Terrestrial Remotely Sensed Imagery in Support of Public Health: New Avenues of Research Using Object-Based Image Analysis
<p>Example of the speckle, or the “salt-and-pepper” effect common to pixel-based classifications of fine spatial resolution imagery: <b>(a)</b> an unsupervised classification of land cover from a suburban area in California; <b>(b)</b> the same area classified with an object-based classifier.</p> "> Figure 2
<p>The first step of the OBIA process: the image segmentation process: <b>(a)</b> a fine spatial resolution color infrared image of an oak forest stand with dead trees; <b>(b)</b> the corresponding image segments.</p> "> Figure 3
<p>Conceptual diagram of the OBIA process for multi-scaled analysis of remotely sensed imagery. <b>(a)</b>, <b>(b)</b> and <b>(c)</b> are different levels of image segmentation (fine-scale to coarse-scale); they are hierarchical. At each scale the target is highlighted in orange. The characteristics are those spectral, spatial and contextual measures that can be used to classify an object. Only a few examples of characteristics within each category are listed, but there are many valuable measures at each scale that can be used for analysis depending on the research question (e.g., average, minimum, maximum, composite indexes, <span class="html-italic">etc.</span>). Fine-scale characteristics can be used to classify medium-scale features and so on.</p> ">
Abstract
:1. Introduction
2. The Use of Continuous Products in Public Health Research
Remotely Sensed Data | Remotely Sensed Variables/Target | Location | Application (Disease/Condition) | Reference |
---|---|---|---|---|
Landsat | NDVI | Marion County, Indiana | Risk modeling (Obesity) | [65] |
Landsat | NDVI | Seattle, Washington | Risk modeling (Obesity) | [66] |
Landsat | NDVI | Southern California | Risk modeling (Obesity) | [67] |
Landsat, NLCD | NDVI, Land cover | Southern California | Risk modeling (Obesity) | [68] |
Landsat TM | Kauth-Thomas | Westchester County, New York | Vector-borne disease modeling (Lyme) | [69] |
Landsat ETM+ | NDVI | Marion County, Indiana | Risk modeling (Obesity) | [70] |
Landsat MSS & TM, AVHRR | NDVI | Africa | Vector-borne disease modeling (Ebola Hemorrhagic Fever) | [71] |
Landsat TM, NLCD | LST, Land cover | Philadelphia, Pennsylvania | Risk modeling (Extreme heat exposure) | [72] |
MODIS, ASTER, QuickBird | EVI, NDVI, Land cover | Costa Rica | Vector-borne disease modeling (Dengue Fever) | [61] |
MODIS | NDVI, LST | Uganda | Vector-borne disease modeling (Schistosoma) | [73] |
AVHRR | Climate, NDVI | United States | Vector-borne disease modeling (Lyme) | [62] |
AVHRR | LST | United States | Vector-borne disease modeling (West Nile Fever) | [63] |
AVHRR, Meteosat | NDVI, CCD | Kenya | Vector-borne disease modeling (Malaria) | [74] |
AVHRR, Meteosat | NDVI, CCD | Gambia | Vector-borne disease modeling (Malaria) | [75] |
AVHRR, Meteosat | NDVI, LST, CCD | East Africa | Vector-borne disease modeling (Malaria) | [76] |
AVHRR | NDVI, LST | Tanzania | Vector-borne disease modeling (Schistosomiasis) | [77] |
AVHRR | Climate, NDVI | East Africa | Vector-borne disease modeling (Rift Valley Fever) | [78] |
AVHRR | Climate, NDVI | East Africa | Vector-borne disease modeling (Rift Valley Fever) | [64] |
3. Review of the Use of Discrete Products in Public Health Research
Remotely Sensed Data | Remotely Sensed Variables/Target | Location | Application (Disease/Substance) | Reference |
---|---|---|---|---|
IKONOS | Land cover | Kenya | Vector-borne disease modeling (Malaria) | [88] |
SPOT, IKONOS | Land cover | Belize | Vector-borne disease modeling (Malaria) | [87] |
SPOT | Land cover | Belize | Vector-borne disease modeling (Malaria) | [93] |
SPOT | Land cover | Burkina Faso | Vector-borne disease modeling (Malaria) | [95] |
Aerial orthophoto, Landsat TM | Land cover, NDVI | California | Exposure modeling (Pesticide) | [22] |
NLCD | Land cover | New England, USA | Exposure modeling (Arsenic) | [16] |
Landsat TM | Land cover | Sichuan, China | Vector-borne disease modeling (Schistosomaiasis) | [86] |
Landsat TM & ETM+ | Land cover | Central Wyoming | Vector-borne disease modeling (West Nile Virus) | [85] |
Landsat ETM+ | Land cover | Cape Cod, Massachusetts | Exposure modeling (Pesticide) | [89] |
Landsat MSS & TM | Land cover | Western China | Vector-borne disease modeling (E. multilocularis) | [103,104] |
Landsat MSS | Land cover | Iowa | Exposure modeling (Pesticide) | [90] |
Landsat ETM+ | Land cover | Paraguay | Vector habitat (Hantavirus) | [54] |
ASTER | Land cover, LST | Cook County, Illinois | Vector-borne disease modeling (West Nile Virus) | [102] |
4. Object-Based Image Analysis
5. Review of OBIA and Public Health Applications
Remotely Sensed Data | Remotely Sensed Variables/Target | Location | Application (Disease/Condition) | Reference |
---|---|---|---|---|
Panchromatic aerial image | Panchromatic band/buildings | Golcuk, Turkey | Natural hazard damage assessment (Earthquake) | [110] |
Lidar, QuickBird | Elevation, Land cover | Tegucigalpa, Honduras | Social vulnerability (Natural hazards) | [111] |
QuickBird | Land cover | Kazakhstan | Vector habitat (Bubonic Plague) | [112] |
QuickBird | Land cover | Accra, Ghana | Social vulnerability (Slum mapping) | [113] |
QuickBird | NDVI, Land cover | Northern Darfur, Sudan | Humanitarian aid assessment (Population characteristics) | [114] |
QuickBird | Land cover | Bam, Iran | Natural hazard damage assessment (Earthquake) | [115] |
IKONOS | Land cover | Palestine & Republic of Macedonia | Natural hazard damage assessment (Earthquake) | [116] |
IKONOS | Land cover | New York City, New York | Hazard mitigation (Urban heat island effect) | [109] |
Aerial orthophoto, Landsat | Land cover, NDVI | California | Exposure modeling (Pesticide) | [22] |
Landsat ETM+ | Land cover | Paraguay | Vector habitat (Hantavirus) | [54] |
MODIS, ASTER, QuickBird | EVI, NDVI, Land cover | Costa Rica | Vector-borne disease modeling (Dengue Fever) | [61] |
ASTER | Land cover | China | Exposure modeling (Pollution) | [55] |
6. Discussion and Conclusions
References
- Cohen, W.B.; Goward, S.N. Landsat’s role in ecological applications of remote sensing. BioScience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Wulder, M.A.; Hall, R.J.; Coops, N.C.; Franklin, S.E. High spatial resolution remotely sensed data for ecosystem characterization. BioScience 2004, 54, 511–521. [Google Scholar] [CrossRef]
- Wulder, M.A.; Dymond, C.C.; White, J.C.; Leckie, D.G.; Carroll, A.L. Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities. Forest Ecol. Manage. 2006, 221, 27–41. [Google Scholar] [CrossRef]
- Chambers, J.Q.; Fisher, J.I.; Zeng, H.; Chapman, E.L.; Baker, D.B.; Hurtt, G.C. Hurricane Katrina’s carbon footprint on US gulf coast forests. Science 2007, 318, 1107. [Google Scholar] [CrossRef] [PubMed]
- DeFries, R.; Achard, F.; Brown, S.; Herold, M.; Murdiyarso, D.; Schlamadinger, B.; de Souza, C., Jr. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environ. Sci. Policy 2007, 10, 385–394. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion of the 2001 National Land Cover Database for the monterminous United States. Photogramm. Eng. Remote Sensing 2007, 73, 337–341. [Google Scholar]
- DeFries, R.S.; Townshend, J.R.G. Global land cover characterization from satellite data: From research to operational implementation. Global Ecol. Biogeogr. 1999, 8, 367–379. [Google Scholar] [CrossRef]
- Pringle, R.M.; Doak, D.F.; Brody, A.K.; Jocque, R.; Palmer, T.M. Spatial pattern enhances ecosystem functioning in an african savanna. PLoS. Biol. 2010, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; Knorr, W.; Widlowski, J.L.; Pinty, B.; Gobron, N. Combining remote sensing data with process modelling to monitor boreal conifer forest carbon balances. Forest Ecol. Manage. 2008, 255, 3985–3994. [Google Scholar] [CrossRef]
- Running, S.W.; Baldocchi, D.D.; Turner, D.P.; Gower, S.T.; Bakwin, P.S.; Hibbard, K.A. A Global Terrestrial Monitoring Network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens. Environ. 1999, 70, 108–127. [Google Scholar] [CrossRef]
- Bartlett, D.S.; Klemas, V. Quantitative assessment of tidal wetlands using remote sensing. Environ. Manage. 1980, 4, 337–345. [Google Scholar] [CrossRef]
- Anderson, J.R. Land use classification schemes used in selected geographic applications in remote sensing. Photogramm. Eng. Remote Sensing 1971, 37, 379–387. [Google Scholar]
- Herbreteau, V.; Salem, G.; Souris, M.; Hugot, J.P.; Gonzalez, J.P. Thirty years of use and improvement of remote sensing, applied to epidemiology: From early promises to lasting frustration. Health Place 2007, 13, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, S.; Gilruth, P.; Rogers, D.; Szczur, M. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: A review. PLoS Pathog. 2007, 3, e116. [Google Scholar] [CrossRef] [PubMed]
- Ayotte, J.D.; Nolan, B.T.; Nuckols, J.R.; Cantor, K.P.; Robinson, G.R., Jr.; Baris, D.; Hayes, L.; Karagas, M.; Bress, W.; Silverman, D.T. Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment. Environ. Sci. Technol. 2006, 40, 3578–3585. [Google Scholar] [CrossRef] [PubMed]
- Krause, G.; Bock, M.; Weiers, S.; Braun, G. Mapping land-cover and mangrove structures with remote sensing techniques: A contribution to a synoptic GIS in support of coastal management in North Brazil. Environ. Manage. 2004, 34, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Beck, L.R.; Lobitz, B.M.; Wood, B.L. Remote sensing and human health: New sensors and new opportunities. Emerg. Infect. Dis. 2000, 6, 217. [Google Scholar] [CrossRef] [PubMed]
- Simoonga, C.; Utzinger, J.; Brooker, S.; Vounatsou, P.; Appleton, C.; Stensgaard, A.S.; Olsen, A.; Kristensen, T.K. Remote sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and ecology in africa. Parasitology 2009, 136, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Malone, J.; Kristensen, T.; Bergquist, N. Application of geographic information systems and remote sensing to schistosomiasis control in China. Acta Trop. 2001, 79, 97–106. [Google Scholar] [CrossRef]
- Brooker, S.; Hay, S.; Tchuem, L.; Ratard, R. Using NOAA-AVHRR data to model human health distribution on planning disease control in Cameroon, West Africa. Photogramm. Eng. Remote Sensing 2002, 68, 175–179. [Google Scholar]
- Maxwell, S.K. Generating land cover boundaries from remotely sensed data using object-based image analysis: Overview and epidemiological application. Spatial Spatio-Temporal Epidemiol. 2010, 1, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.A.; Marinko, E.A.; Whistler, J.L.; Price, K.P. Interrelationships among landscapes, NDVI, and stream water quality in the U.S. central plains. Ecol. Appl. 2002, 12, 1702–1718. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Lag and seasonality considerations in evaluating AVHRR NDVI response to precipitation. Photogramm. Eng. Remote Sensing 2005, 71, 1053–1061. [Google Scholar] [CrossRef]
- Hansen, M.; DeFries, R.; Townshend, J.; Sohlberg, R.; Dimiceli, C.; Carroll, M. Towards an operational MODIS continuous field of percent tree cover algorithm: Examples using AVHRR and MODIS data. Remote Sens. Environ. 2002, 83, 303–319. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C. Updating the 2001 National Land Cover database impervious surface products to 2006 using Landsat Imagery Change Detection Methods. Remote Sens. Environ. 2010, 114, 1676–1686. [Google Scholar] [CrossRef]
- Chabaeva, A.; Civco, D.L.; Hurd, J.D. Assessment of impervious surface estimation techniques. J. Hydrol. Eng. 2009, 14, 377. [Google Scholar] [CrossRef]
- He, H.; Mladenoff, D.; Boeder, J. An object-oriented forest landscape model and its representation of tree species. Ecol. Model. 1999, 119, 1–19. [Google Scholar] [CrossRef]
- Cohen, J.M.; Ernst, K.C.; Lindblade, K.A.; Vulule, J.M.; John, C.C.; Wilson, M.L. Topography-derived wetness indices are associated with household-level malaria risk in two communities in the western Kenyan highlands. Malaria J. 2008, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Q.; Kelly, M. A framework of region-based spatial relationships for non-overlapping features and its application in object based image analysis. ISPRS J. Photogramm. 2008, 63, 461–475. [Google Scholar] [CrossRef]
- Townshend, J.R.G.; Huang, C.; Kalluri, S.N.V.; DeFries, R.S.; Liang, S. Beware of per-pixel characterization of land cover. Int. J. Remote Sens. 2000, 21, 839–843. [Google Scholar] [CrossRef]
- Burnett, C.; Blaschke, T. A multi-scale segmentation/object relationship modelling methodology for landscape analysis. Ecol. Model. 2003, 168, 233–249. [Google Scholar] [CrossRef]
- DeChant, T.; Kelly, M. Individual object change detection for monitoring the impact of a forest pathogen on a hardwood forest. Photogramm. Eng. Remote Sensing 2009, 75, 1005–1014. [Google Scholar] [CrossRef]
- Kelly, M.; Tuxen, K.; Stralberg, D. Mapping changes to vegetation pattern in a restoring wetland: Finding pattern metrics that are consistent across scale and time. Ecol. Indic. 2011, 11, 263–273. [Google Scholar] [CrossRef]
- Rocchini, D.; Perry, G.; Salerno, M.; Maccherini, S.; Chiarucci, A. Landscape change and the dynamics of open formations in a natural reserve. Landscape Urban Plan. 2006, 77, 167–177. [Google Scholar] [CrossRef]
- Langanke, T.; Burnett, C.; Lang, S. Assessing the mire conservation status of a raised bog site in Salzburg using object-based monitoring and structural analysis. Landscape Urban Plan. 2007, 79, 160–169. [Google Scholar] [CrossRef]
- Wallentin, G.; Tappeiner, U.; Strobl, J.; Tasser, E. Understanding alpine tree line dynamics: An individual-based model. Ecol. Model. 2008, 218, 235–246. [Google Scholar] [CrossRef]
- Guo, Q.C.; Kelly, M.; Gong, P.; Liu, D. An object-based classification approach in mapping tree mortality using high spatial resolution imagery. GISci. Remote Sens. 2007, 44, 24–47. [Google Scholar] [CrossRef]
- Liu, D.; Kelly, M.; Gong, P.; Guo, Q. Characterizing spatial-temporal tree mortality patterns associated with a new forest disease. Forest Ecol. Manage. 2007, 253, 220–231. [Google Scholar] [CrossRef]
- Cleve, C.; Kelly, M.; Kearns, F.; Moritz, M. Classification of urban environments for fire management support: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Comput. Environ. Urban Syst. 2008, 32, 317–326. [Google Scholar] [CrossRef]
- Walsh, S.J.; McCleary, A.L.; Mena, C.F.; Shao, Y.; Tuttle, J.P.; González, A.; Atkinson, R. QuickBird and Hyperion data analysis of an invasive plant species in the Galapagos Islands of Ecuador: Implications for control and land use management. Remote Sens. Environ. 2008, 112, 1927–1941. [Google Scholar] [CrossRef]
- Tosun, A.B.; Kandemir, M.; Sokmensuer, C.; Gunduz-Demir, C. Object-oriented texture analysis for the unsupervised segmentation of biopsy images for cancer detection. Pattern Recogn. 2009, 42, 1104–1112. [Google Scholar] [CrossRef] [Green Version]
- Krecsák, L.; Micsik, T.; Kiszler, G.; Krenács, T.; Szabo, D.; Jonás, V.; Császár, G.; Czuni, L.; Gurzo, P.; Ficsor, L.; Molnar, B. Technical note on the validation of a semi-automated image analysis software application for estrogen and progesterone receptor detection in breast cancer. Diagn. Pathol. 2011, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, M.R.; Sabatini, D.M.; Carpenter, A.E. CellProfiler: Free, versatile software for automated biological image analysis. Biotechniques 2007, 42, 71. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, C.; Labruyere, E.; Meas-Yedid, V.; Guillen, N.; Olivo-Marin, J.C. Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: A tool for cell-based drug testing. IEEE Trans. Med. Imag. 2002, 21, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, T.M.; Gold, M.; Thies, C.; Fischer, B.; Spitzer, K.; Keysers, D.; Ney, H.; Kohnen, M.; Schubert, H.; Wein, B.B. Content-based image retrieval in medical applications. Method. Inform. Med. 2004, 43, 354–361. [Google Scholar]
- Megason, S.G.; Fraser, S.E. Digitizing life at the level of the cell: High-performance laser-scanning microscopy and image analysis for in toto imaging of development. Mech. Develop. 2003, 120, 1407–1420. [Google Scholar] [CrossRef]
- Carpenter, A.E.; Jones, T.R.; Lamprecht, M.R.; Clarke, C.; Kang, I.H.; Friman, O.; Guertin, D.A.; Chang, J.H.; Lindquist, R.A.; Moffat, J. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006, 7, R100. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Gong, P.; Clinton, N.; Kelly, M.; Shirokauer, D. Object-based detailed vegetation classification with airborne high resolution remote sensing imagery. Photogramm. Eng. Remote Sensing 2006, 72, 799–811. [Google Scholar] [CrossRef]
- Hashim, M.; Mohd Noor, N.; Marghany, M. Modeling sprawl of unauthorized development using geospatial technology: Case study in Kuantan District, Malaysia. Int. J. Digital Earth 2010, 4, 223–238. [Google Scholar] [CrossRef]
- Trimble. eCognition. Trimble GeoSpatial. Available online: http://www.trimble.com/geospatial/ (accessed on 20 October 2011).
- Trimble. eCognition Developer 8.64.0: User Guide; Trimble: Munich, Germany, 2010. [Google Scholar]
- Koch, D.E.; Mohler, R.L.; Goodin, D.G. Stratifying land use/land cover for spatial analysis of disease ecology and risk: An example using object-based classification techniques. Geospatial Health 2007, 2, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Kerle, N.; Mas, J.F. Object-based image analysis for coal fire-related land cover mapping in coal mining areas. GeoCarto Int. 2009, 24, 25–36. [Google Scholar] [CrossRef]
- Lo, C.; Faber, B.J. Integration of landsat thematic mapper and census data for quality of life assessment. Remote Sens. Environ. 1997, 62, 143–157. [Google Scholar] [CrossRef]
- Hatfield, J. Remote sensing estimators of potential and actual crop yield. Remote Sens. Environ. 1983, 13, 301–311. [Google Scholar] [CrossRef]
- Quarmby, N.; Milnes, M.; Hindle, T.; Silleos, N. The use of multi-temporal NDVI measurements from avhrr data for crop yield estimation and prediction. Int. J. Remote Sens. 1993, 14, 199–210. [Google Scholar] [CrossRef]
- Townsend, F.E. The enhancement of computer classifications by logical smoothing. Photogramm. Eng. Remote Sensing 1986, 52, 213–221. [Google Scholar]
- Green, R.M.; Hay, S.I. The potential of pathfinder avhrr data for providing surrogate climatic variables across africa and europe for epidemiological applications. Remote Sens. Environ. 2002, 79, 166–175. [Google Scholar] [CrossRef]
- Troyo, A.; Fuller, D.O.; Calderon Arguedas, O.; Solano, M.E.; Beier, J.C. Urban structure and dengue incidence in puntarenas, costa rica. Singapore J. Trop. Geo 2009, 30, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Peña, A. Increasing habitat suitability in the united states for the tick that transmits Lyme disease: A remote sensing approach. Environ. Health Persp. 2002, 110, 635. [Google Scholar] [CrossRef]
- Rogers, D.; Myers, M.; Tucker, C.; Smith, P.; White, D.; Backenson, P.; Eidson, M.; Kramer, L.; Bakker, B.; Hay, S. Predicting the distribution of west nile fever in north america using satellite sensor data. Photogramm. Eng. Remote Sensing 2002, 68, 112–136. [Google Scholar]
- Linthicum, K.J.; Anyamba, A.; Tucker, C.J.; Kelley, P.W.; Myers, M.F.; Peters, C.J. Climate and satellite indicators to forecast Rift Valley fever epidemics in Kenya. Science 1999, 285, 397. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.F.; Wilson, J.S.; Liu, G.C. Neighborhood greenness and 2-year changes in body mass index of children and youth. Am. J. Prev. Med. 2008, 35, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Tilt, J.H.; Unfried, T.M.; Roca, B. Using objective and subjective measures of neighborhood greenness and accessible destinations for understanding walking trips and BMI in Seattle, Washington. Health Promot. 2007, 21, 371–379. [Google Scholar] [CrossRef]
- Jerrett, M.; McConnell, R.; Chang, C.C.R.; Wolch, J.; Reynolds, K.; Lurmann, F.; Gilliland, F.; Berhane, K. Automobile traffic around the home and attained body mass index: A longitudinal cohort study of children aged 10–18 years. Prev. Med. 2010, 50 Suppl 1, S50–S58. [Google Scholar] [CrossRef] [PubMed]
- Wolch, J.; Jerrett, M.; Reynolds, K.; McConnell, R.; Chang, R.; Dahmann, N.; Brady, K.; Gilliland, F.; Su, J.G.; Berhane, K. Childhood obesity and proximity to urban parks and recreational resources: A longitudinal cohort study. Health Place 2010, 17, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Dister, S.W.; Fish, D.; Bros, S.M.; Frank, D.H.; Wood, B.L. Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. Am. J. Trop. Med. Hyg. 1997, 57, 687. [Google Scholar] [PubMed]
- Liu, G.C.; Wilson, J.S.; Qi, R.; Ying, J. Green neighborhoods, food retail and childhood overweight: Differences by population density. Am. J. Health Promot. 2007, 21, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.J.; Wilson, J.M.; Mahoney, R.; Anyamba, A.; Linthicum, K.; Myers, M.F. Climatic and ecological context of the 1994–1996 Ebola outbreaks. Photogramm. Eng. Remote Sensing 2002, 68, 147–152. [Google Scholar]
- Johnson, D.P.; Wilson, J.S.; Luber, G.C. Socioeconomic indicators of heat-related health risk supplemented with remotely sensed data. Int. J. Health Geogr. 2009, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Stensgaard, A.; Jorgensen, A.; Kabatereine, N.; Malone, J.; Kristensen, T. Modeling the distribution of Schistosoma mansoni and host snails in Uganda using satellite sensor data and Geographical Information Systems. Parassitologia 2005, 47, 115–125. [Google Scholar] [PubMed]
- Rogers, D.J.; Hay, S.I.; Packer, M.J. Predicting the distribution of tsetse-flies in West-Africa using temporal Fourier processed meteorological satellite data. Ann. Trop. Med. Parasitol 1996, 90, 225–241. [Google Scholar] [PubMed]
- Hay, S.; Snow, R.; Rogers, D. From predicting mosquito habitat to malaria seasons using remotely sensed data: Practice, problems and perspectives. Parasitol. Today 1998, 14, 306–313. [Google Scholar] [CrossRef]
- Omumbo, J.; Hay, S.; Goetz, S.; Snow, R.; Rogers, D. Updating historical maps of malaria transmission duration in East Africa using remote sensing. Photogramm. Eng. Remote Sensing 2002, 68, 161–166. [Google Scholar] [PubMed]
- Brooker, S.; Hay, S.I.; Issae, W.; Hall, A.; Kihamia, C.M.; Lwambo, N.J.S.; Wint, W.; Rogers, D.J.; Bundy, D.A.P. Predicting the distribution of urinary schistosomiasis in Tanzania using satellite sensor data. Trop. Med. Int. Health 2001, 6, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Anyamba, A.; Linthicum, K.; Mahoney, R.; Tucker, C.; Kellye, P. Mapping potential risk of rift valley fever outbreaks in African Savannas using vegetation index time series data. Photogramm. Eng. Remote Sensing 2002, 68, 137–146. [Google Scholar]
- Hay, S.; Omumbo, J.; Craig, M.; Snow, R. Earth observation, geographic information systems and Plasmodium falciparum malaria in sub-Saharan Africa. Adv. Parasitol. 2000, 47, 173–174, IN175–IN112, 175–215. [Google Scholar] [PubMed]
- Kauth, R.J.; Thomas, G. The Tasselled Cap—A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 29 June–1 July 1976; pp. 41–51.
- Cline, B.L. New eyes for epidemiologists: Aerial photography and other remote sensing techniques. Am. J. Epidemiol. 1970, 92, 85–89. [Google Scholar] [PubMed]
- Hugh-Jones, M. Applications of remote sensing to the identification of the habitats of parasites and disease vectors. Parasitol. Today 1989, 5, 244–251. [Google Scholar] [CrossRef]
- Rogers, D.J.; Randolph, S.E.; Snow, R.W.; Hay, S.I. Satellite imagery in the study and forecast of malaria. Nature 2002, 415, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.J.; Vounatsou, P.; Xiao-Nong, Z.; Utzinger, J.; Tanner, M. A review of geographic information system and remote sensing with applications to the epidemiology and control of schistosomiasis in China. Acta Trop. 2005, 96, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Miller, S.N.; Schmidtmann, E.T. Mosquito larval habitat mapping using remote sensing and GIS: Implications of coalbed methane development and West Nile virus. J. Med. Entomol. 2006, 43, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Seto, E.; Xu, B.; Liang, S.; Gong, P.; Pu, W.; Davis, G.; Qui, D.; Gu, X.; Spear, R. The use of remote sensing for predictive modeling of schistosomiasis in China. Photogramm. Eng. Remote Sensing 2002, 68, 167–174. [Google Scholar]
- Achee, N.L.; Grieco, J.P.; Masuoka, P.; Andre, R.G.; Roberts, D.R.; Thomas, J.; Briceno, I.; King, R.; Rejmankova, E. Use of remote sensing and geographic information systems to predict locations of Anopheles darlingi-positive breeding sites within the Sibun River in Belize, Central America. J. Med. Entomol. 2006, 43, 382–392. [Google Scholar] [CrossRef]
- Mutuku, F.; Bayoh, M.; Hightower, A.; Vulule, J.; Gimnig, J.; Mueke, J.; Amimo, F.; Walker, E. A supervised land cover classification of a western Kenya lowland endemic for human malaria: Associations of land cover with larval Anopheles habitats. Int. J. Health Geogr. 2009, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Brody, J.G.; Vorhees, D.J.; Melly, S.J.; Swedis, S.R.; Drivas, P.J.; Rudel, R.A. Using GIS and historical records to reconstruct residential exposure to large-scale pesticide application. J. Expo. Anal. Env. Epid. 2002, 12, 64–80. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Lubin, J.; Giglierano, J.; Colt, J.S.; Wolter, C.; Bekiroglu, N.; Camann, D.; Hartge, P.; Nuckols, J.R. Proximity to crops and residential exposure to agricultural herbicides in Iowa. Environ. Health Persp. 2006, 114, 893. [Google Scholar] [CrossRef]
- Maxwell, S.K.; Meliker, J.R.; Goovaerts, P. Use of land surface remotely sensed satellite and airborne data for environmental exposire assessment in cancer research. J. Expo. Anal. Env. Epid. 2010, 20, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Opperman, J.J.; Lohse, K.A.; Brooks, C.; Kelly, N.M.; Merenlender, A.M. Influence of land use on fine sediment in salmonid spawning gravels within the Russian River Basin, California. Can. J. Fish. Aquat. Sci. 2005, 62, 2740–2751. [Google Scholar] [CrossRef]
- Roberts, D.R.; Paris, J.F.; Manguin, S.; Harbach, R.E.; Woodruff, R.; Rejmankova, E.; Polanco, J.; Wullschleger, B.; Legters, L.J. Predictions of malaria vector distribution in Belize based on multispectral satellite data. Am. J. Trop. Med. Hyg. 1996, 54, 304. [Google Scholar] [PubMed]
- Vogelmann, J.E.; Howard, S.M.; Yang, Y.; Larson, C.R.; Wylie, B.K.; Van Driel, N. Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat Thematic Mapper Data and ancillary datasources. Photogramm. Eng. Remote Sensing 2001, 67, 650–652. [Google Scholar]
- Dambach, P.; Sie, A.; Lacaux, J.-P.; Vignolles, C.C.; Machault, V.; Sauerborn, R. Using high spatial resolution remote sensing for risk mapping of malaria occurrence in the Nouna district, Burkina Faso. Global Health 2009. [Google Scholar] [CrossRef] [PubMed]
- Bedford, B.L. The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation. Ecol. Appl. 1996, 6, 57–68. [Google Scholar] [CrossRef]
- Turner, M.G.; Gardner, R.H.; O’Neill, R.V. Landscape Ecology in Theory and Practice: Pattern and Process; Springer-Verlag: New York, NY, USA, 2001; p. 401. [Google Scholar]
- Ostfeld, R.S.; Glass, G.E.; Keesing, F. Spatial epidemiology: An emerging (or re-emerging) discipline. Trends Ecol. Evol. 2005, 20, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, Ü. Landscape metrics and indices: An overview of their use in landscape research. Liv. Rev. Landscape Res. 2009, 3, 1. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; Forest Science Department, Oregon State University: Corvallis, OR, USA, 1994; p. 62. [Google Scholar]
- Kearns, F.R.; Kelly, N.M.; Carter, J.L.; Resh, V.H. A method for the use of landscape metrics in freshwater research and management. Landscape Ecol. 2005, 20, 113–125. [Google Scholar] [CrossRef]
- Liu, H.; Weng, Q. An examination of the effect of landscape pattern, land surface temperature, and socioeconomic conditions on WNV dissemination in Chicago. Environ. Monit. Assess. 2009, 159, 143–161. [Google Scholar] [CrossRef] [PubMed]
- Graham, A.; Danson, F.; Craig, P. Ecological epidemiology: The role of landscape structure in the transmission risk of the fox tapeworm Echinococcus multilocularis (Leukart 1863) (Cestoda: Cyclophyllidea: Taeniidae). Prog. Phys. Geog. 2005, 29, 77. [Google Scholar] [CrossRef]
- Graham, A.; Danson, F.; Giraudoux, P.; Craig, P. Ecological epidemiology: Landscape metrics and human alveolar echinococossis. Acta Trop. 2004, 91, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.; Shaari, D.; Guo, Q.H.; Liu, D.S. A comparison of standard and hybrid classifier methods for mapping hardwood mortality in areas affected by “sudden oak death”. Photogramm. Eng. Remote Sensing 2004, 70, 1229–1239. [Google Scholar] [CrossRef]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J. Object-oriented image analysis and scale-space: Theory and methods for modeling and evaluating multiscale landscape structure. In Proceedings of ISPRS WG IV/3, IV/5, IV/6 and IV/7 Workshop “Challenges in Geo-Spatial Analysis, Integration and Visualization”, Athens, GA, USA, 29–31 October 2011; In IAPRS; 2001, Volume 34, Part 4/W5. pp. 22–29.
- Pal, N.R.; Pal, S.K. A review on image segmentation techniques. Pattern Recogn. 1993, 26, 1277–1294. [Google Scholar] [CrossRef]
- Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 30, 650–665. [Google Scholar] [CrossRef]
- Turker, M.; Sumer, E. Building-based damage detection due to earthquake using the watershed segmentation of the post-event aerial images. Int. J. Remote Sens. 2008, 29, 3073–3089. [Google Scholar] [CrossRef]
- Ebert, A.; Kerle, N.; Stein, A. Urban social vulnerability assessment with physical proxies and spatial metrics derived from air-and spaceborne imagery and GIS data. Natural Hazards 2009, 48, 275–294. [Google Scholar] [CrossRef]
- Addink, E.A.; de Jong, S.M.; Davis, S.A.; Dubyanskiy, V.; Leirs, H. Using Very High Spatial Resolution Remote Sensing to Monitor and Combat Outbreaks of Bubonic Plague in Kazakhstan. In Proceedings of Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, Natal, Brazil, 25–30 April 2009; pp. 7529–7536.
- Stow, D.; Lopez, A.; Lippitt, C.; Hinton, S.; Weeks, J. Object-based classification of residential land use within Accra, Ghana based on Quickbird satellite data. Int. J. Remote Sens. 2007, 28, 5167. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Tiede, D.; Holbling, D.; Fureder, P.; Zeil, P. Earth observation (EO)-based ex post assessment of internally displaced person (IDP) camp evolution and population dynamics in Zam Zam, Darfur. Int. J. Remote Sens. 2010, 31, 5709–5731. [Google Scholar] [CrossRef]
- Gusella, L.; Adams, B.J.; Bitelli, G.; Huyck, C.K.; Mognol, A. Object-oriented image understanding and post-earthquake damage assessment for the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, S225. [Google Scholar] [CrossRef]
- Al-Khudhairy, D.H.A.; Caravaggi, I.; Giada, S. Structural damage assessments from IKONOS data using change detection, object-oriented segmentation, and classification techniques. Photogramm. Eng. Remote Sensing 2005, 71, 825–837. [Google Scholar] [CrossRef]
- Weeks, J.R.; Hill, A.; Stow, D.; Getis, A.; Fugate, D. Can we spot a neighborhood from the air? Defining neighborhood structure in Accra, Ghana. GeoJournal 2007, 69, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Spielman, S.E.; Yoo, E. The spatial dimensions of neighborhood effects. Soc. Sci. Med. 2009, 68, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Watson, E.; Byrne, R. Abundance and diversity of tidal marsh plants along the salinity gradient of the San Francisco Estuary: Implications for global change ecology. Plant Ecol. 2009, 205, 113–128. [Google Scholar] [CrossRef]
- Kelly, N.M.; Fonseca, M.; Whitfield, P. Predictive mapping for management and conservation of seagrass beds in North Carolina. Aquat. Conserv. 2001, 11, 437–451. [Google Scholar] [CrossRef]
- Turner, M. Landscape ecology: The effect of pattern on process. Ann. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Sousa, W.P. Intertidal mosaics: Patch size, propagule availability, and spatially variable patterns of succession. Ecology 1984, 65, 1918–1935. [Google Scholar] [CrossRef]
- Hay, G.; Castilla, G.; Wulder, M.A.; Ruiz, J.R. An automated object-based approach for the multiscale image segmentation of forest scenes. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 339–359. [Google Scholar] [CrossRef]
- Hay, G.J.; Blaschke, T.; Marceau, D.J.; Bouchard, A. A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS J. Photogramm. 2003, 57, 327–345. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Yuan, M.; Cova, T.J. Towards a general theory of geographic representation in GIS. Int. J. GIS 2007, 21, 239–260. [Google Scholar] [CrossRef]
- Cohen, J.M.; Ernst, K.C.; Lindblade, K.A.; Vulule, J.M.; John, C.C.; Wilson, M.L. Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands. Malaria J. 2010, 9, 328. [Google Scholar] [CrossRef] [PubMed]
- Navulur, K. Multispectral Image Analysis Using the Object-Oriented Paradigm; CRC Press: Boca Raton, FL, USA, 2007; p. 163. [Google Scholar]
- ITT. Visual Information Solutions ENVI Software. Available online: www.ittvis.com/ENVI (accessed on 20 October 2011).
- Visual Learning Systems Inc. Feature Analyst 4.2 for ArcGIS: Reference Manual; Visual Learning Systems Inc.: Missoula, MT, USA, 2008. [Google Scholar]
- ERDAS Inc. Automating Feature Extraction with IMAGINE Objective: White Paper; ERDAS Inc.: Norcross, GA, USA, 2009. [Google Scholar]
- Clark Labs. IDRISI Focus Paper: Segmentation and Segment-Based Classification; Clark Labs: Worcester, MA, USA, 2009. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kelly, M.; Blanchard, S.D.; Kersten, E.; Koy, K. Terrestrial Remotely Sensed Imagery in Support of Public Health: New Avenues of Research Using Object-Based Image Analysis. Remote Sens. 2011, 3, 2321-2345. https://doi.org/10.3390/rs3112321
Kelly M, Blanchard SD, Kersten E, Koy K. Terrestrial Remotely Sensed Imagery in Support of Public Health: New Avenues of Research Using Object-Based Image Analysis. Remote Sensing. 2011; 3(11):2321-2345. https://doi.org/10.3390/rs3112321
Chicago/Turabian StyleKelly, Maggi, Samuel D. Blanchard, Ellen Kersten, and Kevin Koy. 2011. "Terrestrial Remotely Sensed Imagery in Support of Public Health: New Avenues of Research Using Object-Based Image Analysis" Remote Sensing 3, no. 11: 2321-2345. https://doi.org/10.3390/rs3112321
APA StyleKelly, M., Blanchard, S. D., Kersten, E., & Koy, K. (2011). Terrestrial Remotely Sensed Imagery in Support of Public Health: New Avenues of Research Using Object-Based Image Analysis. Remote Sensing, 3(11), 2321-2345. https://doi.org/10.3390/rs3112321