III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range
<p>(<b>a</b>) Schematic of two silicon photonic configurations to realize an integrated on-chip mid-infrared absorption spectroscopy sensor. Broadband source and spectrometer, best suited for liquid and solid analytes; (<b>b</b>) Tunable single mode laser source for trace gas detection.</p> "> Figure 2
<p>Transparent window of silicon and silicon dioxide, and emission wavelength coverage of semiconductor lasers based on different III–V active regions. InP-based type-I, type-II and GaSb-based type-I quantum well (QW) diode lasers, GaSb-based interband cascade lasers (ICLs), and QCLs are included.</p> "> Figure 3
<p>(<b>a</b>) Schematic drawing and (<b>b</b>) scanning electron microscopy (SEM) image of the cross section of a heterogeneously integrated III–V-on-silicon type-II active device.</p> "> Figure 4
<p>(<b>a</b>) Schematic of an InP-based type-II DFB laser heterogeneously integrated on a silicon waveguide, the simulated mode intensity distribution in different sections is also included; (<b>b</b>) simulated coupling efficiency of a 180 μm long III–V/silicon SSC as a function of the III–V taper tip width. The inset figure shows the fundamental mode intensity evolution of the SSC with 0.5 μm wide III–V taper tip; (<b>c</b>) calculated coupling strength of the DFB grating as a function of the DVS-BCB thickness for three different etch depths (150, 180, 210 nm) in the 400 nm silicon device layer.</p> "> Figure 5
<p>(<b>a</b>) Continuous-wave (CW) light-current-voltage (L-I-V) curve of a III–V-on-silicon DFB laser with grating period of 348 nm; (<b>b</b>) emission spectrum of the DFB laser driven with 190 mA bias current at 10 °C.</p> "> Figure 6
<p>(<b>a</b>) Evolution of the DFB laser emission spectrum with increasing heat-sink temperature under 190 mA bias current, (<b>b</b>) with increasing bias current at 5 °C. The inset figure shows the dependence of the lasing wavelength on (<b>a</b>) temperature and (<b>b</b>) bias current at 5 °C, 10 °C, 15 °C; (<b>c</b>) direct TDLAS measurement of CO and the corresponding HITRAN spectrum.</p> "> Figure 7
<p>(<b>a</b>) Emission spectra of six 1000 μm-long DFB lasers with different silicon grating period in an array; (<b>b</b>) evolution of the emission spectrum with bias current for four 700 μm long DFB lasers with different III–V waveguide widths in an array.</p> "> Figure 8
<p>(<b>a</b>) Schematic of an adiabatically-coupled photodetector integrated on a silicon waveguide; (<b>b</b>) mode intensity distribution in a longitudinal cross section of the III–V/silicon taper taking the active region absorption into account; (<b>c</b>) schematic cross-section of a grating-assisted III–V-on-silicon photodetector.</p> "> Figure 9
<p>(<b>a</b>) I-V curve of the heterogeneously integrated adiabatic-taper-based photodetector in the dark, the inset shows the dark current of the device from −1 V to 0 V; (<b>b</b>) I-V curve of the photodetector under different waveguide-coupled input powers at a wavelength of 2.35 μm.</p> "> Figure 10
<p>Schematic of a GaSb/silicon hybrid external cavity laser.</p> "> Figure 11
<p>(<b>a</b>) Amplified spontaneous emission coupled from the GaSb-based SLD to a silicon waveguide; (<b>b</b>) superimposed spectra of the hybrid laser by thermally tuning only one MRR; (<b>c</b>) both MRRs and (<b>d</b>) phase shifter.</p> "> Figure 12
<p>(<b>a</b>) Microscope image of a 2.3 μm silicon arrayed waveguide grating (AWG) spectrometer; the measured spectral responses of all the channels in three AWGs operating at different wavelengths: (<b>b</b>) 2.3 μm; (<b>c</b>) 3.3 μm and (<b>d</b>) 3.8 μm.</p> "> Figure 13
<p>Transmission of four different SOI AWGs operating in the 3.3 μm wavelength range with different channel spacing. The insertion loss (2–3 dB) and crosstalk levels (20–21 dB) are indicated by the dashed lines. The high-resolution (50 GHz) AWG can be used as a mid-infrared DFB laser array multiplexer.</p> "> Figure 14
<p>(<b>a</b>) Microscope image of the 2.3 μm AWG spectrometer integrated with a InP-based type-II quantum well photodetector array; (<b>b</b>) wire bonded III–V-on-silicon AWG spectrometers on a PCB; (<b>c</b>) photo-response of the 2.3 μm AWG and (<b>d</b>) 3.8 μm III–V-on-silicon AWG spectrometer.</p> "> Figure 15
<p>Schematic of the photo-thermal sensing principle. A modulated mid-infrared pump beam is absorbed by the analyte which causes a local temperature change of the microring waveguide. The thermo-optic effect changes the effective index of the waveguide mode, hereby changing the resonance wavelength λ<sub>res</sub> of the microring. For a given fixed probe wavelength λ<sub>probe</sub>, the change in λ<sub>res</sub> produces a change in probe power ΔP<sub>probe</sub> which is measured using a near-infrared detector. The absorption spectrum of the analyte can be reconstructed by scanning the pump wavelength and recording the maximum probe modulation ΔP<sub>probe,max</sub>.</p> "> Figure 16
<p>Microscope image of the SOI MRR suspended on BOX membrane with AZ5214 photoresist as mock-up analyte: (<b>a</b>) top and (<b>b</b>) bottom view; (<b>c</b>) The measured photo-thermal signal is scaled to calculate the absorption coefficient of the analyte and is compared to FTIR measurement. The FTIR signal is collected in reflection at the Brewster angle and TM polarization and is used with the formula in the inset to estimate the absorption coefficient; (<b>d</b>) A tilted SEM image with false coloring shows the various regions of the PIC; (<b>e</b>) A schematic cross section of the suspended MRR is given.</p> "> Figure 17
<p>Schematic of a possible free-space measurement configuration. The probe and pump sources flood-illuminate the chip from a certain distance, e.g., 30 cm. The SOI-chip is capped with a reflective or absorbing second layer (e.g., gold-coated silicon) with spacers (not shown in schematic). Small apertures (uncoated areas of the capping layer) are aligned on top of the MRR and the input/output ports of the probe. The probe signal is collected by a near-IR camera.</p> ">
Abstract
:1. Introduction
2. Mid-Infrared Silicon Photonic Integrated Circuits
3. III–V-on-Silicon Platform for the 2 μm Wavelength Range
3.1. Heterogeneously Integrated 2.3 μm Range Distributed Feedback Lasers and Laser Arrays
3.2. III–V-on-Silicon Photodetectors in the 2 μm Wavelength Range
4. GaSb/Silicon Hybrid External Cavity Laser
5. Mid-Infrared AWG Spectrometers in the 2–4 μm Wavelength Range
6. On-Chip Mid-Infrared Photothermal Spectroscopy
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vivien, L.; Pavesi, L. (Eds.) Handbook of Silicon Photonics; Taylor & Francis: Didcot, UK; Abingdon, UK, 2013. [Google Scholar]
- Miller, D.A.B. Device requirements for optical interconnects to silicon chips. IEEE Proc. 2009, 97, 1166–1185. [Google Scholar] [CrossRef]
- Robinson, J.T.; Chen, L.; Lipson, M. On-chip gas detection in silicon optical microcavities. Opt. Express 2008, 16, 4296–4301. [Google Scholar] [CrossRef] [PubMed]
- Stievater, T.H.; Pruessner, M.W.; Park, D.; McGill, R.R.A.; Kozak, D.A.; Furstenberg, R.; Holmstrom, S.A.; Khurgin, J.B. Trace gas absorption spectroscopy using functionalized microring resonators. Opt. Lett. 2014, 39, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Yebo, N.A.; Sree, S.P.; Levrau, E.; Detavernier, C.; Hens, Z.; Martens, J.A.; Baets, R. Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator. Opt. Express 2012, 20, 11855–11862. [Google Scholar] [CrossRef] [PubMed]
- Kindt, J.T.; Luchansky, M.S.; Qavi, A.J.; Lee, S.H.; Bailey, R.C. Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy. Anal. Chem. 2013, 85, 10653–10657. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Chakravarty, S.; Zou, Y.; Chen, R.T. Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing. Opt. Lett. 2012, 37, 1208–1210. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Segers, P.; Dirckx, J.; Baets, R. On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement. Biomed. Opt. Express 2013, 4, 1229–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryckeboer, E.; Bockstaele, R.; Vanslembrouck, M.; Baets, R. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip. Biomed. Opt. Express 2014, 5, 1636–1648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.J.; Tombez, L.; Orcutt, J.; Kamlapurkar, S.; Wysocki, G.; Green, W.M. Silicon Photonic On-chip Trace-gas Spectroscopy of Methane. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016; p. SF2H.1. [Google Scholar]
- Rothman, L.; Gordon, I.; Babikov, Y.; Barbe, A.; Benner, D.C.; Bernath, P.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.; et al. The HITRAN 2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef] [Green Version]
- Geiser, P. New Opportunities in Mid-Infrared Emission Control. Sensors 2015, 15, 22724–22736. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24. [Google Scholar] [CrossRef]
- Petrich, W. Mid-infrared and Raman spectroscopy for medical diagnostics. Appl. Spectrosc. Rev. 2001, 36, 181–237. [Google Scholar] [CrossRef]
- Mizaikoff, B. Waveguide-enhanced mid-infrared chem/bio sensors. Chem. Soc. Rev. 2013, 42, 8683–8699. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Lin, P.T.; Patel, N.; Lin, H.; Li, L.; Zou, Y.; Deng, F.; Ni, C.; Hu, J.; Giammarco, J.; et al. Mid-infrared materials and devices on a Si platform for optical sensing. Sci. Technol. Adv. Mater. 2014, 15. [Google Scholar] [CrossRef] [PubMed]
- Mashanovich, G.Z.; Gardes, F.Y.; Thomson, D.J.; Hu, Y.; Li, K.; Nedeljkovic, M.; Soler Penades, J.; Khokhar, A.Z.; Mitchell, C.J.; Stankovic, S.; et al. Silicon photonic waveguides and devices for near- and mid-IR applications. IEEE J. Sel. Top. Quantum Electron. 2015, 21. [Google Scholar] [CrossRef] [Green Version]
- Hu, J. Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. Opt. Express 2010, 18, 22174–22186. [Google Scholar] [CrossRef] [PubMed]
- Gaiduk, A.; Yorulmaz, M.; Ruijgrok, P.V.; Orrit, M. Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 2010, 330, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Stievater, T.H.; Papanicolaou, N.A.; Bass, R.; Rabinovich, W.S.; McGill, R.A. Micromechanical photothermal spectroscopy of trace gases using functionalized polymers. Opt. Lett. 2012, 37, 2328–2330. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Cao, Y.; Yang, F.; Ho, H.L. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, P.; Cognet, L.; Lounis, B. Photothermal microscopy: Optical detection of small absorbers in scattering environments. J. Microsc. 2014, 254, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Heylman, K.D.; Knapper, K.A.; Goldsmith, R.H. Photothermal microscopy of nonluminescent single particles enabled by optical microresonators. J. Phys. Chem. Lett. 2014, 5, 1917–1923. [Google Scholar] [CrossRef] [PubMed]
- Patimisco, P.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Quartz-enhanced photoacoustic spectroscopy: A review. Sensors 2014, 14, 6165–6206. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, V.; Patimisco, P.; Borri, S.; Scamarcio, G.; Bernacki, B.E.; Kriesel, J. Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation. Opt. Lett. 2012, 37, 4461–4463. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.E.-J.; Song, J.; Fang, Q.; Li, C.; Tu, C.; Duan, N.; Chen, K.K.; Tern, R.P.-C.; Liow, T.-Y. Review of silicon photonics foundry effects. IEEE J. Sel. Top. Quantum Electron. 2014, 20. [Google Scholar] [CrossRef]
- Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495–497. [Google Scholar] [CrossRef]
- Xia, Y.; Qiu, C.Y.; Zhang, X.Z.; Gao, W.L.; Shu, J.; Xu, Q.F. Suspended Si Ring Resonator for Mid-IR Application. Opt. Lett. 2013, 38, 1122–1124. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.T.; Singh, V.; Cai, Y.; Kimerling, L.C.; Agarwal, A. Air-clad silicon pedestal structures for broadband mid-infrared microphotonics. Opt. Lett. 2013, 7, 1031–1033. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, Z.; Xu, K.; Tsang, H.K.; Xu, J.B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891. [Google Scholar] [CrossRef]
- Miller, S.; Griffith, A.; Yu, M.; Gaeta, A.; Lipson, M. Low-Loss Air-Clad Suspended Silicon Platform for Mid-Infrared Photonics. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016; p. STu3Q.6. [Google Scholar]
- Penades, J.S.; Ortega-Moñux, A.; Nedeljkovic, M.; Wangüemert-Pérez, J.G.; Halir, R.; Khokhar, A.Z.; Alonso-Ramos, C.; Qu, Z.; Molina-Fernández, I.; Cheben, P.; et al. Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding. Opt. Express 2016, 24, 22908–22916. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Yu, M.; Ji, X.; Griffith, A.; Cardenas, J.; Gaeta, A.; Lipson, M. Low-loss silicon platform for broadband mid-infrared photonics. Optica 2017, 7, 707–712. [Google Scholar] [CrossRef]
- Lin, P.T.; Kwok, S.W.; Lin, H.-Y.G.; Singh, V.; Kimerling, L.C.; Whitesides, G.M.; Agarwal, A. Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing. Nano Lett. 2014, 14, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Scullion, M.G.; Krauss, T.F.; di Falco, A. Slotted photonic crystal sensors. Sensors 2013, 13, 3675–3710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.; Lin, P.; Singh, V.; Kimerling, L.; Hu, J.; Richardson, K.; Agarwal, A.; Tan, D.T.H. On-chip mid-infrared gas detection using chalcogenide glass waveguide. Appl. Phys. Lett. 2016, 108. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, H.; Hu, J.; Li, M. Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing. ACS Nano 2014, 8, 6955–6961. [Google Scholar] [CrossRef] [PubMed]
- Hattasan, N.; Kuyken, B.; Leo, F.; Ryckeboer, E.; Vermeulen, D.; Roelkens, G. High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared. IEEE Photonics Technol. Lett. 2012, 24, 1536–1538. [Google Scholar] [CrossRef] [Green Version]
- Nedeljkovic, M.; Khokhar, A.Z.; Hu, Y.; Chen, X.; Penades, J.S.; Stankovic, S.; Chong, H.M.H.; Thomson, D.J.; Gardes, F.Y.; Reed, G.T.; et al. Silicon photonic devices and platforms for the mid-infrared. Opt. Mater. Express 2013, 3, 1205–1214. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.; Shutts, S.; Elliott, S.N.; Sobiesierski, A.; Seeds, A.J.; Ross, I.; et al. Electrically Pumped Continuous-Wave III–V Quantum Dot Lasers on Silicon. Nat. Photonics 2016, 10, 307–311. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, B.; Pantouvaki, M.; Guo, W.; Absil, P.; Van Campenhout, J.; Merckling, C.; Van Thourhout, D. Room-Temperature InP Distributed Feedback Laser Array Directly Grown on Silicon. Nat. Photonics 2015, 9, 837–842. [Google Scholar] [CrossRef]
- Lischke, S.; Knoll, D.; Mai, C.; Zimmermann, L.; Peczek, A.; Kroh, M.; Trusch, A.; Krune, E.; Voigt, K.; Mai, A. High bandwidth, high responsivity waveguide-coupled germanium p-i-n photodiode. Opt. Express 2015, 23, 27213–27220. [Google Scholar] [CrossRef] [PubMed]
- Roelkens, G.; Abassi, A.; Cardile, P.; Dave, U.; De Groote, A.; De Koninck, Y.; Fu, X.; Gassenq, A.; Hattasan, N.; Huang, Q.; et al. III–V-on-Silicon Photonic Devices for Optical Communication and Sensing. Photonics 2015, 2, 969–1004. [Google Scholar] [CrossRef] [Green Version]
- Komljenovic, T.; Davenport, M.; Hulme, J.; Liu, A.Y.; Santis, C.T.; Spott, A.; Srinivasan, S.; Stanton, E.J.; Zhang, C.; Bowers, J.E. Heterogeneous Silicon Photonic Integrated Circuits. J. Lightwave Technol. 2016, 34, 20–35. [Google Scholar] [CrossRef]
- Ohashi, K.; Nishi, K.; Shimizu, T.; Nakada, M.; Fujikata, J.; Ushida, J.; Torii, S.; Nose, K.; Mizuno, M.; Yukawa, H.; et al. On-chip optical interconnect. Proc. IEEE 2009, 97, 1186–1198. [Google Scholar] [CrossRef]
- Yao, Y.; Hoffman, A.J.; Gmachl, C.F. Mid-Infrared Quantum Cascade Lasers. Nat. Photonics 2012, 6, 432–439. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Weih, R.; Kamp, M.; Meyer, J.R.; Canedy, C.L.; Kim, C.S.; Kim, M.; Bewley, W.W.; Merritt, C.D.; Abell, J.; et al. Interband cascade lasers. J. Phys. D Appl. Phys. 2015, 48, 123001. [Google Scholar] [CrossRef]
- Ye, N.; Gleeson, M.R.; Sadiq, M.U.; Roycroft, B.; Robert, C.; Yang, H.; Zhang, H.; Morrissey, P.E.; Mac Suibhne, N.; Thomas, K.; et al. InP-based active and passive components for communication systems at 2 μm. J. Lightwave Technol. 2015, 33, 971–975. [Google Scholar] [CrossRef]
- Sprengel, S.; Grasse, C.; Wiecha, P.; Andrejew, A.; Gruendl, T.; Boehm, G.; Meyer, R.; Amann, M.-C. InP-Based Type-II Quantum-Well Lasers and LEDs. IEEE J. Sel. Top. Quantum Electron. 2013, 19. [Google Scholar] [CrossRef]
- Gaimard, Q.; Triki, M.; Nguyen-Ba, T.; Cerutti, L.; Boissier, G.; Teissier, R.; Baranov, A.; Rouillard, Y.; Vicet, A. Distributed feedback GaSb based laser diodes with buried grating: A new field of single-frequency sources from 2 to 3 μm for gas sensing applications. Opt. Express 2015, 23, 19118–19128. [Google Scholar] [CrossRef] [PubMed]
- Spott, A.; Peters, J.; Davenport, M.L.; Stanton, E.J.; Merritt, C.D.; Bewley, W.W.; Vurgaftman, I.; Kim, C.S.; Meyer, J.R.; Kirch, J.; et al. Quantum cascade laser on silicon. Optica 2016, 3, 545–551. [Google Scholar] [CrossRef]
- Spott, A.; Davenport, M.L.; Peters, J.; Bovington, J.; Heck, M.J.R.; Stanton, E.J.; Vurgaftman, I.; Meyer, J.R.; Bowers, J. Heterogeneously integrated 2.0 μm CW hybrid silicon lasers at room temperature. Opt. Lett. 2015, 40, 1480–1483. [Google Scholar] [CrossRef] [PubMed]
- Volet, N.; Spott, A.; Stanton, E.J.; Davenport, M.L.; Chang, L.; Peters, J.D.; Briles, T.C.; Vurgaftman, I.; Meyer, J.R.; Bowers, J. Semiconductor optical amplifiers at 2.0-μm wavelength on silicon. Laser Photonics Rev. 2017, 11. [Google Scholar] [CrossRef]
- Boehm, G.; Grau, M.; Dier, O.; Windhorn, K.; Roenneberg, E.; Rosskopf, J.; Shau, R.; Meyer, R.; Ortsiefer, M.; Amann, M.C. Growth of InAs-containing quantum wells for InP-based VCSELs emitting at 2.3 μm. J. Cryst. Growth 2007, 301, 941–944. [Google Scholar] [CrossRef]
- Sprengel, S.; Veerabathran, G.; Andrejew, A.; Köninger, A.; Boehm, G.; Grasse, C.; Amann, M.C. InP-based type-II heterostructure lasers for wavelengths up to 2.7 μm. Proceedings of SPIE Photonics West, Novel In-Plane Semiconductor Lasers XIV (SPIE, 2015), San Francisco, CA, USA, 7–12 February 2015; p. 93820U. [Google Scholar]
- Grasse, C.; Wiecha, P.; Gruendl, T.; Sprengel, S.; Meyer, R.; Amann, M.C. InP-based 2.8–3.5 μm resonant-cavity light emitting diodes based on type-II transitions in GaInAs/GaAsSb heterostructures. Appl. Phys. Lett. 2012, 101. [Google Scholar] [CrossRef]
- Wang, R.; Sprengel, S.; Muneeb, M.; Boehm, G.; Baets, R.; Amann, M.C.; Roelkens, G. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits. Opt. Express 2015, 23, 26834–26841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Sprengel, S.; Boehm, G.; Muneeb, M.; Baets, R.; Amann, M.C.; Roelkens, G. 2.3 μm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit. Opt. Express 2016, 24, 21081–21089. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sprengel, S.; Malik, A.; Vasiliev, A.; Boehm, G.; Baets, R.; Amann, M.C.; Roelkens, G. Heterogeneously integrated III–V-on-silicon 2.3× μm distributed feedback lasers based on a type-II active region. Appl. Phys. Lett. 2016, 109. [Google Scholar] [CrossRef]
- Zeller, W.; Naehle, L.; Fuchs, P.; Gerschuetz, F.; Hildebrandt, L.; Koeth, J. DFB Lasers between 760 nm and 16 μm for Sensing Applications. Sensors 2010, 10, 2492–2510. [Google Scholar] [CrossRef] [PubMed]
- Morthier, G.; Vankwikelberge, P. Handbook of Distributed Feedback Laser Diodes; Artech House: Norwood, MA, USA, 1997. [Google Scholar]
- Wang, R.; Sprengel, S.; Boehm, G.; Baets, R.; Amann, M.C.; Roelkens, G. Broad wavelength coverage 2.3 μm III–V-on-silicon DFB laser array. Optica 2017, in press. [Google Scholar]
- Wang, R.; Muneeb, M.; Sprengel, S.; Boehm, G.; Malik, A.; Baets, R.; Amann, M.C.; Roelkens, G. III–V-on-silicon 2-μm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors. Opt. Express 2016, 24, 8480–8490. [Google Scholar] [CrossRef] [PubMed]
- Li, C.B.; Mao, R.W.; Zuo, Y.H.; Zhao, L.; Shi, W.H.; Luo, L.P.; Cheng, B.W.; Yu, J.Z.; Wang, Q.M. 1.55 μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror. Appl. Phys. Lett. 2005, 85, 2697–2699. [Google Scholar] [CrossRef]
- Wang, R.; Malik, A.; Šimonytė, I.; Vizbaras, A.; Vizbaras, K.; Roelkens, G. Compact GaSb/silicon-on-insulator 2.0× μm widely tunable external cavity lasers. Opt. Express 2016, 25, 28977–28986. [Google Scholar] [CrossRef] [PubMed]
- Mroziewicz, B. External cavity wavelength tunable semiconductor lasers—A review. Opto Electron. Rev. 2008, 16, 347–366. [Google Scholar] [CrossRef]
- Vizbaras, K.; Dvinelis, E.; Šimonytė, I.; Trinkūnas, A.; Greibus, M.; Songaila, R.; Žukauskas, T.; Kaušylas, M.; Vizbaras, A. High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range. Appl. Phys. Lett. 2015, 107. [Google Scholar] [CrossRef]
- Workman, J., Jr. (Ed.) The Handbook of Organic Compounds, Three-Volume Set: NIR, IR, R, and UV-Vis Spectra Featuring Polymers and Surfactants; Elsevier: Amsterdam, The Netherlands, 2000; Part II; p. 388, Part III, p. 24. [Google Scholar]
- Roelkens, G.; Dave, U.; Gassenq, A.; Hattasan, N.; Hu, C.; Kuyken, B.; Leo, F.; Malik, A.; Muneeb, M.; Ryckeboer, E.; et al. Silicon-based photonic integration beyond the telecommunication wavelength range. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 394–404. [Google Scholar] [CrossRef]
- Nedeljkovic, M.; Velasco, A.V.; Khokhar, A.Z.; Delage, A.; Cheben, P.; Mashanovich, G.Z. Mid-Infrared Silicon-on-Insulator Fourier-Transform Spectrometer Chip. IEEE Photonics Technol. Lett. 2016, 28, 528–531. [Google Scholar] [CrossRef]
- Florjańczyk, M.; Cheben, P.; Janz, S.; Scott, A.; Solheim, B.; Xu, D. Planar waveguide spatial heterodyne spectrometer. Proceedings of SPIE Photonics North, Photonic Design and Simulation (SPIE, 2007), Ottawa, ON, Canada, 4–7 June 2007; p. 67963J. [Google Scholar]
- Ryckeboer, E.; Gassenq, A.; Muneeb, M.; Hattasan, N.; Pathak, S.; Cerutti, L.; Rodriguez, J.B.; Tournié, E.; Bogaerts, W.; Baets, R.; et al. Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Opt. Express 2013, 5, 6101–6108. [Google Scholar] [CrossRef] [PubMed]
- Muneeb, M.; Chen, X.; Verheyen, P.; Lepage, G.; Pathak, S.; Ryckeboer, E.; Malik, A.; Kuyken, B.; Nedeljkovic, M.; van Campenhout, J.; et al. Demonstration of silicon on insulator mid-infrared spectrometers operating at 3.8 μm. Opt. Express 2013, 21, 11659–11669. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Ryckeboer, E.M.P.; Dhakal, A.; Peyskens, F.; Malik, A.; Kuyken, B.; Zhao, H.; Pathak, S.; Ruocco, A.; Groote, A.D.; et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip. Photonics Res. 2015, 5, 47–59. [Google Scholar] [CrossRef]
- Bizet, L.; Vallon, R.; Parvitte, B.; Brun, M.; Maisons, G.; Carras, M.; Zeninari, V. Multi-gas sensing with quantum cascade laser array in the mid-infrared region. Appl. Phys. B 2017, 123. [Google Scholar] [CrossRef]
- Smit, M.K.; Dam, C.K. PHASAR-based WDM devices: Principles, design, and application. IEEE J. Sel. Top. Quantum Elect. 1996, 2, 236–250. [Google Scholar] [CrossRef]
- Vasiliev, A.; Muneeb, M.; Baets, R.; Roelkens, G. High Resolution Silicon-on-Insulator Mid-Infrared Spectrometers operating at 3.3 μm. In Proceedings of the 2017 IEEE Photonics Society Summer Topical Meeting Series, San Juan, PR, USA, 10–12 July 2017. [Google Scholar]
- Muneeb, M.; Vasiliev, A.; Ruocco, A.; Malik, A.; Chen, H.; Nedeljkovic, M.; Penades, J.S.; Cerutti, L.; Rodriguez, J.B.; Mashanovich, G.Z.; et al. III–V-on-silicon integrated micro-spectrometer for the 3 μm wavelength range. Opt. Express 2016, 24, 9465–9472. [Google Scholar] [CrossRef] [PubMed]
- Spott, A.; Stanton, E.J.; Volet, N.; Peters, J.D.; Meyer, J.R.; Bowers, J.E. Heterogeneous Integration for Mid-Infrared Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2017. [Google Scholar] [CrossRef]
- Vasiliev, A.; Malik, A.; Muneeb, M.; Kuyken, B.; Baets, R.; Roelkens, G. On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators. ACS Sens. 2016, 1, 1301–1307. [Google Scholar] [CrossRef]
- Lin, H.; Yi, Z.; Hu, J. Double Resonance 1-D Photonic Crystal Cavities for Single-Molecule Mid-Infrared Photothermal Spectroscopy: Theory and Design. Opt. Lett. 2012, 37, 1304–1306. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Vasiliev, A.; Muneeb, M.; Malik, A.; Sprengel, S.; Boehm, G.; Amann, M.-C.; Šimonytė, I.; Vizbaras, A.; Vizbaras, K.; et al. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range. Sensors 2017, 17, 1788. https://doi.org/10.3390/s17081788
Wang R, Vasiliev A, Muneeb M, Malik A, Sprengel S, Boehm G, Amann M-C, Šimonytė I, Vizbaras A, Vizbaras K, et al. III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range. Sensors. 2017; 17(8):1788. https://doi.org/10.3390/s17081788
Chicago/Turabian StyleWang, Ruijun, Anton Vasiliev, Muhammad Muneeb, Aditya Malik, Stephan Sprengel, Gerhard Boehm, Markus-Christian Amann, Ieva Šimonytė, Augustinas Vizbaras, Kristijonas Vizbaras, and et al. 2017. "III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range" Sensors 17, no. 8: 1788. https://doi.org/10.3390/s17081788
APA StyleWang, R., Vasiliev, A., Muneeb, M., Malik, A., Sprengel, S., Boehm, G., Amann, M. -C., Šimonytė, I., Vizbaras, A., Vizbaras, K., Baets, R., & Roelkens, G. (2017). III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range. Sensors, 17(8), 1788. https://doi.org/10.3390/s17081788