III-V-on-Silicon Photonic Devices for Optical Communication and Sensing
<p>III-V on silicon heterogeneous integration process flow (reproduced from [<a href="#B1-photonics-02-00969" class="html-bibr">1</a>]).</p> "> Figure 2
<p>Step-by-step typical process flow for heterogeneously integrated III-V on Si devices.</p> "> Figure 3
<p>(<b>a</b>) Double adiabatic tapered coupler; (<b>b</b>) Simulated power transmission and reflection at the taper tip as a function of III-V taper tip width; (<b>c</b>) Tri-sectional tapered coupler. Reproduced from [<a href="#B9-photonics-02-00969" class="html-bibr">9</a>] and [<a href="#B10-photonics-02-00969" class="html-bibr">10</a>].</p> "> Figure 4
<p>(<b>a</b>) Schematic view of grating coupler interface between Si waveguide circuit and III-V photodetector (<b>b</b>) Simulation example of grating based coupling to a III-V photodetector. Design B has antireflection coating while Design A does not (reproduced from [<a href="#B13-photonics-02-00969" class="html-bibr">13</a>]).</p> "> Figure 5
<p>(<b>a</b>) Output on chip as function of the input power on chip. (<b>b</b>) Gain as function of input power for different injection current. (<b>c</b>) Noise figure of the amplifier as function of on-chip input power for different injection currents. (<b>d</b>) Gain as function of output power on-chip in gain-clamped operation.</p> "> Figure 6
<p>(<b>a</b>) Layout of the distributed feedback laser structure. (<b>b</b>) SEM device cross-section of the fabricated devices.</p> "> Figure 7
<p>(<b>a</b>) Small signal response at different bias currents and large signal eye diagram at 28 Gbps with 2.1 dB extinction ratio using 2<sup>11</sup>-1 pattern length (inset). (<b>b</b>) bit error ratio (BER) measurements for back-to-back and 2 km DSSMF configuration. Reproduced from [<a href="#B26-photonics-02-00969" class="html-bibr">26</a>].</p> "> Figure 8
<p>Schematic layout of complex hybrid III-V silicon tunable and multi-frequency lasers. (<b>a</b>) Some basic building blocks in our tool box, including a III-V on silicon hybrid amplifier, a standard and high reflection DBR-mirror, a tunable ring resonator and an integrated wavelength multiplexer. (<b>b</b>) Different implementations for tunable lasers. (<b>c</b>) A multi-frequency laser.</p> "> Figure 9
<p>Spectral response of hybrid III-V silicon lasers. (<b>a</b>) tunable laser (from [<a href="#B8-photonics-02-00969" class="html-bibr">8</a>]) (<b>b</b>) AWG-based multi-frequency laser (from [<a href="#B27-photonics-02-00969" class="html-bibr">27</a>]).</p> "> Figure 10
<p>(<b>a</b>) Cross section of a III-V-on-silicon DFB laser and asymmetric dual-mode DFB laser. (<b>b</b>) Optical output spectrum of asymmetric DFB laser at different injection currents. (<b>c</b>) Electrical output spectrum of UTC-photodiode illuminated by the dual wavelength laser showing an instantaneous linewidth of 4.2 MHz. (<b>d</b>) Integrated trace of electrical signal over thirty seconds. Reproduced from [<a href="#B38-photonics-02-00969" class="html-bibr">38</a>].</p> "> Figure 11
<p>Layout of the different III-V-on-silicon mode-locked laser cavity designs: (<b>a</b>) A linear cavity colliding pulse geometry; (<b>b</b>) A ring cavity geometry; (<b>c</b>) The linear cavity anti-colliding pulse geometry.</p> "> Figure 12
<p>(<b>a</b>) High resolution optical spectrum (bandwidth: 20 MHz) of the linear cavity colliding pulse mode-locked laser. (<b>b</b>) Wide span electrical spectrum of the generated pulse train of the anti-colliding pulse MLL. (<b>c</b>) Linewidth of the fundamental RF tone of the anti-colliding pulse MLL. Reproduced from [<a href="#B41-photonics-02-00969" class="html-bibr">41</a>,<a href="#B42-photonics-02-00969" class="html-bibr">42</a>].</p> "> Figure 13
<p>(<b>a</b>) Schematic view of an InP microdisk laser heterogeneously integrated onto SOI. (<b>b</b>) SEM picture of the device cross section. Reproduced from [<a href="#B44-photonics-02-00969" class="html-bibr">44</a>].</p> "> Figure 14
<p>Measured BER curves at 10 Gbps, before and after regeneration with a microdisk laser. Reproduced from [<a href="#B50-photonics-02-00969" class="html-bibr">50</a>]. © 2013 IEEE</p> "> Figure 15
<p>Large signal modulation response of a full optical link based on a microdisk laser, an SOI waveguide and a heterogeneously integrated photodetector for a 10 Gbps 2<sup>7</sup>-1 PRBS pattern. Reproduced from [<a href="#B52-photonics-02-00969" class="html-bibr">52</a>]. © 2013 IEEE</p> "> Figure 16
<p>(<b>a</b>) Longitudinal cross-section of the resonant cavity mirror laser. (<b>b</b>) Transversal cross section of the electrically pumped device. Reproduced from [<a href="#B53-photonics-02-00969" class="html-bibr">53</a>,<a href="#B54-photonics-02-00969" class="html-bibr">54</a>].</p> "> Figure 17
<p>(<b>a</b>) Schematic cross-section of the oxide-confined hybrid-cavity VCSEL. (<b>b</b>) Measured light-current-voltage characteristics for hybrid-cavity VCSELs with oxide aperture diameters of 3–9 μm. Inset: laser spectrum for a 7 μm aperture VCSEL operated at 3.0 mA. Reproduced from [<a href="#B55-photonics-02-00969" class="html-bibr">55</a>].</p> "> Figure 18
<p>(<b>a</b>) Schematic diagram of the chip layout. (<b>b</b>) top-view of the III-V on silicon EAMs. Reproduced from [<a href="#B56-photonics-02-00969" class="html-bibr">56</a>].</p> "> Figure 19
<p>(<b>a</b>) Bias dependent normalized transmission of each channel. (<b>b</b>–<b>f</b>) Optical eye diagrams at 20 Gbps for each channel. Reproduced from [<a href="#B56-photonics-02-00969" class="html-bibr">56</a>].</p> "> Figure 20
<p>Illustration of superluminescent LED comprised of four band gaps connected to a silicon waveguide circuit. Reproduced from [<a href="#B60-photonics-02-00969" class="html-bibr">60</a>].</p> "> Figure 21
<p>(<b>a</b>) On-chip spectra when pumping the different sections of the superluminescent LED. The dashed, dash-dotted, solid and dotted lines indicate the section at 1300 nm, 1380 nm, 1460 nm and 1540 nm respectively. (<b>b</b>) On-chip spectrum when pumping the different sections of the superluminescent LED differently to maximize optical bandwidth. The pumping currents were 70 mA, 50 mA, 300 mA and 140 mA for the sections at 1300 nm, 1380 nm, 1460 nm and 1540 nm respectively. Reproduced from [<a href="#B60-photonics-02-00969" class="html-bibr">60</a>].</p> "> Figure 22
<p>(<b>a</b>) Illustration of an optically pumped membrane LED. (inset) SEM image of the fabricated device. (<b>b</b>) Measured spectra of an optically pumped LED (50 μm device length; green: in transmission; blue: in reflection). Reproduced from [<a href="#B61-photonics-02-00969" class="html-bibr">61</a>].</p> "> Figure 23
<p>(<b>a</b>) The supercontinuum spectra at the output of 2 mm long waveguides of widths 800 nm, 790 nm, 770 nm, 760 nm, 700 nm and 650 nm respectively from top to bottom. Individual spectra have been displaced by 40 dB for clarity. Dispersive waves can be observed at the ends of the spectra for all the waveguides. (<b>b</b>) The simulated dispersion profiles of the waveguides showing the ZDWs on either side of the pump wavelength at 1550 nm. (<b>c</b>) The experimental octave-spanning supercontinuum for the 700 nm wide waveguide with arrows showing the position dispersive waves. (<b>d</b>) The simulated evolution of the supercontinuum spectrum along the waveguide propagation length, which matches well with the experimental spectrum shown in (<b>c</b>). Reproduced from [<a href="#B73-photonics-02-00969" class="html-bibr">73</a>].</p> "> Figure 24
<p>(<b>a</b>) Measured transmission spectra of short-wave infrared AWG [<a href="#B82-photonics-02-00969" class="html-bibr">82</a>]. (<b>b</b>) Measured transmission spectra from a mid-infrared PCG [<a href="#B83-photonics-02-00969" class="html-bibr">83</a>].</p> "> Figure 25
<p>(<b>a</b>) Microscope image of a silicon AWG after integration of GaInAsSb photodetectors. (<b>b</b>) Measured photoresponse of this III-V-on-silicon spectrometer. Reproduced from [<a href="#B15-photonics-02-00969" class="html-bibr">15</a>].</p> "> Figure 26
<p>(<b>a</b>) I-V curve of the photodiodes without light input, the inset picture shows the band structure of one period of the “W”-shaped quantum well. (<b>b</b>) Wavelength dependence of the fiber-referred responsivity of type-II photodiodes (inset: fiber-to-chip grating coupler efficiency). Reproduced from [<a href="#B89-photonics-02-00969" class="html-bibr">89</a>].</p> ">
Abstract
:1. Introduction
2. III-V-on-Silicon Integration Technology
2.1. Adhesive Die-to-Wafer Bonding and Wafer-to-Wafer Bonding Technology
2.2. III-V on Si Device Processing Technology
3. Optical Coupling between the III-V Device Layer and the Silicon Waveguide Layer
3.1. Adiabatic Taper Interface
3.2. Grating Coupler Interfaces
4. III-V-on-Silicon Devices for Optical Communication Applications
4.1. III-V-on-Silicon Laser Sources for Optical Communication Applications
4.1.1. 1550 nm Semiconductor Optical Amplifiers Integrated on Silicon Photonic Integrated Circuits
4.1.2. 1550 nm Distributed Feedback Lasers Integrated on Silicon Photonic Integrated Circuits
4.1.3. 1550 nm Tunable and Multi-Wavelength Lasers Integrated on Silicon PICs
4.1.4. 1550 nm Distributed Feedback Dual Wavelength Laser Sources for THz Signal Generation
4.1.5. 1550 nm Mode-Locked Lasers
Method | Self-Colliding [41] | Ring [41] | Anti-Colliding [42] |
---|---|---|---|
10 dB optical bandwidth (nm) | >10 | 7 | 3.5 |
Pulse width (ps) | 1.5 | - | 3 |
3 dB electrical line width (kHz) | 12 | 16 | 1.7 |
Integrated timing jitter (50 kHz–10 MHz) (ps) | 2.65 | 1.65 | 2.8 |
Threshold current (mA) | 40 | 50 | 30 |
Output power at thermal roll-over (mW) | 0.2–0.3 | 0.04–0.08 | 8–10 |
4.1.6. III-V-on-Silicon Microlasers
1550 nm Microdisk Lasers
1550 nm Resonant Cavity Mirror Lasers
850 nm VCSEL Integration
4.2. III-V-on-Silicon Electro-Absorption Modulators for Optical Communication Applications
5. III-V-on-Silicon Devices for Optical Sensing Applications
5.1. III-V-on-Silicon Broadband Light Sources for Optical Sensing Applications
5.1.1. Superluminescent LEDs
5.1.2. Power-Efficient Single Spatial Mode LEDs
5.1.3 Supercontinuum Generation in a III-V on Silicon Waveguide Structure
5.2. III-V-on-Silicon Spectrometers for Optical Sensing Applications
5.2.1. Passive Integrated Spectrometers
Device/Technology | Central Wavelength (μm) | Footprint (mm2) | No of Channels/Channel Spacing (nm) | FSR (nm) | Insertion Loss (dB) | Crosstalk (dB) |
---|---|---|---|---|---|---|
AWG/SOI [79] | 1.55 | 0.231 | 16/3.2 | 57.6 | <3.0 | >25.0 |
AWG/Si3N4 [80] | 0.89 | 0.337 | 12/2 | 30 | <1.5 | >20.0 |
S-AWG/SOI [81] | 1.55 | 0.079 | 4/30 | 144 | <2.0 | >19.0 |
AWG/SOI [14] | 2.20 | 1.000 | 6/1.6 | 13 | <3.0 | >17.0 |
AWG/SOI [82] | 2.37 | 0.439 | 7/5 | 50 | <3.0 | >25.0 |
AWG/SOI [83] | 3.80 | 0.858 | 6/10 | 80 | <2.0 | >20.0 |
PCG/SOI [14] | 1.55 | 0.269 | 8/6.5 | 100 | <1.5 | >20.0 |
PCG/SOI [14] | 2.32 | 1.040 | 8/5 | 60 | <6.0 | >15.0 |
PCG/SOI [83,84] | 3.80 | 3.060 | 8/10 | 105 | <2.0 | >20.0 |
5.2.2. GaSb-Based Photodetector Integration
5.2.3. InP-Based Photodetector Integration
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Tanaka, S.; Akiyama, T.; Sekiguchu, S.; Morito, K. Silicon photonics optical transmitter technology for Tb/s-class I/O co-packaged with CPU. FUJUTSI Sci. Technol. J. 2014, 50, 123–131. [Google Scholar]
- Komljenovic, T.; Srinivasan, S.; Norberg, E.; Davenport, M.; Fish, G.; Bowers, J. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 1–9. [Google Scholar] [CrossRef]
- Jhang, Y.; Tanabe, K.; Iwamoto, S.; Arakawa, Y. InAs/GaAs quantum dot lasers on silicon-on-insulator substrated by metal-stripe wafer bonding. IEEE Photon. Technol. Lett. 2015, 27, 875–878. [Google Scholar] [CrossRef]
- Keyvaninia, S.; Muneeb, M.; Stankovic, S.; van Veldhoven, R.; van Thourhout, D.; Roelkens, G. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt. Mater. Express 2013, 3, 35–46. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, B.; Paladugu, M.; Pantouvaki, M.; Le Thomas, N.; Merckling, C.; Guo, W.; Dekoster, J.; van Campenhout, J.; Absil, P.; et al. Polytypic InP nano-laser monolithically integrated on (001) silicon. Nano Lett. 2013, 13, 5063–5069. [Google Scholar] [CrossRef] [PubMed]
- Love, J.D.; Henry, W.M.; Stewart, W.J.; Black, R.J.; Lacroix, S.; Gonthier, F. Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria. IEE Proc. J. 1991, 138, 343–354. [Google Scholar] [CrossRef]
- Lamponi, M.; Keyvaninia, S.; Jany, C.; Poingt, F.; Lelarge, F.; de Valicourt, G.; Roelkens, G.; van Thourhout, D.; Messaoudene, S.; Fedeli, J.-M.; et al. Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler. IEEE Photon. Technol. Lett. 2012, 24, 76–78. [Google Scholar] [CrossRef]
- Keyvaninia, S.; Roelkens, G.; van Thourhout, D.; Jany, C.; Lamponi, M.; Le Liepvre, A.; Lelarge, F.; Make, D.; Duan, G.-H.; Bordel, D.; et al. Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser. Opt. Express 2013, 21, 3784–3792. [Google Scholar] [CrossRef] [PubMed]
- Keyvaninia, S.; Verstuyft, S.; van Landschoot, L.; Lelarge, F.; Duan, G.H.; Messaoudene, S.; Fedeli, J.-M.; de Vries, T.; Smalbrugge, B.; Geluk, E.J.; et al. Heterogeneously integrated III-V/silicon distributed feedback lasers. Opt. Lett. 2013, 38, 5434–5437. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Cheng, J.; Liu, L.; Tang, Y.; He, S. Ultracompact tapered coupler for the Si/III-V heterogeneous integration. Appl. Opt. 2015, 54, 4327–4332. [Google Scholar] [CrossRef] [PubMed]
- Roelkens, G.; Brouckaert, J.; Taillaert, D.; Dumon, P.; Bogaerts, W.; van Thourhout, D.; Baets, R. Integration of InP/InGaAsP photodetectors onto Silicon-on-Insulator waveguide circuits. Opt. Express 2005, 13, 10102–10108. [Google Scholar] [CrossRef] [PubMed]
- Van Thourhout, D.; Roelkens, G.; Baets, R.; Bogaerts, W.; Brouckaert, J.; Debackere, P.; Dumon, P.; Scheerlinck, S.; Schrauwen, J.; Taillaert, D.; et al. Coupling mechanisms for a heterogeneous silicon nanowire platform. Semicond. Sci. Technol. 2008, 23. [Google Scholar] [CrossRef]
- Gassenq, A.; Hattasan, N.; Ryckeboer, E.; Rodriguez, J.B.; Cerutti, L.; Tournié, E.; Roelkens, G. Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip. Opt. Express 2012, 20, 11665–11672. [Google Scholar] [CrossRef] [PubMed]
- Ryckeboer, E.; Gassenq, A.; Muneeb, M.; Hattasan, N.; Pathak, S.; Cerutti, L.; Rodriguez, J.B.; Tournié, E.; Bogaerts, W.; Baets, R.; et al. Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. Opt. Express 2013, 5, 6101–6108. [Google Scholar] [CrossRef] [PubMed]
- Muneeb, M.; Ruocco, A.; Malik, A.; Pathak, S.; Ryckeboer, E.; Sanchez, D.; Cerutti, L.; Rodriguez, J.B.; Tournié, E.; Bogaerts, W.; et al. Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring. Opt. Express 2014, 22, 27300–27308. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Bowers, J.E. A hybrid AlGaInAs-silicon evanescent amplifier. Photon. Technol. Lett. 2007, 19, 230–232. [Google Scholar] [CrossRef]
- Park, H.; Bowers, J.E. A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector. Opt. Express 2007, 15, 13539–13546. [Google Scholar] [CrossRef] [PubMed]
- Heck, M.J.; Bowers, J.E. Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quantum Electron. 2013, 19. [Google Scholar] [CrossRef]
- Cheung, S.; Yoo, S.B. Theory and design optimization of energy-efficient hydrophobic wafer-bonded III-V/Si hybrid semiconductor optical amplifiers. J. Lightwave Technol. 2013, 31, 4057–4066. [Google Scholar] [CrossRef]
- Keyvaninia, S.; Roelkens, G.; van Thourhout, D. A highly efficient electrically pumped optical amplifier integrated on a SOI waveguide circuit. In Proceedings of the IEEE 9th International Conference on Group IV Photonics (GFP), San Diego, CA, USA, 29–31 August 2012.
- Sakaino, G.; Takiguchi, T.; Sakuma, H.; Watatani, C.; Nagira, T.; Suzuki, D.; Aoyagi, T.; Ishikawa, T. 25.8 Gbps direct modulation of BH AlGaInAs DFB lasers with p-InP substrate for low driving current. In Proceedings of the International Semiconductor Laser Conference, Kyoto, Japan, 26–30 September 2010; pp. 197–198.
- Nakamura, N.; Shimada, M.; Sakaino, G.; Nagira, T.; Yamaguchi, H.; Okunuki, Y.; Sugitatsu, A.; Takemi, M. 25.8 Gbps direct modulation AlGaInAs DFB lasers of low power consumption and wide temperature range operation for data center. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 22–26 March 2015.
- Matsuo, S.; Fujii, T.; Hasebe, K.; Takeda, K.; Sato, T.; Kakitsuka, T. Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer. Opt. Express 2014, 22, 12139–12147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Srinivasan, S.; Tang, Y.; Heck, M.J.R.; Davenport, M.L.; Bowers, J.E. Low threshold and high speed short cavity distributed feedback hybrid silicon lasers. Opt. Express 2014, 22, 10202–10209. [Google Scholar] [CrossRef] [PubMed]
- De Valicourt, G.; Levaufre, G.; Pointurier, Y.; Liepvre, A.L.; Antona, J.C.; Jany, C.; Accard, A.; Lelarge, F.; Make, D.; Duan, G.H. Direct modulation of hybrid-integrated InP/Si transmitters for short and long reach access network. J. Lightwave Technol. 2015, 33, 1608–1616. [Google Scholar] [CrossRef]
- Abbasi, A.; Verbist, J.; van Kerrebrouck, J.; Lelarge, F.; Duan, G.H.; Roelkens, G.; Morthier, G. 28 Gb/s Direct Modulation Heterogeneously Integrated InP/Si DFB Laser. ECOC 2015, in press. [Google Scholar]
- Keyvaninia, S.; Verstuyft, S.; Pathak, S.; Lelarge, F.; Duan, G.; Bordel, D.; Fedeli, J.M.; de Vries, T.; Smalbrugge, B.; Bolk, J.; et al. III-V-on-silicon multi-frequency lasers. Opt. Express 2013, 21, 13675–13683. [Google Scholar] [CrossRef] [PubMed]
- Keyvaninia, S.; Verstuyft, S.; Lelarge, F.; Duan, G.-H.; Messaoudene, S.; Fedeli, J.M.; de Vries, T.; Smalbrugge, B.; Bolk, J.; Smit, M.; et al. Heterogeneously integrated III-V/Si single mode laser based on a MMI-ring combination and triplet-ring reflectors. SPIE Microtechnol. 2013. [Google Scholar] [CrossRef] [Green Version]
- Duan, G.; Olivier, S.; Stephane, M.; Accard, A.; Kaspar, P.; de Valicourt, G.; Levaufre, G.; Girard, N.; Le Liepvre, A.; Shen, A.; et al. New advances on heterogeneous integration of III-V on Silicon. J. Lightwave Technol. 2015, 33, 976–983. [Google Scholar] [CrossRef]
- Duan, G.; Jany, C.; Le Liepvre, A.; Provost, J.G.; Make, D.; Lelarge, F.; Lamponi, M.; Poingt, F.; Fedeli, J.M.; Messaoudene, S.; et al. 10 Gb/s integrated tunable hybrid III-V/Si laser and silicon MZ modulator. In Proceedings of the 38th European Conference and Exhibition on Optical Communication, Amsterdam, the Netherlands, 16–20 September 2012.
- Song, H.J.; Nagatsuma, T. Present and future of terahertz communications. Terahertz Sci. Technol. 2011, 1, 256–263. [Google Scholar] [CrossRef]
- Ducourneau, G.; Lampin, J.F. THz Communications using photonics and electronic devices: The race to data-rate. J. Infrared Millim. Terahertz Waves 2015, 36, 198–220. [Google Scholar] [CrossRef]
- Seeds, A.J.; Renaud, C.C. TeraHertz photonics for wireless communications. J. Lightwave Technol. 2015, 33, 579–587. [Google Scholar] [CrossRef]
- Beling, A.; Cross, A.; Piels, M.; Peters, J.; Fu, Y.; Zhou, Q.; Bowers, J.; Campbell, J. High-power high-speed waveguide photodiodes and photodiode arrays heterogeneously integrated on silicon-on-insulator. In Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Anaheim, CA, USA, 17–21 March 2013.
- Latkowski, S.; Parra-Cetina, J. Analysis of a narrowband terahertz signal generated by a unitravelling carrier photodiode coupled with a dual-mode semiconductor Fabry-Pérot laser. Appl. Phys. Lett. 2010, 96. [Google Scholar] [CrossRef]
- Lo, Y.H.; Wu, Y.C. Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser. Opt. Express 2014, 22, 13125–13137. [Google Scholar] [CrossRef] [PubMed]
- Carpintero, G.; Seeds, A.J. Microwave photonic integrated circuits for millimeter-wave wireless communications. J. Lightwave Technol. 2014, 32, 3495–3501. [Google Scholar] [CrossRef]
- Shao, H.; Roelkens, G. Heterogeneously integrated III-V/silicon dual-mode distributed feedback laser array for terahertz generation. Opt. Lett. 2014, 39, 6403–6406. [Google Scholar] [CrossRef] [PubMed]
- Oxenlowe, L.; Galili, M.; Hansen Mulvad, H.C.; Hu, H.; Areal, L.; Palushani, E.; Ji, H.; Clausen, A.T.; Jeppesen, P. Nonlinear optical signal processing for Tbit/s Ethernet applications. Int. J. Opt. 2012, 2012. [Google Scholar] [CrossRef]
- Srinivasan, S.; Davenport, M.; Heck, M.; Hutchinson, J.; Norberg, E.; Fish, G.; Bowers, J. Low phase noise hybrid silicon mode-locked lasers. Front. Optoelectron. 2014, 7, 265–276. [Google Scholar] [CrossRef]
- Keyvaninia, S.; Uvin, S.; Tassaert, M.; Fu, X.; Latkowski, S.; Mariën, J.; Thomassen, L.; Roelkens, G. Narrow-linewidth short-pulse III-V-on-silicon mode-locked lasers based on a linear and ring cavity geometry. Opt. Express 2015, 23, 3221–3229. [Google Scholar] [CrossRef] [PubMed]
- Keyvaninia, S.; Uvin, S.; Tassaert, M.; Wang, Z.; Fu, X.; Latkowski, S.; Thomassen, L.; Roelkens, G. III-V-on-silicon anti-colliding pulse-type mode-locked laser. Opt. Lett. 2015, 40, 3057–3060. [Google Scholar] [CrossRef] [PubMed]
- Javaloyes, J.; Balle, S. Anticolliding design for monolithic passively mode-locked semiconductor lasers. Opt. Lett. 2011, 36, 4407–4409. [Google Scholar] [CrossRef] [PubMed]
- Van Campenhout, J.; Rojo Romeo, P.; Regreny, P.; Seassal, C.; van Thourhout, D.; Verstuyft, S.; Di Cioccio, L.; Fedeli, J.-M.; Lagae, C.; Baets, R. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 2007, 15, 6744–6749. [Google Scholar] [CrossRef] [PubMed]
- Van Campenhout, J.; Liu, L.; Romeo, P.; van Thourhout, D.; Seassal, C.; Regreny, P.; di Cioccio, L.; Fedeli, J.M.; Baets, R. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. Photon. Technol. Lett. 2008, 20, 1345–1347. [Google Scholar] [CrossRef]
- Mechet, P.; Raineri, F.; Bazin, A.; Halioua, Y.; Spuesens, T.; Karle, T.J.; Regreny, P.; Monnier, P.; van Thourhout, D.; Sagnes, I.; et al. Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI. Opt. Express 2013, 21, 10622–10631. [Google Scholar] [CrossRef] [PubMed]
- Mezosi, G.; Strain, M.J.; Furst, S.; Wang, Z.; Sorel, M. Unidirectional bistability in AlGaInAs Microring and Microdisk Semiconductor Lasers. Photon. Technol. Lett. 2009, 21, 88–90. [Google Scholar] [CrossRef]
- Morthier, G.; Mechet, P. Theoretical analysis of unidirectional operation and reflection sensitivity of semiconductor ring or disk lasers. J. Quantum Electron. 2013, 49, 1097–1101. [Google Scholar] [CrossRef]
- Liu, L.; Kumar, R.; Huybrechts, K.; Spuesens, T.; Roelkens, G.; Geluk, E.; de Vries, T.; Regreny, P.; van Thourhout, D.; Baets, R.; et al. An ultra-small, low power all-optical flip-flop memory on a silicon chip. Nat. Photon. 2010, 4, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Mechet, P.; Spuesens, T.; Werquin, S.; Vandoorne, K.; Olivier, N.; Fedeli, J.M.; Regreny, P.; van Thourhout, D.; Roelkens, G.; Morthier, G. All-optical low-power 2R regeneration of 10 Gb/s NRZ signals using a III-V on SOI microdisk laser. IEEE Photon. J. 2013, 5. [Google Scholar] [CrossRef]
- Morthier, G.; Spuesens, T.; Mechet, P.; Roelkens, G.; van Thourhout, D. InP microdisk lasers integrated on Si for optical interconnects. Sel. Top. Quantum Electron. 2015, 21. [Google Scholar] [CrossRef]
- Spuesens, T.; Bauwelinck, J.; Regreny, P.; van Thourhout, D. Realization of a compact optical interconnect on silicon by heterogeneous integration of III–V. Photon. Technol. Lett. 2013, 25, 1332–1335. [Google Scholar] [CrossRef] [Green Version]
- De Koninck, Y.; Raineri, R.; Bazin, A.; Raj, R.; Roelkens, G.; Baets, R. Experimental demonstration of a hybrid III-V-on-silicon micro-laser based on resonant grating cavity mirrors. Opt. Lett. 2013, 38, 2496–2498. [Google Scholar] [CrossRef] [PubMed]
- De Koninck, Y.; Roelkens, G.; Baets, R. Electrically pumped 1550 nm single mode III-V-on-silicon laser with resonant grating cavity mirrors. Lasers Photon. Rev. 2015. [Google Scholar] [CrossRef]
- Haglund, E.; Kumari, S.; Westbergh, P.; Gustavsson, J.; Roelkens, G.; Baets, R.; Larsson, A. Silicon-integrated short-wavelength hybrid-cavity VCSEL. Opt. Express 2015. submitted. [Google Scholar]
- Fu, X.; Cheng, J.; Huang, Q.; Hu, Y.; Xie, W.; Tassaert, M.; Verbist, J.; Ma, K.; Zhang, J.; Chen, K.; et al. 5 × 20 Gb/s heterogeneously integrated III-V on silicon electro-absorption modulator array with arrayed waveguide grating multiplexer. Opt. Express 2015, 23, 1868–18693. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Lin, C.F.; Laih, L.; Shih, T. Extremely broadband InGaAsP/InP superluminescent diodes. Electron. Lett. 2000, 36, 2093–2095. [Google Scholar] [CrossRef]
- Song, J.; Cho, S.; Han, I.; Hu, Y.; Heim, P.; Johnson, F.; Stone, D.; Dagenais, M. High-power broad-band superluminescent diode with low spectral modulation at 1.5 um wavelength. Photon. Technol. Lett. 2000, 12, 783–785. [Google Scholar] [CrossRef]
- Kovsh, A.; Gubenko, A.; Krestnikov, I.; Livshits, D.; Mikhrin, S.; Weimert, J.; West, L.; Wojcik, G.; Yin, D.; Bornholdt, C.; et al. Quantum dot comb-laser as efficient light source for silicon photonics. SPIE Photon. Eur. 2008, 6996. [Google Scholar] [CrossRef]
- De Groote, A.; Peters, J.; Davenport, M.; Heck, M.; Baets, R.; Roelkens, G.; Bowers, J. Heterogenously integrated III-V-on-silicon multibandgap superluminescent light-emitting diode with 290 nm optical bandwidth. Opt. Lett. 2014, 39, 4784–4787. [Google Scholar] [CrossRef] [PubMed]
- De Groote, A.; Cardile, P.; Subramanian, A.; Tassaert, M.; Delbeke, D.; Baets, R.; Roelkens, G. A waveguide coupled LED on SOI by heterogeneous integration of InP-based membranes. In Proceedings of the 12th International Conference on Group IV Photonics, Vancouver, BC, Canada, 26–28 August 2015.
- Hult, J.; Watt, R.S.; Kaminski, C.F. High bandwidth absorption spectroscopy with a dispersed supercontinuum source. Opt. Express 2007, 15, 11385–11395. [Google Scholar] [CrossRef] [PubMed]
- Manninen, A.; Kääriäinen, T.; Parviainen, T.; Buchter, S.; Heiliö, M.; Laurila, T. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source. Opt. Express 2014, 22, 7172–7177. [Google Scholar] [CrossRef] [PubMed]
- Auböck, G.; Consani, C.; Monni, R.; Cannizzo, A.; van Mourik, F.; Chergui, M. Femtosecond pump/supercontinuum-probe setup with 20 kHz repetition rate. Rev. Sci. Instrum. 2012, 83, 093105–093109. [Google Scholar] [CrossRef] [PubMed]
- Lijia, Z.; Xiangjun, X.; Bo, L.; Yongjun, W.; Jianjun, Y.; Chongxiu, Y. OFDM Modulated WDM-ROF System based on PCF Supercontinuum. Opt. Express 2010, 18, 15003–15008. [Google Scholar]
- Holzwarth, R.; Udem, T.; Hänsch, T.W.; Knight, J.C.; Wadsworth, W.J.; Russell, P. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 2000, 85, 2264–2267. [Google Scholar] [CrossRef] [PubMed]
- Kuyken, B.; Ideguchi, T.; Holzner, S.; Yan, M.; Hänsch, T.W.; van Campenhout, J.; Verheyen, P.; Coen, S.; Leo, F.; Baets, R.; et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun. 2015, 6, 6310–6315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dave, U.; Uvin, S.; Kuyken, B.; Selvaraja, S.; Leo, F.; Roelkens, G. Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source. Opt. Express 2013, 21, 32032–32039. [Google Scholar] [CrossRef] [PubMed]
- Leo, F.; Gorza, S.P.; Safioui, J.; Kockaert, P.; Coen, S.; Dave, U.; Kuyken, B.; Roelkens, G. Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength. Opt. Lett. 2014, 39, 3623–3626. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, K.; Salem, R.; Fendel, P.; Foster, A.C. Coherent Mid-IR Supercontinuum Generation in a Hydrogenated Amorphous Silicon Waveguide. In Proceedings of the CLEO Science and Innovations, San Jose, CA, USA, 10–15 May 2015.
- Goto, T.; Ishizawa, A.; Kou, R.; Tsuchizawa, T.; Matsuda, N.; Hitachi, K.; Nishikawa, T.; Yamada, K.; Sogawa, T.; Gotoh, H. Octave spanning frequency comb generation in a dispersion-controlled short silicon-wire waveguide with a fiber laser oscillator. In Proceedings of the CLEO Science and Innovations, San Jose, CA, USA, 10–15 May 2015.
- Dave, U.; Kuyken, B.; Leo, F.; Gorza, S.P.; Combrie, S.; de Rossi, A.; Raineri, F.; Roelkens, G. Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range. Opt. Express 2015, 23, 4650–4657. [Google Scholar] [CrossRef] [PubMed]
- Dave, U.; Ciret, C.; Gorza, S.P.; Combrie, S.; de Rossi, A.; Raineri, F.; Roelkens, G.; Kuyken, B. Dispersive wave based octave spanning super continuum generation in InGaP membrane waveguides on a silicon substrate. Opt. Lett. 2015, 40, 3584–3587. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.M.; Genty, G.; Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 2006, 78, 1135–1184. [Google Scholar] [CrossRef]
- Yin, L.; Lin, Q.; Agrawal, G. Soliton fission and supercontinuum generation in silicon waveguides. Opt. Lett. 2007, 32, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Verheyen, P.; de Heyn, P.; Lepage, G.; de Coster, J.; Absil, P.; Roelkens, G.; van Campenhout, J. High responsivity low-voltage 28 Gb/s Ge p-i-n photodetector with silicon contacts. J. Lightwave Technol. 2015, 33, 820–824. [Google Scholar] [CrossRef]
- Smit, M.K.; van Dam, C. Phasar-based wdm-devices: Principles, design and applications. Sel. Top. Quantum Electron. 1996, 2, 236–250. [Google Scholar] [CrossRef]
- Marz, R. Integrated Optics, Design and Modeling; Artech House Inc.: Norwood, MA, USA, 1994. [Google Scholar]
- Pathak, S.; van Thourhout, D.; Bogaerts, W. Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications. Opt. Lett. 2013, 38, 2961–2964. [Google Scholar] [CrossRef] [PubMed]
- Martens, D.; Subramanian, A.; Pathak, S.; Vanslembrouck, M.; Bienstman, P.; Bogaerts, W.; Baets, R. Compact silicon nitride arrayed waveguide gratings for very near-infrared wavelengths. Photon. Technol. Lett. 2015, 27, 137–140. [Google Scholar] [CrossRef]
- Pathak, S.; Dumon, P.; van Thourhout, D.; Bogaerts, W. Comparison of AWGs and Echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonics J. 2014, 6. [Google Scholar] [CrossRef]
- Malik, A.; Muneeb, M.; Radosavljevic, S.; Nedeljkovic, M.; Penades, J.; Mashanovich, G.; Shimura, Y.; Lepage, G.; Verheyen, P.; Vanherle, W.; et al. Silicon-based photonic integrated circuits for the mid-infrared. Procedia Eng. 2015, in press. [Google Scholar]
- Muneeb, M.; Chen, X.; Verheyen, P.; Lepage, G.; Pathak, S.; Ryckeboer, E.; Malik, A.; Kuyken, B.; Nedeljkovic, M.; van Campenhout, J.; et al. Demonstration of silicon on insulator mid-infrared spectrometers operating at 3.8 μm. Opt. Express 2013, 21, 11659–11669. [Google Scholar] [CrossRef] [PubMed]
- Muneeb, M.; Chen, X.; Ryckeboer, E.; Malik, A.; Mashanovich, G.; Roelkens, G. Silicon-on-insulator mid-infrared planar concave grating based (de)multiplexer. In Proceedings of the IEEE Photonic Conference, Bellevue, WA, USA, 8–12 September 2013.
- Hattasan, N.; Gassenq, A.; Cerutti, L.; Rodriguez, J.B.; Tournié, E.; Roelkens, G. Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit. Photon. Technol. Lett. 2011, 23, 1760–1762. [Google Scholar] [CrossRef] [Green Version]
- Muneeb, M.; Ruocco, A.; Vasiliev, A.; Malik, A.; Chen, H.; Nedeljkovic, M.; Cerutti, L.; Rodriguez, J.B.; Mashanovich, G.; Tournie, E.; et al. Heterogeneous integration of InAsSb pin photodiodes on a 3 μm wavelength SOI arrayed waveguide grating spectrometer. Photon. Technol. Lett. 2015. submitted. [Google Scholar]
- Boehm, G.; Grau, M.; Dier, O.; Windhorn, K.; Roenneberg, E.; Rosskopf, J.; Shau, R.; Meyer, R.; Ortsiefer, M.; Amann, M.C. Growth of InAs- containing quantum wells for InP-based VCSELs emitting at 2.3 μm. J. Cryst. Growth 2007, 301, 941–944. [Google Scholar] [CrossRef]
- Sprengel, S.; Andrejew, A.; Vizbaras, K.; Gruendl, T.; Geiger, K.; Boehm, G.; Grasse, C.; Amann, M.C. Type-II InP-based lasers emitting at 2.5 μm. Appl. Phys. Lett. 2012, 100. [Google Scholar] [CrossRef]
- Wang, R.; Sprengel, S.; Muneeb, M.; Boehm, G.; Baets, R.; Amann, M.C.; Roelkens, G. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits. Opt. Express 2015. submitted. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roelkens, G.; Abassi, A.; Cardile, P.; Dave, U.; De Groote, A.; De Koninck, Y.; Dhoore, S.; Fu, X.; Gassenq, A.; Hattasan, N.; et al. III-V-on-Silicon Photonic Devices for Optical Communication and Sensing. Photonics 2015, 2, 969-1004. https://doi.org/10.3390/photonics2030969
Roelkens G, Abassi A, Cardile P, Dave U, De Groote A, De Koninck Y, Dhoore S, Fu X, Gassenq A, Hattasan N, et al. III-V-on-Silicon Photonic Devices for Optical Communication and Sensing. Photonics. 2015; 2(3):969-1004. https://doi.org/10.3390/photonics2030969
Chicago/Turabian StyleRoelkens, Gunther, Amin Abassi, Paolo Cardile, Utsav Dave, Andreas De Groote, Yannick De Koninck, Sören Dhoore, Xin Fu, Alban Gassenq, Nannicha Hattasan, and et al. 2015. "III-V-on-Silicon Photonic Devices for Optical Communication and Sensing" Photonics 2, no. 3: 969-1004. https://doi.org/10.3390/photonics2030969
APA StyleRoelkens, G., Abassi, A., Cardile, P., Dave, U., De Groote, A., De Koninck, Y., Dhoore, S., Fu, X., Gassenq, A., Hattasan, N., Huang, Q., Kumari, S., Keyvaninia, S., Kuyken, B., Li, L., Mechet, P., Muneeb, M., Sanchez, D., Shao, H., ... Van Thourhout, D. (2015). III-V-on-Silicon Photonic Devices for Optical Communication and Sensing. Photonics, 2(3), 969-1004. https://doi.org/10.3390/photonics2030969