Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit
<p>Test tasks for parkinsonian tremor assessment: (<b>left action</b>) rest tremor, (<b>middle action</b>) postural tremor, and (<b>right action</b>) action tremor.</p> "> Figure 2
<p>System diagram of the tremor assessment system. This system consists of two parts: glove part (<b>left</b>) and computer part (<b>right</b>).</p> "> Figure 3
<p>Power spectral density (PSD) estimation of ten-second inertial sensor signals. <span class="html-italic">f<sub>dominant</sub></span> represents the dominant frequency of the signals.</p> "> Figure 4
<p>Signal processing for the tremor detection and quantification (six channels).</p> "> Figure 5
<p>Prototype implementation of the assessment system (glove part) for parkinsonian motor symptoms. In addition to tremor assessment, this modified version of the assessment system can be used to assess bradykinesia, dyskinesia, and rigidity.</p> "> Figure 6
<p>Tremor state for a patient with parkinsonian tremor (UPDRS score <span class="html-italic">D</span> = 1): (<b>a</b>,<b>b</b>): The three-axis angular velocity and three-axis acceleration waveforms of rest tremor; (<b>c</b>,<b>d</b>): The three-axis combined power spectra of angular velocity signals (<b>bottom chart</b>) and acceleration signals (<b>upper chart</b>).</p> "> Figure 6 Cont.
<p>Tremor state for a patient with parkinsonian tremor (UPDRS score <span class="html-italic">D</span> = 1): (<b>a</b>,<b>b</b>): The three-axis angular velocity and three-axis acceleration waveforms of rest tremor; (<b>c</b>,<b>d</b>): The three-axis combined power spectra of angular velocity signals (<b>bottom chart</b>) and acceleration signals (<b>upper chart</b>).</p> ">
Abstract
:1. Introduction
2. State of the Art and Task Description
2.1. State of the Art in Parkinsonian Tremor Quantification
2.2. Special Concerns for Side Effects and Task Description
3. Quantitative Assessment of Parkinsonian Tremor
3.1. Test Tasks and Relevant Parameters
- amplitude of parkinsonian tremor (R); and
- dominant frequency of parkinsonian tremor (F).
3.2. System Concept
3.3. Parkinsonian Tremor Assessment Methods
3.4. PSD Analysis for Tremor Signal
3.5. Tremor State Detection
- Frequency domain: In the frequency domain of the ten-second signals, the proportion of peak power to the whole power estimation should be bigger than 85%.
- Time domain: In the time domain, the SD (standard deviation) value of ten-second angular velocity ranges (peak-to-peak values of all axes of the gyroscope) should be bigger than 70% of the mean gyroscope signal ranges.
3.6. Least-Square-Estimation Model and Signal Flow Diagram
4. Experimental Section
4.1. Validation of Analytical Methods
4.1.1. Hypothesis
- Mean value and standard deviation of the differences between dominant frequencies: fmd < 1.00 ± 0.88 Hz;
- Correlation coefficient of peak powers: r > 0.95.
4.1.2. Materials
- NDI (Northern Digital Inc., Waterloo, ON, Canada) Aurora® EM tracking system with a six degree-of-freedom (DOF) sensor;
- Tremor assessment system (including a USB cable and a command module with a sensor board);
- Laptop with the EM system (Aurora Toolbox) application software;
- Laptop with the application software of the tremor assessment system (LabVIEW-based user interface for tremor assessment; MATLAB (Natick, MA, USA) R2012b for data analysis).
4.1.3. Experimental Setup and Method
4.1.4. Results
4.2. Clinical Experiments of Tremor Quantification
4.2.1. Hypothesis
- Correlation coefficient: r > 0.84.
4.2.2. Experiment Setup
4.2.3. Results
Subject | ln(acc. power) | ln(gyro.power) | ln(acc. RMS) | ln(gyro. RMS) | R | Clinical Score(D) |
---|---|---|---|---|---|---|
Patient 1 | −8.52 | 0 (−6.27) | −2.95 | 0.30 | 0 (−5.41) | 0.0 |
Patient 2 | −7.42 | 0.78 | −2.42 | 1.93 | 0 (−4.01) | 0.5 |
Patient 3 | −3.06 | 7.05 | −0.92 | 3.92 | 1.27 | 1.0 |
Patient 4 | −4.10 | 7.37 | −1.40 | 4.14 | 1.36 | 1.5 |
Patient 5 | −2.74 | 7.87 | −0.58 | 4.31 | 1.99 | 2.0 |
Patient 6 | −2.12 | 7.55 | −0.49 | 4.22 | 2.06 | 2.0 |
Patient 7 | −1.95 | 11.21 | −0.22 | 5.61 | 2.81 | 3.0 |
r | 0.88 | 0.93 | 0.91 | 0.93 | 0.98 | / |
α (2-tailed) | 0.008 | < 0.01 | 0.004 | 0.002 | <0.01 | / |
5. Conclusions/Outlook
- The repeatability of tremor amplitude with the same patient at different times should be investigated further [45].
- The regression coefficients in Equation (5) are different according to tasks and tremor types. More clinical experiments are needed to modify the scale factors and coefficients in the tremor amplitude calculation. In addition, essential tremor and other types of pathological tremors need to be quantitatively assessed.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chaudhuri, K.R.; Ondo, W.F. Handbook of Movement Disorders; Springer Healthcare Ltd.: London, UK, 2009; pp. 1–2. [Google Scholar]
- Louis, E.D.; Ferreira, J.J. How common is the most common adult movement disorder update on the worldwide prevalence of essential tremor. Mov. Disord. 2010, 25, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Crawford, P.; Zimmerman, E.E. Differentiation and diagnosis of tremor. Am. Fam. Physician. 2011, 83, 697–702. [Google Scholar] [PubMed]
- Salarian, A.; Russmann, H.; Wider, C.; Burkhard, P.R.; Vingerhoets, F.J.G.; Aminian, K. Quantification of tremor and bradykinesia in Parkonson’s disease using a novel ambulatory monitoring system. IEEE Trans. Biomed. Eng. 2007, 54, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, J.M.; Charles, C.M.; Tamas, L.B.; Sigvardt, K.A. Dynamics of tremor-related oscillations in the human globus pallidus: A single case study. Proc. Nat. Acad. Sci. USA 1999, 96, 1674–1679. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G.; Bain, P.; Brin, M. Consensus statement of the movement disorder society on tremor. Mov. Disord. 1998, 13, 2–23. [Google Scholar] [CrossRef] [PubMed]
- Phwa, R.; Lyons, K.E.; Koller, W. Handbook of Parkinson’s Disease, 4th ed.; CRC Press: New York, NY, USA, 2007; pp. 53–59. [Google Scholar]
- Mittel, C.S. Parkinson’s Disease, Overview and Current Abstracts, 1st ed.; Nova Science Pub. Inc.: New York, NY, USA, 2003. [Google Scholar]
- Hess, C.W.; Pullman, S.L. Tremor: Clinical phenomenology and assessment techniques. Tremor Other Hyperkinet. Mov. (N.Y.) 2012, 2, 1–15. [Google Scholar]
- Hauser, R.A.; Friedlander, J.; Zesiewicz, T.A.; Adler, C.H.; Seeberger, C.H.; O’Brien, C.F.; Molho, E.S.; Factor, S.A. A home diary to assess functional status in patients with Parkinson’s disease with motor fluctuations and dyskinesia. Clin. Neuropharmacol. 2000, 23, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Lorincz, K.; Hughes, R.; Huggins, N.; Growdon, J.; Standaert, D.; Akay, M.; Dy, J.; Welsh, M.; Bonato, P. Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Trans. Inform. Technol. Biomed. 2009, 13, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.P.; Ding, L.; Bronte-Stewart, H.M. Concurrent Parkinson tremors. Physiol. J. 2000, 529, 273–281. [Google Scholar] [CrossRef]
- Elble, R.J.; Deuschl, G. Milestones in tremor research. Mov. Disord. 2011, 26, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.D.; Otten, B.; Mehrkens, J.H.; D’Angelo, L.T.; Lueth, T.C. A novel glove monitoring system used to quantify neurological symptoms during deep-brain stimulation surgery. IEEE Sens. J. 2013, 13, 3193–3202. [Google Scholar] [CrossRef]
- Dai, H.D.; D’Angelo, L.T. Quantitative assessment of tremor during deep-brain stimulation using a wearable glove system. In Proceedings of IEEE International Workshop of Internet-of-Things Networking and Control, New Orleans, LA, USA, 24–27 June 2013; pp. 81–85.
- Dai, H.D.; Otten, B.; Mehrkens, J.H.; D’Angelo, L.T. A portable system for quantitative assessment of parkinsonian rigidity. In Proceedings of 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 3–7 July 2013; pp. 6591–6594.
- Dai, H.D.; D’Angelo, L.T. A portable system for quantitative assessment of parkinsonian bradykinesia during deep-brain stimulation surgery. In Proceedings of IEEE Second International Conference on Advances in Biomedical Engineering, Tripoli, Lebanon, 11–13 September 2013; pp. 77–80.
- Niazmand, K.; Tonn, K.; Kalaras, A.; Fietzek, U.M.; Mehrkens, J.H.; Lueth, T.C. Quantitative evaluation of Parkinson's disease using sensor based smart glove. In Proceedings of IEEE Symposium on Computer-Based Medical Systems, Bristol, UK, 27–30 June 2011; pp. 1–8.
- Synnott, J.L.; Chen, C.D.; Moore, G. WiiPD-objective home assessment of Parkinson’s disease using the Nintendo Wii remote. IEEE Trans. Inform. Technol. Biomed. 2012, 16, 1304–1312. [Google Scholar] [CrossRef]
- Elble, R.J.; Pullman, S.L.; Matsumoto, J.Y.; Raethjen, J.; Deuschl, G.; Tintner, R.; Tremor Research Group. Tremor amplitude is logarithmically related to 4- and 5-point tremor rating scales. Brain 2006, 129, 2660–2666. [Google Scholar] [CrossRef] [PubMed]
- Mostile, G.J.; Giuffrida, P.; Adam, O.R.; Davidson, A.; Jankovic, J. Correlation between Kinesia system assessments and clinical tremor scores in patients with essential tremor movement. Mov. Disord. 2010, 25, 1938–1943. [Google Scholar] [CrossRef] [PubMed]
- Heldman, D.A.; Jankovic, J.; Vaillancourt, D.E.; Prodoehl, J.; Elble, R.J.; Giuffrida, J.P. Essential tremor quantification during activities of daily living. Parkinsonism Relat. D. 2011, 17, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, J.P.; Riley, D.E.; Maddux, B.N.; Heldman, D.A. Clinically deployable Kinesia™ technology for automated tremor assessment. Mov. Disord. 2009, 24, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, P.R.; Shale, H.; Langstom, J.W.; Tetrud, J.W. Quantification of dyskinesia in Parkinson’s disease validation of a novel instrumental method. Mov. Disord. 1999, 14, 754–27. [Google Scholar] [CrossRef]
- Pierleoni, P.; Palma, L.; Belli, A.; Pernini, L. A real-time system to aid clinical classification and quantification of tremor in Parkinson’s disease. In Proceedings of IEEE-EMBS International Conference on Biomedical and Health Informatics, Valencia, Italy, 1–4 June 2014; pp. 113–116.
- Khan, F.M.; Barnathan, M.; Myers, S.; Loftus, S.A. Wearable Accelerometer System for Unobtrusive Monitoring of Parkinson’s Disease Motor Symptoms. In Proceedings of IEEE International Conference on Bioinformatics and Bioengineering, Boca Raton, FL, USA, 10–12 November 2014; pp. 120–125.
- Zhang, H.H.; Chen, X.Y.; Lin, W.Y.; Chou, W.C.; Lee, M.Y. A novel accelerometer-based method for the real-time assessment of Parkinson’s tremor. In Proceedings of IEEE International Conference on Communication Problem-Solving, Beijing, China, 5–7 December 2014; pp. 87–90.
- The Michael J. Fox Foundation for Parkinson’s Research. Available online: https://www.michaeljfox.org/page.html?access-parkinsons-clinical-data-and-biospecimens (accessed on 14 September 2015).
- Timmer, J.; Lauk, M.; Lücking, C.H. Confidence regions for spectral peak frequencies. Biometrical J. 1997, 39, 849–861. [Google Scholar] [CrossRef]
- Lueth, T.C.; D’Angelo, L.T.; Czabke, A. Chapter. 14. TUM-AgeTech: A New Framework for Pervasive Medical Devices. In Pervasive and Smart Technologies for Healthcare: Ubiquitous Methodologies and Tools; IGI Global: Hershey, PA, USA, 2010; pp. 295–321. [Google Scholar]
- Timmer, J.; Häussler, S.; Lauk, M.; Lücking, C.H. Pathological tremors deterministic chaos or nonlinear stochastic oscillators. Chaos 2000, 10, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Veluvolu, K.C.; Ang, W.T. Estimation of physiological tremor from accelerometers for real-time applications. Sensors 2011, 11, 3020–3036. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, P.R.; Langston, J.W.; Tetrud, J.W. Voluntarily simulated tremor in normal subjects. Neurophysiol. Clin. 2002, 32, 119–126. [Google Scholar] [CrossRef]
- Narcisa, V.; Aguilar, D.; Nquyen, D.V.; Campos, L.; Brodovsky, J.; White, S.; Adams, R.; Tassone, F.; Hagerman, P.J.; Hagerman, R.J. A quantitative assessment of tremor and ataxia in female FMR1 premutation carriers using CATSYS. Curr. Gerontol. Geriatr. Res. 2011, 2001, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Timmer, J.; Lauk, M.; Häußler, S.; Radt, V. Cross-spectral analysis of tremor time series. Int. J. Bifurcat. Chaos 2000, 10, 2595–2610. [Google Scholar] [CrossRef]
- Timmer, J.; Gantert, C.; Deuschl, G.; Honerkamp, J. Characteristics of hand tremor time series. Biol. Cybern. 1993, 70, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Teravainen, H.; Calne, D.B. Action tremor in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1980, 43, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Luce, R.D.; Krumhansl, C. Measurement, Scaling, and Psychophysics. In Stevens’ Handbook of Experimental Psychology; Atkinson, R.C., Herrnstein, R.J., Lindzey, G., Luce, R.D., Eds.; Wiley: New York, NY, USA, 1988; pp. 1–74. [Google Scholar]
- NDI Aurora Electromagnetic Tracking System. Available online: http://www.ndigital.com/aurora.php (accessed on 14 September 2015).
- Niazmand, K.; Kalaras, A.; Dai, H.; Lueth, T.C. Comparison of methods for tremor frequency analysis for patients with Parkinson’s disease. In Proceedings of International Conference on BioMedical Engineering and Informatics, Shanghai, China, 15–17 October 2011; pp. 1312–1316.
- Bland, J.M.; Altman, D.G. Applying the right statistics analyses of measurement studies. Ultrasound Obstet. Gynecol. 2003, 22, 85–93. [Google Scholar] [CrossRef] [PubMed]
- O’Suilleabhain, P.E.; Matsumoto, J.Y. Time-frequency analysis of tremors. Brain 1998, 121, 2127–2134. [Google Scholar] [CrossRef] [PubMed]
- Riviere, C.N.; Reich, S.G.; Thakor, N.V. Adaptive Fourier modeling for quantification of tremor. J. Neurosci. Methods 1997, 74, 77–87. [Google Scholar] [CrossRef]
- Ellermeier, W.; Faulhammer, G. Empirical evaluation of axioms fundamental to Stevens’s ratio-scaling approach I. Loudness production. Percep. Psychophys. 2000, 62, 1505–1511. [Google Scholar] [CrossRef]
- Popovic, L.Z.; Sekara, T.B.; Popovic, M.B. Adaptive band-pass filter (ABPF) for tremor extraction from inertial sensor data. Comput. Meth. Programs Biomed. 2010, 99, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Cole, B.T.; Roy, S.H.; de Luca, C.J.; Nawab, S.H. Dynamical learning and tracking of tremor and dyskinesia from wearable sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 982–991. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, H.; Zhang, P.; Lueth, T.C. Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit. Sensors 2015, 15, 25055-25071. https://doi.org/10.3390/s151025055
Dai H, Zhang P, Lueth TC. Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit. Sensors. 2015; 15(10):25055-25071. https://doi.org/10.3390/s151025055
Chicago/Turabian StyleDai, Houde, Pengyue Zhang, and Tim C. Lueth. 2015. "Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit" Sensors 15, no. 10: 25055-25071. https://doi.org/10.3390/s151025055
APA StyleDai, H., Zhang, P., & Lueth, T. C. (2015). Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit. Sensors, 15(10), 25055-25071. https://doi.org/10.3390/s151025055