Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model
<p>Location of the study area and the GF-1 image used in this study. GF-1 image parameters (RGB = G (0.52–0.59 μm), NIR (0.77–0.89 μm), and R (0.63–0.69 μm)) of the study areas in Zhuzhou, Hunan Province, China.</p> "> Figure 2
<p>General flow chart for identifying the characteristic scale in rice heavy metal stress monitoring based on the RS-WOFOST framework.</p> "> Figure 3
<p>(<b>a</b>) Statistical model between the green–blue normalized difference vegetation index (GBNDVI) derived from GF-1 image data and <span class="html-italic">in situ</span> measured leaf area index (LAI); (<b>b</b>) Schematic flowchart of the upscaling methods for LAI estimation; f is an empirical transfer function relating to the LAI and vegetation index GBNDVI<span class="html-italic"><sub>i</sub></span>. GBNDVI<span class="html-italic"><sub>i</sub></span> (<span class="html-italic">i</span> = 1, 2, 3, 4) is the high spatial resolution GBNDVI data; LAI<span class="html-italic"><sub>i</sub></span> is the corresponding LAI values; LAI<sup>exa</sup>, which is defined as the average of the LAI<span class="html-italic"><sub>i</sub></span> (<span class="html-italic">i</span> = 1, 2, 3, 4), is the exact LAI value at the coarse spatial resolution.</p> "> Figure 4
<p>(<b>a</b>) Statistics for chlorophyll (μg·cm<sup>−2</sup>), leaf area index (LAI), and dry weight of roots (WRT) (g) from field measurements; (<b>b</b>) The correlation between Cd concentrations and the physiological data for chlorophyll concentrations, LAI, and WRT per rice plant; (<b>c</b>) The correlation between Hg concentrations and the physiological data for chlorophyll concentrations, LAI, and WRT per rice plant.</p> "> Figure 5
<p>The effects of different spatial resolution (8 m, 16 m, 32 m, 64 m, 128 m, and 256 m) on WRT (dry weight of roots) estimation based on the RS-WOFOST framework of the two study areas.</p> "> Figure 6
<p>The normalized relative change of the mean, minimum, maximum, and standard deviation of WRT (dry weight of roots) as the spatial scale of LAI (leaf area index) information changed from 8 m to 16 m, 32 m, 64 m, 128 m, and 256 m in the two study areas: (<b>a</b>) Area A and (<b>b</b>) Area B.</p> "> Figure 7
<p>(<b>a</b>) Dynamic variations about the ratios of WRT (dry weight of roots) for Area A and Area B; and (<b>b</b>) the ratios of WRT (WRTA/WRTB) in the two study sites originating from the GF-1 (8 m) sensor and the aggregation of the GF-1 8 m image at coarser spatial resolutions (16 m, 32 m, 64 m, 128 m, 256 m) from various acquisition times (DOY 166, DOY 199, and DOY 240).</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Data Preparation
3. Methods
3.1. Retrieval and Spatial Aggregation of LAI from GF-1 Data
3.2. Extraction of WRT Based on the Assimilation Method
3.3. Characteristic Spatial Scales Analysis
4. Results
4.1. Sensitivity Analysis of Different Characteristics during Heavy Metal Stress
4.2. Influence of Scaling on the Representative Characteristic (WRT)
4.3. Identification of the Characteristic Scale
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fu, J.; Zhou, Q.; Liu, J.; Liu, W.; Wang, T.; Zhang, Q.; Jiang, G. High levels of heavy metals in rice (oryza sativa l.) from a typical e-waste recycling area in southeast china and its potential risk to human health. Chemosphere 2008, 71, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hang, M. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area. J. Hazard. Mater. 2009, 165, 744–750. [Google Scholar]
- Li, W.; Xu, B.; Song, Q.; Liu, X.; Xu, J.; Brookes, P.C. The identification of ‘hotspots‘ of heavy metal pollution in soil-rice systems at a regional scale in eastern china. Sci. Total Environ. 2014, 472, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Li, J. Environmental effects of heavy metals derived from the e-waste recycling activities in china: A systematic review. Waste Manag. 2014, 34, 2587–2594. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Yum, S.; Park, H.S.; Lee, T.K.; Ryu, J.C. Effects of heavy metals on antioxidants and stress-responsive gene expression in javanese medaka (oryzias javanicus). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2009, 149, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.-Y.; Zhuang, D.-F.; Pan, J.-J.; Shi, X.-Z.; Wang, H.-J. Hyper-spectral remote sensing to monitor vegetation stress. J. Soils Sediments 2008, 8, 323–326. [Google Scholar] [CrossRef]
- Rosso, P.H.; Pushnik, J.C.; Lay, M.; Ustin, S.L. Reflectance properties and physiological responses of salicornia virginica to heavy metal and petroleum contamination. Environ. Pollut. 2005, 137, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Chen, Z.; Wang, J.; Ding, J.; Yu, Y.; Li, J.; Xiao, N.; Jiang, L.; Zheng, Y.; Rimmington, G.M. Monitoring plant response to phenanthrene using the red edge of canopy hyperspectral reflectance. Mar. Pollut. Bull. 2014, 86, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, P.M.; Curran, P.J. Choosing an appropriate spatial resolution for remote sensing investigations. Photogramm. Eng. Remote Sens. 1997, 63, 1345–1351. [Google Scholar]
- McGwire, K.; Friedl, M.; Estes, J.E. Spatial structure, sampling design and scale in remotely-sensed imagery of a california savanna woodland. Int. J. Remote Sens. 1993, 14, 2137–2164. [Google Scholar] [CrossRef]
- Shen, W.; Jiang, C.; Shi, H.; Wang, C.; Li, M. Progress in soil heavy metal pollution monitoring via remote sensing technology. Remote Sens. Inf. 2014, 29, 112–117, 124. [Google Scholar]
- Quattrochi, D.A. The need for a lexicon of scale terms in integrating remote sensing data with geographic information systems. J. Geol. 1993, 92, 206–212. [Google Scholar] [CrossRef]
- Quattrochi, D.A.; Goel, N.S. Spatial and temporal scaling of thermal infrared remote sensing data. Remote Sens. Rev. 1995, 12, 255–286. [Google Scholar] [CrossRef]
- Kang, L.; Zhao, M.; Zhuang, G. Accumulation of cu as single and complex pollutants in rice. J. Agro-Environ. Sci. 2003, 22, 503–504. [Google Scholar]
- Xu, J.; Yang, L.; Wang, Y.; Wang, Z. Advances in the study uptake and accumulation of heavy metal in rice (oryza sativa) and its mechanisms. Chin. Bull. Botany 2005, 22, 614–622. [Google Scholar]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Das, P.; Samantaray, S.; Rout, G.R. Studies on cadmium toxicity in plants: A review. Environ. Pollut. 1997, 98, 29–36. [Google Scholar] [CrossRef]
- Daud, M.K.; Sun, Y.; Dawood, M.; Hayat, Y.; Variath, M.T.; Wu, Y.-X.; Raziuddin; Mishkat, U.; Salahuddin; Najeeb, U.; et al. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. J. Hazard. Mater. 2009, 161, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, K.Q.; Xu, J.K.; Liang, J.S.; Lu, X.L.; Yang, J.C.; Zhu, Q.S. Interaction of cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Res. 2003, 83, 271–281. [Google Scholar] [CrossRef]
- Singh, R.; Jwa, N.-S. Understanding the responses of rice to environmental stress using proteomics. J. Proteome Res. 2013, 12, 4652–4669. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Liu, X.; Wu, L.; Liu, M. An improved assimilation method with stress factors incorporated in the WOFOST model for the efficient assessment of heavy metal stress levels in rice. Int. J. Appl. Earth Obs. Geoinf. 2015, 41, 118–129. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Zhao, L.; Ding, C.; Jiang, J.; Wu, L. The dynamic assessment model for monitoring cadmium stress levels in rice based on the assimilation of remote sensing and the WOFOST model. IEEE J. Sel. Top. Earth Obs. Remote Sens. 2015, 8, 1330–1338. [Google Scholar] [CrossRef]
- Phinn, S.R.; Menges, C.; Hill, G.J.E.; Stanford, M. Optimizing remotely sensed solutions for monitoring, modeling, and managing coastal environments. Remote Sens. Environ. 2000, 73, 117–132. [Google Scholar] [CrossRef]
- Marceau, D.J.; Hay, G.J. Remote sensing contributes to the scaling issues. Can. J. Remote Sens. 1999, 25, 357–366. [Google Scholar] [CrossRef]
- Atkinson, P.M. Selecting the spatial resolution of airborne MSS imagery for small-scale agricultural mapping. Int. J. Remote Sens. 1997, 18, 1903–1917. [Google Scholar] [CrossRef]
- Curran, P.J.; Dawn Williamson, H. Selecting a spatial resolution for estimation of per-field green leaf area index. Int. J. Remote Sens. 1988, 9, 1243–1250. [Google Scholar] [CrossRef]
- He, Y.; Guo, X.; Wilmshurst, J.; Si, B.C. Studying mixed grassland ecosystems ii: Optimum pixel size. Can. J. Remote Sens. 2006, 32, 108–115. [Google Scholar] [CrossRef]
- HyppÄNen, H. Spatial autocorrelation and optimal spatial resolution of optical remote sensing data in boreal forest environment. Int. J. Remote Sens. 1996, 17, 3441–3452. [Google Scholar] [CrossRef]
- Ju, J.; Gopal, S.; Kolaczyk, E.D. On the choice of spatial and categorical scale in remote sensing land cover classification. Remote Sens. Environ. 2005, 96, 62–77. [Google Scholar] [CrossRef]
- Löw, F.; Duveiller, G. Defining the spatial resolution requirements for crop identification using optical remote sensing. Remote Sens. 2014, 6, 9034–9063. [Google Scholar] [CrossRef]
- Nijland, W.; Addink, E.A.; de Jong, S.M.; Van der Meer, F.D. Optimizing spatial image support for quantitative mapping of natural vegetation. Remote Sens. Environ. 2009, 113, 771–780. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.L. Scale issues in remote sensing: A review on analysis, processing and modeling. Sensors 2009, 9, 1768–1793. [Google Scholar] [CrossRef] [PubMed]
- Marceau, D.J.; Gratton, D.J.; Fournier, R.A.; Fortin, J.P. Remote-sensing and the measurement of geographical entities in a forested environment.2. The optimal spatial-resolution. Remote Sens. Environ. 1994, 49, 105–117. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Strahler, A.H. The factor of scale in remote-sensing. Remote Sens. Environ. 1987, 21, 311–332. [Google Scholar] [CrossRef]
- Lam, N.S.-N.; Quattrochi, D.A. On the issues of scale, resolution, and fractal analysis in the mapping sciences. Prof. Geogr. 1992, 44, 88–98. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Curran, P.J. Defining an optimal size of support for remote-sensing investigations. IEEE Trans. Geosci. Remote Sens. 1995, 33, 768–776. [Google Scholar] [CrossRef]
- Rahman, A.F.; Gamon, J.A.; Sims, D.A.; Schmidts, M. Optimum pixel size for hyperspectral studies of ecosystem function in southern california chaparral and grassland. Remote Sens. Environ. 2003, 84, 192–207. [Google Scholar] [CrossRef]
- Duveiller, G.; Defourny, P. A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing. Remote Sens. Environ. 2010, 114, 2637–2650. [Google Scholar] [CrossRef]
- Tran, T.D.-B.; Puissant, A.; Badariotti, D.; Weber, C. Optimizing spatial resolution of imagery for urban form detection—the cases of france and vietnam. Remote Sens. 2011, 3, 2128–2147. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Li, J.; Li, T. Estimating regional heavy metal concentrations in rice by scaling up a field-scale heavy metal assessment model. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 12–23. [Google Scholar] [CrossRef]
- Wang, F.; Huang, J.; Tang, Y.; Wang, X. New vegetation index and its application in estimating leaf area index of rice. Chin. J. Rice Sci. 2007, 21, 159–166. [Google Scholar] [CrossRef]
- Yoder, B.J.; Waring, R.H. The normalized difference vegetation index of small douglas-fir canopies with varying chlorophyll concentrations. Remote Sens. Environ. 1994, 49, 81–91. [Google Scholar] [CrossRef]
- Garrigues, S.; Allard, D.; Baret, F.; Weiss, M. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sens. Environ. 2006, 105, 286–298. [Google Scholar] [CrossRef]
- Dias, M.C.; Monteiro, C.; Moutinho-Pereira, J.; Correia, C.; Goncalves, B.; Santos, C. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant 2013, 35, 1281–1289. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, IEEE Service Center, Piscataway, NJ, USA, 27 November 1995; pp. 1942–1948.
- Garrigues, S.; Allard, D.; Baret, F.; Morisette, J. Multivariate quantification of landscape spatial heterogeneity using variogram models. Remote Sens. Environ. 2008, 112, 216–230. [Google Scholar] [CrossRef]
- Boogaard, H.L.; Van Diepen, C.A.; Rutter, R.P.; Cabrera, J.M.C.A.; Van Laar, H.H. User’s Guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5; Wageningen: Winand Staring Centre: Gelderland, The Netherlands, 1998; pp. 1–40. [Google Scholar]
Heavy Metals | Background Value (bi) 1 | A | B | ||||
---|---|---|---|---|---|---|---|
(113°06′E, 27°45′N) | (113°14′E, 27°37′N) | ||||||
Soil (si) | Rice Tissue 2 | Pollution Index (si/bi) | Soil (ci) | Rice Tissue 2 | Pollution Index (si/bi) | ||
Cd | 1.43 | 3.27 | 5.9 | 2.29 | 2.25 | 3.23 | 1.57 |
Hg | 0.2 | 0.51 | 0.06 | 2.55 | 0.29 | 0.04 | 1.45 |
Pb | 82.78 | 109.93 | 36.73 | 1.33 | 89.67 | 15.18 | 1.08 |
As | 19.11 | 18.15 | 7.04 | 0.95 | 18.33 | 6.29 | 0.96 |
Pollution Level | Level II (Serve stress) | Level I (Light stress) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Liu, X.; Jin, M.; Ding, C.; Jiang, J.; Wu, L. Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model. Sensors 2016, 16, 340. https://doi.org/10.3390/s16030340
Huang Z, Liu X, Jin M, Ding C, Jiang J, Wu L. Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model. Sensors. 2016; 16(3):340. https://doi.org/10.3390/s16030340
Chicago/Turabian StyleHuang, Zhi, Xiangnan Liu, Ming Jin, Chao Ding, Jiale Jiang, and Ling Wu. 2016. "Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model" Sensors 16, no. 3: 340. https://doi.org/10.3390/s16030340
APA StyleHuang, Z., Liu, X., Jin, M., Ding, C., Jiang, J., & Wu, L. (2016). Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model. Sensors, 16(3), 340. https://doi.org/10.3390/s16030340