Abstract
Surface-enhanced Raman spectroscopy (SERS) is an intense ongoing hot topic because it is an attractive tool for sensing or detecting molecules in trace amounts. Despite its high specificity and sensitivity, the SERS technique has not been established as a routine analytic method most likely due to the low reproducibility of the SERS signal. This review considers the influence factors to produce the poor reproducibility during the SERS measurement. This review starts with the discussion of calculation of surface-enhanced Raman intensity in order to explain the reason why it is so difficult to achieve a high reproducibility of SERS measurement from the origin of enhancement mechanism. Then we focus on the fabrication of SERS substrates generally including two types: ➀ single particles and ➁ arrays on substrate that are directly used to detect molecules or other components. In addition, we discuss the molecule factors and optical system for the reproducibility for sample-to-sample or spot-to-spot on a substrate. In the final part of this review, some effects resulting in the irreproducibility of Raman bands’ position from recent literatures are discussed.
Similar content being viewed by others
References
Moskovits M. Surface-enhanced spectroscopy [J]. Reviews of Modern Physics, 1985, 57(3): 783–826.
Otto A, Mrozek I, Grabhorn H, et al. Surfaceenhanced Raman scattering [J]. Journal of Physics: Condensed Matter, 1992, 4(5): 1143–1212.
Tian Z Q. Surface-enhanced Raman spectroscopy: Advancements and applications [J]. Journal of Raman Spectroscopy, 2005, 36(6–7): 466–470.
Viets C, Hill W. Single-fibre surface-enhanced Raman sensors with angled tips [J]. Journal of Raman Spectroscopy, 2000, 31(7): 625–631.
Brown R J C, Milton MJ T. Analytical techniques for trace element analysis: An overview [J]. Trends in Analytical Chemistry, 2005, 24(3): 266–274.
Brown R J C, Milton MJ T. Developments in accurate and traceable chemical measurements [J]. Chemical Society Reviews, 2007, 36(6): 904–913.
Brown R J C, Yardley R E, Brown A S, et al. Analytical methodologies with very low blank levels: Implications for practical and empirical evaluations of the limit of detection [J]. Analytical Letters, 2006, 39(6): 1229–1241.
Qu L L, Li D W, Xue J Q, et al. Batch fabrication of disposable screen printed SERS arrays [J]. Lab on a Chip, 2012, 12(5): 876–881.
Kang T, Yoo S M, Yoon I, et al. Au nanowireonfilm SERRS sensor for ultrasensitive Hg2+ detection [J]. Chemistry: A European Journal, 2011, 17(7): 2211–2214.
Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS) [J]. Physical Review Letters, 1997, 78(9): 1667–1671.
Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J]. Science, 1997, 275(5303): 1102–1106.
Pettinger B. Single-molecule surface-and tipenhanced Raman spectroscopy [J]. Molecular Physics, 2010, 108(16): 2039–2059.
Lu X, Rycenga M, Skrabalak S E, et al. Chemical synthesis of novel plasmonic nanoparticles [J]. Annual review of Physical Chemistry, 2009, 60(1):167–192.
Le Ru E C, Etchegoin P G. Quantifying SERS enhancements [J]. MRS Bulletin, 2013, 38(8): 631–640.
Motl N E, Smith A F, Desantis C J, et al. Engineering plasmonic metal colloids through composition and structural design [J]. Chemical Society Reviews, 2014, 43(11): 3823–3834.
Ye J, Wen F, Sobhani H, et al. Plasmonic nanoclusters: Near field properties of the Fano resonance interrogated with SERS [J]. Nano Letters, 2012, 12(3): 1660–1667.
Meyer S A, Le Ru E C, Etchegoin P G. Quantifying resonant Raman cross sections with SERS [J]. The Journal of Physical Chemistry A, 2010, 114(17): 5515–5519.
Banholzer M J, Millstone J E, Qin L, et al. Rationally designed nanostructures for surface-enhanced Raman spectroscopy [J]. Chemical Society Reviews, 2008, 37(5): 885–897.
Ko H, Singamaneni S, Tsukruk V V. Nanostructured surfaces and assemblies as SERS media [J]. Small, 2008, 4(10): 1576–1599.
Caldwell J D, Glembocki O, Bezares F J, et al. Plasmonic nanopillar arrays for large-area, highenhancement surface-enhanced Raman scattering sensors [J]. ACS Nano, 2011, 5(5): 4046–4055.
Lin XM, Cui Y, Xu Y H, et al. Surface-enhanced Raman spectroscopy: Substrate-related issues [J]. Analytical and Bioanalytical Chemistry, 2009, 394(7): 1729–1745.
Abu Hatab N A, Oran J M, Sepaniak M J. Surfaceenhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing [J]. ACS Nano, 2008, 2(2): 377–385.
Mcfarland A D, Young M A, Dieringer J A, et al. Wavelength-scanned surface-enhanced Raman excitation spectroscopy [J]. The Journal of Physical Chemistry B, 2005, 109(22): 11279–11285.
Brolo A G, Arctander E, Gordon R, et al. Nanohole-enhanced Raman scattering [J]. Nano Letters, 2004, 4(10): 2015–2018.
Zhang X, Zhao J, Whitney A V, et al. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarkerr detection [J]. Journal of the American Chemical Society, 2006, 128(31): 10304–10309.
Yang S, Hricko P J, Huang P H, et al. Superhydrophobic surface enhanced Raman scattering sensing using Janus particle arrays realized by sitespecific electrochemical growth [J]. Journal of Materials Chemistry C, 2014, 2(3): 542–547.
Lee Y J, Schade N B, Sun L, et al. Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics [J]. ACS Nano, 2013, 7(12): 11064–11070.
Lim D K, Jeon K S, Hwang J H, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap [J]. Nature Nanotechnology, 2011, 6(7): 452–460.
Bohren C F, Huffman D R. Absorption and scattering of light by small particles [M]. New York: Wiley, 1983: 82–129.
Ye J, Van Dorpe P. Plasmonic behaviors of gold dimers perturbed by a single nanoparticle in the gap [J]. Nanoscale, 2012, 4(22): 7205–7211.
Luo Y, Aubry A, Pendry J. Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: A transformation optics approach [J]. Physical Review B, 2011, 83(15): 155422.
Ye J, Van Dorpe P. Improvement of figure of merit for gold nanobar array plasmonic sensors [J]. Plasmonics, 2011, 6(4): 665–671.
Ye J, Van Dorpe P. Nanocrosses with highly tunable double resonances for near-infrared surface-enhanced Raman scattering [J]. International Journal of Optics, 2012, 2012: 745982.
Jin J M. The finite element method in electromagnetics [M]. New York, USA: Wiley, 2002.
Li L. Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors [J]. Journal of Optics A: Pure and Applied Optics, 2003, 5(4): 345–355.
Xia Y, Xiong Y, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? [J]. Angewandte Chemie International Edition, 2009, 48(1): 60–103.
Brown K R, Walter D G, Natan M J. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape [J]. Chemistry of Materials, 2000, 12(2): 306–313.
Cialla D, März A, Böhme R, et al. Surfaceenhanced Raman spectroscopy (SERS): Progress and trends [J]. Analytical and Bioanalytical Chemistry, 2012, 403(1): 27–54
Jin R, Egusa S, Scherer N F. Thermally-induced formation of atomic Au clusters and conversion into nanocubes [J]. Journal of the American Chemical Society, 2004, 126(32): 9900–9901.
Mclellan J M, Li Z Y, Siekkinen A R, et al. The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization [J]. Nano Letters, 2007, 7(4): 1013–1017.
Fang J, Liu S, Li Z. Polyhedral silver mesocages for single particle surface-enhanced Raman scattering-based biosensor [J]. Biomaterials, 2011, 32(21): 4877–4884.
Kim J H, Kang T, Yoo S M, et al. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering [J]. Nanotechnology, 2009, 20(23): 235302.
Alexander T A. Applications of surface-enhanced raman spectroscopy (SERS) for biosensing: An analysis of reproducible, commercially available substrates [J]. Proceedings of SPIE, 2005, 6007: 600703.
Camden J P, Dieringer J A, Zhao J, et al. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing [J]. Accounts of Chemical Research, 2008, 41(12): 1653–1661.
Brown R J C, Milton M J T. Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS) [J]. Journal of Raman Spectroscopy, 2008, 39(10): 1313–1326.
Ebbesen T W, Lezec H, Ghaemi H, et al. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature, 1998, 391(6668): 667–669.
Najiminaini M, Vasefi F, Kaminska B, et al. Nanohole-array-based device for 2D snapshot multispectral imaging [J]. Scientific Reports, 2013, 3(2589):02589.
Tellez G A C, Hassan S, Tait R N, et al. Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing [J]. Lab on a Chip, 2013, 13: 2541–2546.
Chang S H, Gray S K, Schatz G C. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films [J]. Optics Express, 2005, 13(8): 3150–3165.
Gordon R, Brolo A, Mckinnon A, et al. Strong polarization in the optical transmission through elliptical nanohole arrays [J]. Physical Review Letters, 2004, 92(3): 037401.
Tetz K A, Pang L, Fainman Y. High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance [J]. Optics Letters, 2006, 31(10): 1528–1530.
Yu Q, Guan P, Qin D, et al. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays [J]. Nano Letters, 2008, 8(7): 1923–1928.
Yasukuni R, Ouhenia-Ouadahi K, Boubekeur-Lecaque L, et al. Silica-coated gold nanorod arrays for nanoplasmonics devices [J]. Langmuir, 2013, 29(41): 12633–12637.
Lanterbecq D, Van Deun R, Morarescu R, et al. Resonance secondary radiation enhanced by quadrupole mode of plasmonic arrays [J]. Optics Communications, 2013, 308: 152–158.
Gopinath A, Boriskina S V, Reinhard B M, et al. Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS) [J]. Optics Express, 2009, 17(5): 3741–3753.
Etchegoin P G, Le Ru E C. A perspective on single molecule SERS: Current status and future challenges [J]. Physical Chemistry Chemical Physics, 2008, 10(40): 6079–6089.
Park W H, Kim Z H. Charge transfer enhancement in the SERS of a single molecule [J]. Nano Letters, 2010, 10(10): 4040–4048.
Ward D R, Grady N K, Levin C S, et al. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy [J]. Nano Letters, 2007, 7(5): 1396–1400.
Zuloaga J, Prodan E, Nordlander P. Quantum description of the plasmon resonances of a nanoparticle dimer [J]. Nano Letters, 2009, 9(2): 887–891.
Cho W J, Kim Y, Kim J K. Ultrahigh-density array of silver nanoclusters for SERS Substrate with high sensitivity and excellent reproducibility [J]. ACS Nano, 2012, 6(1): 249–255.
Halvorson R A, Vikesland P J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses [J]. Environmental Science & Technology, 2010, 44(20): 7749–7755.
Sriram S, Bhaskaran M, Chen S, et al. Influence of electric field on SERS: Frequency effects, intensity changes, and susceptible bonds [J]. Journal of the American Chemical Society, 2011, 134(10): 4646–4653.
Gao X, Davies J P, Weaver M J. Test of surface selection rules for surface-enhanced Raman scattering: The orientation of adsorbed benzene and monosubstituted benzenes on gold [J]. Journal of Physical Chemistry, 1990, 94(17): 6858–6864.
Moskovits M, Suh J S. Surface selection rules for surface-enhanced Raman spectroscopy: Calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver [J]. Journal of Physical Chemistry, 1984, 88(23): 5526–5530.
Le Ru E C, Meyer S, Artur C, et al. Experimental demonstration of surface selection rules for SERS on flat metallic surfaces [J]. Chemical Communications, 2011, 47(13): 3903–3905.
Chen T, Wang H, Chen G, et al. Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints [J]. ACS Nano, 2010, 4(6): 3087–3094.
Etchegoin P G, Lacharmoise P D, Le Ru E C. Influence of photostability on single-molecule surface enhanced Raman scattering enhancement factors [J]. Analytical Chemistry, 2008, 81(2): 682–688.
Takahashi M, Niwa M, Ito M. Vibrational frequency shifts of adsorbed pyridazine on a silver electrode studied by SERS [J]. Journal of Physical Chemistry, 1987, 91(1): 11–14.
Yaghobian F, Korn T, Schüller C. Frequency shift in graphene-enhanced Raman signal of molecules [J]. ChemPhysChem, 2012, 13(18): 4271–4275.
Yano T A, Verma P, Saito Y, et al. Pressureassisted tip-enhanced Raman imaging at a resolution of a few nanometres [J]. Nature Photonics, 2009, 3(8): 473–477.
Meléndez-Pagán Y, Ben-Amotz D. Intermolecular forces and bond length changes in high-pressure fluids: Vibrational spectroscopic measurement and generalized perturbed hard fluid analysis [J]. The Journal of Physical Chemistry B, 2000, 104(32): 7858–7866.
Kho K W, Dinish U S, Kumar A, et al. Frequency shifts in SERS for biosensing [J]. ACS Nano, 2012, 6(6): 4892–4902.
Author information
Authors and Affiliations
Corresponding author
Additional information
Foundation item: the National Natural Science Foundation of China (No. 21375087) and the Natural Science Foundation of Shanghai (No. 13ZR1422100)
Rights and permissions
About this article
Cite this article
Xiong, M., Ye, J. Reproducibility in surface-enhanced Raman spectroscopy. J. Shanghai Jiaotong Univ. (Sci.) 19, 681–690 (2014). https://doi.org/10.1007/s12204-014-1566-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12204-014-1566-7
Key words
- surface-enhanced Raman spectroscopy (SERS)
- reproducibility
- Raman intensity
- Raman shift
- plasmonic nanoparticle