
Chicago/Turabian StylePilát, Zdeněk, Martin Kizovský, Jan Ježek, Stanislav Krátký, Jaroslav Sobota, Martin Šiler, Ota Samek, Tomáš Buryška, Pavel Vaňáček, Jiří Damborský, and et al. 2018. "Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips" Sensors 18, no. 10: 3212. https://doi.org/10.3390/s18103212
APA StylePilát, Z., Kizovský, M., Ježek, J., Krátký, S., Sobota, J., Šiler, M., Samek, O., Buryška, T., Vaňáček, P., Damborský, J., Prokop, Z., & Zemánek, P. (2018). Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips. Sensors, 18(10), 3212. https://doi.org/10.3390/s18103212