Classifying Rocky Land Cover Using Random Forest Modeling: Lessons Learned and Potential Applications in Washington, USA
"> Figure 1
<p>A map of the study area, including delineations for the Cascades (green) and Columbia (blue) regions and their associated sub-regions (italicized, with labels colored according to their region) in Washington, USA. Base map: Bing VirtualEarth.</p> "> Figure 2
<p>Conceptual diagrams conveying our reasoning for formulating multi-temporal predictors based on Sentinel-2 data. (<b>A</b>) The seasonal difference in NDVI was calculated to distinguish rocky land cover from grasses or drought-deciduous shrubs, while (<b>B</b>) NBR interannual metrics were used to distinguish rocky land cover, expected to have low NBR interannual variability, from disturbed landscapes (typically, burned or clearcut forests in the Cascades region), expected to have higher interannual variability in NBR.</p> "> Figure 3
<p>A workflow diagram exhibiting the point selection, attribution, classification, and iterative process utilized to classify rocky land cover for each sub-region.</p> "> Figure 4
<p>Land cover classified as rocky (black) and non-rocky (green). Full random forest models (40 predictors) for sub-regions in the Cascades and Columbia regions of Washington, USA, yielded land cover classification apart from the Portland sub-region, which had limited rocky land cover points (see <a href="#remotesensing-17-00915-t002" class="html-table">Table 2</a>). Base map: Bing VirtualEarth.</p> "> Figure 5
<p>(<b>A</b>) Variable importance of 40 predictors for the Cascades region (large black points) and associated sub-regions (smaller gray points), with boxes colored by predictor group. (<b>B</b>) Variable importance for 40 predictors for the Columbia region (large black points) and associated sub-regions (smaller gray points), with boxes colored by predictor group.</p> "> Figure 6
<p>Segmented regression results for overall accuracy, producer’s accuracy, and user’s accuracy statistics for (<b>A</b>) the Cascades and (<b>B</b>) the Columbia regions. For both regions, the mean breakpoint (vertical dashed line) was between six and seven predictors; thus, the optimized models utilize seven predictors for both regions.</p> "> Figure 7
<p>For optimized models, predictor values and their distributions vary between rocky and non-rocky land cover classifications for the Cascades and Columbia regions. Violin plots display seven ‘optimal’ predictors for each region, ordered by variable importance (see <a href="#app1-remotesensing-17-00915" class="html-app">Figure S2</a> for predictors’ variable importance in optimized models; see <a href="#app1-remotesensing-17-00915" class="html-app">Figure S3</a> for violin plots for all predictors).</p> "> Figure 8
<p>Case Study 1: A rocky patch in the southeast corner of the <span class="html-italic">Forbidden</span> sub-region shown using (<b>A</b>) NAIP imagery via Google Earth, (<b>B</b>) classified rocky land cover using 10 m full models and (<b>C</b>) 1 m resolution NAIP- and topography-based models, and (<b>D</b>) the overlap (purple) between 10 m (red) and 1 m resolution (blue) rocky land cover classification.</p> "> Figure 9
<p>Case Study 2: classification of non-rocky and rocky land covers and various unstable classes, determined by a (<b>A</b>) time series stability analysis for the <span class="html-italic">Snoqualmie</span> sub-region and (<b>B</b>–<b>D</b>) a zoomed-in area in the sub-region. The zoomed-in area shows (<b>B</b>) the stability classes, (<b>C</b>) the natural color image, and (<b>D</b>) the rocky land cover classification without stability classes included.</p> "> Figure 10
<p>Applications of Case Study 2: comparing sub-regions by investigating (<b>A</b>) proportions of classified area fitting in rocky and unstable land cover classifications and (<b>B</b>) their stability ratios, showing that sub-regions in the Cascades region have more stable classifications of rocky land cover than those in the Columbia region. Proportions of non-rocky land cover are not displayed, as their proportions were significantly higher than those of rocky or unstable classifications.</p> "> Figure 11
<p>Case Study 3: comparing rocky habitat classification to WDFW priority habitat maps for talus slopes and cliffs. Maps show the spatial extent of (<b>A</b>) WDFW priority habitat polygons and (<b>B</b>) the rocky land cover classification derived from our random forest modeling approach for the full Cascades region. Selected zoomed-in areas (shown in (<b>A</b>,<b>B</b>) with (<b>C</b>–<b>F</b>) blue and (<b>G</b>–<b>J</b>) red rectangles) exhibit differences in spatial extent and precision of rocky land cover classification, showing (<b>C</b>,<b>G</b>) natural color images, (<b>D</b>,<b>H</b>) WDFW priority habitat polygons, (<b>E</b>,<b>I</b>) our rocky habitat classification, and (<b>F</b>,<b>J</b>) how the two directly compare.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Defining Rocky Land Cover
2.2. Study Area
2.3. Data Sources and Predictors
2.4. Point Selection and Attribution
2.5. Random Forest Modeling
2.6. Case Studies
3. Results
3.1. Variable Importance
3.2. Optimizing Random Forest Models
3.3. Accuracy Statistics
4. Case Studies
4.1. Case Study 1: Improving Delineation of Rocky Land Cover Patch Boundaries
4.2. Case Study 2: Stability Analysis
4.3. Case Study 3: Comparing Rocky Habitat Classification to Priority Habitat Maps
5. Discussion
5.1. Predictors and Optimization
5.2. Limitations and Next Steps
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Data Source | Data Type | Predictor | Description |
---|---|---|---|
Sentinel-2 | Bands | Aerosols (B1) | Wavelength: 443.9 nm (S2A), 442.3 nm (S2B); Resolution: 60 m |
Blue (B2) | Wavelength: 496.6 nm (S2A), 492.1 nm (S2B); Resolution: 10 m | ||
Green (B3) | Wavelength: 560 nm (S2A), 559 (S2 B); Resolution: 10 m | ||
Red (B4) | Wavelength: 664.5 nm (S2A), 665 nm (S2B); Resolution: 10 m | ||
Near Infrared (NIR; B8) | Wavelength: 835.1 nm (S2A), 833 nm (S2B); Resolution: 10 m | ||
Red Edge 1 (B5) | Wavelength: 703.9 nm (S2A), 703.8 nm (S2B); Resolution: 20 m | ||
Red Edge 2 (B6) | Wavelength: 740.2 nm (S2A), 739.1 nm (S2B); Resolution: 20 m | ||
Red Edge 3 (B7) | Wavelength: 782.5 nm (S2A), 779.7 nm (S2B); Resolution: 20 m | ||
Water Vapor (B9) | Wavelength: 945 nm (S2A), 943.2 nm (S2B); Resolution: 60 m | ||
Cirrus (B10) | Wavelength: 1373.5 nm (S2A), 1376.9 nm (S2B); Resolution: 60 m | ||
Short-wave Infrared 1 (SWIR 1; B11) | Wavelength: 1613.7 nm (S2A), 1610.4 nm (S2B); Resolution: 20 m | ||
SWIR 2 (B12) | Wavelength: 2202.4 nm (S2A), 2185.7 nm (S2B); Resolution: 20 m | ||
Indices | Normalized Difference in Vegetation Index (NDVI) | Commonly used index of vegetation greenness, calculated as: | |
Normalized Burn Ratio (NBR) | Index intended to identify burned areas and provide a measure of burn severity, calculated as | ||
Normalized Buildup Index (NBI) | Index intended to identify developed areas calculated as | ||
Modified Soil-Adjusted Vegetation Index 2 (MSAVI2; [68]) | Index of vegetation greenness adjusted to address limitations of NDVI when applied to areas with exposed soil, calculated as | ||
Enhanced Vegetation Index (EVI; [84]) | Index of vegetation greenness adjusted to increase sensitivity in densely forested areas, calculated as | ||
Normalized Difference Water Index (NDWI; [85]) | Index which highlights water and moisture, calculated as | ||
Automated Water Extraction Index, no shadows (AWEIno shadows; [71]) | Index intended to identify surface water in areas where shadows are not an issue, calculated as | ||
Automated Water Extraction Index, shadows (AWEIshadow; [71]) | Index intended to identify surface area in areas where shadows might be an issue, calculated as | ||
Multi- Temporal | Seasonal Difference in NDVI | A predictor we formulated for this study using monthly values of NDVI (see Figure 2A) | |
NBR Maximum Variance | Interannual NBR predictors we formulated for this study using yearly values of NBR (see Figure 2B) | ||
NBR Variance of Medians | |||
NBR Variance of 25th Percentiles | |||
NAIP | Bands | Blue (B) | Wavelength range: 420–492 nm; Resolution: 60 cm−1 m |
Green (G) | Wavelength range: 533–587 nm; Resolution: 60 cm−1 m | ||
Red (R) | Wavelength range: 604–664 nm; Resolution: 60 cm−1 m | ||
Near Infrared (NIR; N) | Wavelength range: 604–664 nm; Resolution: 60 cm−1 m | ||
Index | NDVI | See above | |
Texture | NDVImedian texture | Texture derived from a moving 3 × 3 cell window, calculating median NDVI values from a NAIP 1 m cell | |
NDVImaximum texture | Texture derived from a moving 3 × 3 cell window, calculating maximum NDVI values from a NAIP 1 m cell | ||
Sentinel-1 (SAR) | Bands | Vertical–Vertical (VV) | Transmission of vertically polarized light, reception of vertically polarized light |
Vertical–Horizontal (VH) | Transmission of vertically polarized light, reception of horizontally polarized light | ||
Topography | Metrics | Elevation | Extracted from the 10 m 3DEP digital elevation model (USGS) |
Slope | Extracted using ee.Terrain.slope from the national elevation dataset (NED, USGS) | ||
Indices | Terrain Ruggedness Index (TRI) | Calculated using the SRTM digital elevation model (USGS) by using a convolution with a 1-pixel-radius kernel square neighborhood; used bilinear interpolation to resample to 10 m resolution | |
Topographic Position Index (TPI) | Extracted from the Ecologically Relevant Geomorphology (ERGo) Datasets (Conservation Science Partners) to parse valleys and ridgetops; 270 m native resolution, bilinear interpolation to 10 m | ||
Continuous Heat-Insolation Load Index (CHILI) | Extracted from the Ecologically Relevant Geomorphology (ERGo) Datasets (Conservation Science Partners) to quantify topographic shading and insolation and their impacts on transpiration; 90 m resolution, bilinear interpolation to 10 m | ||
Topographic Roughness [58] | Extracted from the Geomorpho90m Dataset to describe ruggedness and topographic complexity; 90 m native resolution, bilinear interpolation to 10 m | ||
Compound Topographic Index (CTI; [58]) | Extracted from the Geomorpho90m Dataset to describe topographic relief; 90 m native resolution, bilinear interpolation to 10 m |
References
- IUCN The IUCN Red List of Threatened Species. Version 2023-1. 2023. Available online: https://www.iucnredlist.org (accessed on 25 February 2025).
- García, M.B.; Domingo, D.; Pizarro, M.; Font, X.; Gómez, D.; Ehrlén, J. Rocky Habitats as Microclimatic Refuges for Biodiversity. A Close-up Thermal Approach. Environ. Exp. Bot. 2020, 170, 103886. [Google Scholar] [CrossRef]
- Herrington, R.E. Talus Use by Amphibians and Reptiles in the Pacific Northwest. In General Technical Report RM-166: Management of Amphibians, Reptiles, and Small Mammals in North America: Proceedings of the Symposium; USDA Forest Service Rocky Mountain Forest and Range Experimment Station: Fort Collins, CO, USA, 1988; pp. 216–221. [Google Scholar]
- Moyer-Horner, L.; Mathewson, P.D.; Jones, G.M.; Kearney, M.R.; Porter, W.P. Modeling Behavioral Thermoregulation in a Climate Change Sentinel. Ecol. Evol. 2015, 5, 5810–5822. [Google Scholar] [CrossRef] [PubMed]
- Mares, M.A.; Lacher, T.E. Ecological, Morphological, and Behavioral Convergence in Rock-Dwelling Mammals. In Current Mammalogy; Genoways, H.H., Ed.; Springer: Boston, MA, USA, 1987; pp. 307–348. ISBN 978-1-4757-9911-8. [Google Scholar]
- Tyser, R.W. Use of Substrate for Surveillance Behaviors in a Community of Talus Slope Mammals. Am. Midl. Nat. 1980, 104, 32. [Google Scholar] [CrossRef]
- Freeland, W.J.; Winter, J.W.; Raskin, S. Australian Rock-Mammals: A Phenomenon of the Seasonally Dry Tropics. Biotropica 1988, 20, 70. [Google Scholar] [CrossRef]
- White, D.; Kendall, K.C.; Picton, H.D. Grizzly Bear Feeding Activity at Alpine Army Cutworm Moth Aggregation Sites in Northwest Montana. Can. J. Zool. 1998, 76, 221–227. [Google Scholar] [CrossRef]
- Norton, P.M. The Habitat and Feeding Ecology of the Klipspringer Oreotragus Oreotragus (Zimmermann, 1783) in Two Areas of the Cape Province; University of Pretoria: Pretoria, South Africa, 1980. [Google Scholar]
- McKinney, T.; Boe, S.R.; de Vos, J.C. GIS-Based Evaluation of Escape Terrain and Desert Bighorn Sheep Populations in Arizona. Wildl. Soc. Bull. 2003, 31, 1229–1236. [Google Scholar]
- Fertig, W. Status of Federally Listed Plant Taxa in Washington State. In Washington Natural Heritage Program; Washington Department of Natural Resources: Olympia, WA, USA, 2021. [Google Scholar]
- Glavich, D.G.; Stratton, A. Fine-Scaled Special Habitat Mapping: Remote Sensing with Satellite Imagery and Photo-Interpreted Model Training Data (December 2024 Draft); USDA Forest Service Report in Preparation; Pacific Northwest Region; US Forest Service: Portland, OR, USA, in prep.
- Washington Department of Fish and Wildlife. Priority Habitat and Species List. Olympia, WA. 2008. Available online: https://wdfw.wa.gov/sites/default/files/publications/00165/wdfw00165.pdf (accessed on 25 February 2025).
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the Conterminous United States–Representing a Decade of Land Cover Change Information. Photogramm. Eng. Remote Sens. 2015, 81, 346–354. [Google Scholar]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10m 2021 v200; 2022. Available online: https://worldcover2021.esa.int/documentation (accessed on 25 February 2025).
- Foody, G.M.; Cox, D.P. Sub-Pixel Land Cover Composition Estimation Using a Linear Mixture Model and Fuzzy Membership Functions. Int. J. Remote Sens. 1994, 15, 619–631. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Foschi, P.G. A Geometric Approach to a Mixed Pixel Problem: Detecting Subpixel Woody Vegetation. Remote Sens. Environ. 1994, 50, 317–327. [Google Scholar] [CrossRef]
- Smith, M.J.; Pain, C.F. Applications of Remote Sensing in Geomorphology. Prog. Phys. Geogr. Earth Environ. 2009, 33, 568–582. [Google Scholar] [CrossRef]
- Smith, J.; Heinemeyer, K. Modeling Talus Habitat Using NAIP Imagery and Topographic Features in Portions of Idaho, Montana and Wyoming; Report to Idaho Department Fish and Game, Round River Conservation Studies: Bozeman, MT, USA, 2017. [Google Scholar]
- Schneevoigt, N.J.; Van Der Linden, S.; Thamm, H.-P.; Schrott, L. Detecting Alpine Landforms from Remotely Sensed Imagery. A Pilot Study in the Bavarian Alps. Geomorphology 2008, 93, 104–119. [Google Scholar] [CrossRef]
- Stead, D.; Donati, D.; Wolter, A.; Sturzenegger, M. Application of Remote Sensing to the Investigation of Rock Slopes: Experience Gained and Lessons Learned. ISPRS Int. J. Geo-Inf. 2019, 8, 296. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Vanderbilt, B.C.; Ramezan, C.A. Land Cover Classification and Feature Extraction from National Agriculture Imagery Program (NAIP) Orthoimagery: A Review. Photogramm. Eng. Remote Sens. 2017, 83, 737–747. [Google Scholar] [CrossRef]
- Abdikan, S.; Sanli, F.B.; Ustuner, M.; Calò, F. Land Cover Mapping Using Sentinel-1 SAR Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 757–761. [Google Scholar] [CrossRef]
- Balzter, H.; Cole, B.; Thiel, C.; Schmullius, C. Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data Using Random Forests. Remote Sens. 2015, 7, 14876–14898. [Google Scholar] [CrossRef]
- Holtgrave, A.-K.; Röder, N.; Ackermann, A.; Erasmi, S.; Kleinschmit, B. Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. Remote Sens. 2020, 12, 2919. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Drake, J.M.; Randin, C.; Guisan, A. Modelling Ecological Niches with Support Vector Machines. J. Appl. Ecol. 2006, 43, 424–432. [Google Scholar] [CrossRef]
- Pouteau, R.; Meyer, J.-Y.; Taputuarai, R.; Stoll, B. Support Vector Machines to Map Rare and Endangered Native Plants in Pacific Islands Forests. Ecol. Inform. 2012, 9, 37–46. [Google Scholar] [CrossRef]
- Mucherino, A.; Papajorgji, P.J.; Pardalos, P.M. Chapter 4. k-Nearest Neighbor Classification (in Data Mining in Agriculture); Springer Optimization and Its Applications; Springer: New York, NY, USA, 2009; Volume 34, ISBN 978-0-387-88614-5. [Google Scholar]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for Land Cover Classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Barnard, D.M.; Germino, M.J.; Pilliod, D.S.; Arkle, R.S.; Applestein, C.; Davidson, B.E.; Fisk, M.R. Cannot See the Random Forest for the Decision Trees: Selecting Predictive Models for Restoration Ecology. Restor. Ecol. 2019, 27, 1053–1063. [Google Scholar] [CrossRef]
- Alhassan, V.; Henry, C.; Ramanna, S.; Storie, C. A Deep Learning Framework for Land-Use/Land-Cover Mapping and Analysis Using Multispectral Satellite Imagery. Neural Comput. Appl. 2020, 32, 8529–8544. [Google Scholar] [CrossRef]
- Petliak, H.; Cerovski-Darriau, C.; Zaliva, V.; Stock, J. Where’s the Rock: Using Convolutional Neural Networks to Improve Land Cover Classification. Remote Sens. 2019, 11, 2211. [Google Scholar] [CrossRef]
- Tejasree, G.; Agilandeeswari, L. Land Use/Land Cover (LULC) Classification Using Deep-LSTM for Hyperspectral Images. Egypt. J. Remote Sens. Space Sci. 2024, 27, 52–68. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of Machine-Learning Classification in Remote Sensing: An Applied Review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Telker, M.J. The Cascade Mountains. J. Geogr. 1915, 13, 242–250. [Google Scholar] [CrossRef]
- Franklin, J.F. Vegetation and Soils in the Subalpine Forests of the Southern Washington Cascade Range. Ph.D. Thesis, Washington State University, Pullman, WA, USA, 1966. [Google Scholar]
- Siler, N.; Roe, G.; Durran, D. On the Dynamical Causes of Variability in the Rain-Shadow Effect: A Case Study of the Washington Cascades. J. Hydrometeorol. 2013, 14, 122–139. [Google Scholar] [CrossRef]
- Detling, L.E. Peculiarities of the Columbia River Gorge Flora. Madroño 1958, 14, 160–172. [Google Scholar]
- Halofsky, J.E.; Peterson, D.L.; Gravenmier, R.A. Climate Change Vulnerability and Adaptation in the Columbia River Gorge National Scenic Area, Mount Hood National Forest, and Willamette National Forest; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2022; p. PNW-GTR-1001. [Google Scholar]
- Klema, N.; Karlstrom, L.; Cannon, C.; Jiang, C.; O’Connor, J.; Wells, R.; Schmandt, B. The Magmatic Origin of the Columbia River Gorge, USA. Sci. Adv. 2023, 9, eadj3357. [Google Scholar] [CrossRef]
- Johnston, A.N.; Christophersen, R.G.; Beever, E.A.; Ransom, J.I. Freezing in a Warming Climate: Marked Declines of a Subnivean Hibernator after a Snow Drought. Ecol. Evol. 2021, 11, 1264–1279. [Google Scholar] [CrossRef]
- Herrington, R.E.; Larsen, J.H. Current Status, Habitat Requirements and Management of the Larch Mountain Salamander Plethodon Larselli Burns. Biol. Conserv. 1985, 34, 169–179. [Google Scholar] [CrossRef]
- Nielsen, E.M.; Noone, M.D. Tree Cover Mapping for Assessing Greater Sage-Grouse Habitat in Eastern Oregon; Institute for Natural Resources Publications: Corvalis, OR, USA, 2014; Volume 14. [Google Scholar]
- Henderson, E.B.; Bell, D.M.; Gregory, M.J. Vegetation Mapping to Support Greater Sage-grouse Habitat Monitoring and Management: Multi- or Univariate Approach? Ecosphere 2019, 10, e02838. [Google Scholar] [CrossRef]
- Huang, W.; DeVries, B.; Huang, C.; Lang, M.W.; Jones, J.W.; Creed, I.F.; Carroll, M.L. Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sens. 2018, 10, 797. [Google Scholar] [CrossRef]
- Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Estimation and Mapping of Above-Ground Biomass of Mangrove Forests and Their Replacement Land Uses in the Philippines Using Sentinel Imagery. ISPRS J. Photogramm. Remote Sens. 2017, 134, 70–85. [Google Scholar] [CrossRef]
- Colson, D.; Petropoulos, G.P.; Ferentinos, K.P. Exploring the Potential of Sentinels-1 & 2 of the Copernicus Mission in Support of Rapid and Cost-Effective Wildfire Assessment. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 262–276. [Google Scholar] [CrossRef]
- Amatulli, G.; McInerney, D.; Sethi, T.; Strobl, P.; Domisch, S. Geomorpho90m, Empirical Evaluation and Accuracy Assessment of Global High-Resolution Geomorphometric Layers. Sci. Data 2020, 7, 162. [Google Scholar] [CrossRef]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification Using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Haifeng, L. Random Forest Classification (Smile GitHub Repository). Available online: https://github.com/haifengl/smile/blob/master/core/src/main/java/smile/classification/RandomForest.java (accessed on 25 February 2025).
- Muggeo, V. Regression Models with Break-Points/Change-Points Estimation (with Possibly Random Effects). R J. 2024, 2.1-0, 49–56. [Google Scholar]
- Stahl, A.T.; Fremier, A.K.; Heinse, L. Cloud-Based Environmental Monitoring to Streamline Remote Sensing Analysis for Biologists. BioScience 2021, 71, 1249–1260. [Google Scholar] [CrossRef]
- Smith, A.T. Conservation Status of American Pikas (Ochotona princeps). J. Mammal. 2020, 101, 1466–1488. [Google Scholar] [CrossRef]
- Broadbooks, H.E. Ecology and Distribution of the Pikas of Washington and Alaska. Am. Midl. Nat. 1965, 73, 299. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment: Sampling and Analysis Methods; USDA Forest Service General Technical Report; US Forest Service Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; RMRS-GRT-164-CD. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Franklin, J.F.; Dyrness, C.T. Vegetation of Oregon & Washington; United States Forest Service, Pacific Northwest Forest and Range Experiment Station: Portland, OR, USA, 1969. [Google Scholar]
- Zhang, B.; Wdowinski, S.; Gann, D.; Hong, S.-H.; Sah, J. Spatiotemporal Variations of Wetland Backscatter: The Role of Water Depth and Vegetation Characteristics in Sentinel-1 Dual-Polarization SAR Observations. Remote Sens. Environ. 2022, 270, 112864. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Chaplot, V.; Walter, C. Subsurface Topography to Enhance the Prediction of the Spatial Distribution of Soil Wetness. Hydrol. Process. 2003, 17, 2567–2580. [Google Scholar] [CrossRef]
- Wehr, A.; Lohr, U. Airborne Laser Scanning—An Introduction and Overview. ISPRS J. Photogramm. Remote Sens. 1999, 54, 68–82. [Google Scholar] [CrossRef]
- Daniels, D.J.; Gunton, D.J.; Scott, H.F. Introduction to Subsurface Radar. IEE Proc. F Commun. Radar Signal Process. 1988, 135, 278. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive Habitat Distribution Models in Ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Rudnick, D.A.; Ryan, S.J.; Beier, P.; Cushman, S.A.; Dieffenbach, F.; Epps, C.W.; Gerber, L.R.; Hartter, J.; Jenness, J.S.; Kintsch, J.; et al. The Role of Landscape Connectivity in Planning and Implementing Conservation and Restoration Priorities. Issues Ecol. 2012, 16, 1–20. [Google Scholar]
- Kuipers, K.J.J.; Hilbers, J.P.; Garcia-Ulloa, J.; Graae, B.J.; May, R.; Verones, F.; Huijbregts, M.A.J.; Schipper, A.M. Habitat Fragmentation Amplifies Threats from Habitat Loss to Mammal Diversity across the World’s Terrestrial Ecoregions. One Earth 2021, 4, 1505–1513. [Google Scholar] [CrossRef]
- Fitzsimons, J.A.; Michael, D.R. Rocky Outcrops: A Hard Road in the Conservation of Critical Habitats. Biol. Conserv. 2017, 211, 36–44. [Google Scholar] [CrossRef]
- Michael, D.R.; Lindenmayer, D.B.; Cunningham, R.B. Managing Rock Outcrops to Improve Biodiversity Conservation in Australian Agricultural Landscapes. Ecol. Manag. Restor. 2010, 11, 43–50. [Google Scholar] [CrossRef]
- Stewart, J.A.E.; Wright, D.H.; Heckman, K.A. Apparent Climate-Mediated Loss and Fragmentation of Core Habitat of the American Pika in the Northern Sierra Nevada, California, USA. PLoS ONE 2017, 12, e0181834. [Google Scholar] [CrossRef]
- Peacock, M.M.; Smith, A.T. The Effect of Habitat Fragmentation on Dispersal Patterns, Mating Behavior, and Genetic Variation in a Pika (Ochotona princeps) Metapopulation. Oecologia 1997, 112, 524–533. [Google Scholar] [CrossRef]
- Ahmad, F. Spectral Vegetation Indices Performance Evaluated for Cholistan Desert. J. Geogr. Reg. Plann. 2012, 5, 165–172. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
Data Source | Data Type | Predictors |
---|---|---|
Sentinel-2 | Spectral reflectance | Aerosol, Blue, Green, Red, NIR, Red Edge 1-3, Water Vapor, Cirrus, SWIR 1-2 |
Indices | NDVI, NBR, NBI, MSAVI2, EVI, NDWI, AWEIno shadow, AWEIshadow | |
Multi-temporal | Seasonal Difference in NDVI, NBR Maximum Variance, NBR Variance of Medians, NBR Variance of 25th Percentiles | |
NAIP | Spectral reflectance | Blue, Green, Red, NIR |
Index | NDVI | |
Texture | NDVImedian, NDVImaximum | |
Sentinel-1 | Radar | Vertical–vertical (VV), Vertical–horizontal (VH) |
Topography | Metrics | Elevation, Slope |
Indices | Topographic Position Index (TPI), CHILI, Roughness, Compound Topographic Index (CTI), Terrain Ruggedness Index (TRI) |
Sub-Region/Region | Area (km2) | Number of Training/Validation Points | ||
---|---|---|---|---|
Non-Rocky | Rocky | Total | ||
N. Cascades | 8274 | 2802 | 2818 | 5620 |
Winthrop | 14,800 | 4852 | 1495 | 6347 |
Forbidden | 10,290 | 4659 | 2641 | 7300 |
Baker | 17,650 | 6465 | 3535 | 10,000 |
Snoqualmie | 14,717 | 4957 | 2660 | 7617 |
Rainier | 17,261 | 5843 | 1919 | 7762 |
Adams | 17,416 | 4839 | 1613 | 6452 |
St. Helens | 16,253 | 4765 | 547 | 5312 |
Cascades | 116,662 | 39,182 | 17,228 | 56,410 |
Colville | 7661 | 3150 | 634 | 3784 |
Chelan | 3971 | 3485 | 1084 | 4569 |
Quincy | 2113 | 2007 | 713 | 2720 |
Tri-Cities | 10,694 | 2912 | 216 | 3128 |
CRGNSA | 2424 | 7195 | 1913 | 9108 |
Portland | 3978 | 1233 | 8 | 1241 |
Columbia | 30,862 | 19,982 | 4568 | 24,550 |
Sub-Region/ Region | Full Model | Optimized Model | ||||
---|---|---|---|---|---|---|
Overall Accuracy (%) | F-Score | Overall Accuracy (%) | F-Score | |||
Non-Rocky | Rocky | Non-Rocky | Rocky | |||
N. Cascades | 95.7 | 0.956 | 0.957 | 95.6 | 0.955 | 0.956 |
Winthrop | 97.7 | 0.985 | 0.953 | 96.9 | 0.980 | 0.938 |
Forbidden | 98.1 | 0.986 | 0.976 | 98.1 | 0.986 | 0.972 |
Baker | 98.0 | 0.985 | 0.971 | 97.3 | 0.980 | 0.961 |
Snoqualmie | 98.0 | 0.985 | 0.973 | 96.7 | 0.974 | 0.955 |
Rainier | 98.4 | 0.989 | 0.970 | 98.1 | 0.987 | 0.964 |
Adams | 97.5 | 0.984 | 0.948 | 97.3 | 0.983 | 0.944 |
St. Helens | 97.7 | 0.987 | 0.905 | 97.6 | 0.986 | 0.896 |
Cascades | 97.9 | 0.985 | 0.965 | 97.4 | 0.981 | 0.954 |
Colville | 97.0 | 0.984 | 0.784 | 94.6 | 0.968 | 0.820 |
Chelan | 95.3 | 0.971 | 0.884 | 92.2 | 0.951 | 0.809 |
Quincy | 93.6 | 0.957 | 0.879 | 93.1 | 0.954 | 0.864 |
Tri-Cities | 97.5 | 0.986 | 0.868 | 98.1 | 0.990 | 0.870 |
CRGNSA | 96.5 | 0.979 | 0.908 | 95.7 | 0.973 | 0.888 |
Columbia | 95.2 | 0.971 | 0.864 | 93.9 | 0.963 | 0.825 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celebrezze, J.V.; Alegbeleye, O.M.; Glavich, D.A.; Shipley, L.A.; Meddens, A.J.H. Classifying Rocky Land Cover Using Random Forest Modeling: Lessons Learned and Potential Applications in Washington, USA. Remote Sens. 2025, 17, 915. https://doi.org/10.3390/rs17050915
Celebrezze JV, Alegbeleye OM, Glavich DA, Shipley LA, Meddens AJH. Classifying Rocky Land Cover Using Random Forest Modeling: Lessons Learned and Potential Applications in Washington, USA. Remote Sensing. 2025; 17(5):915. https://doi.org/10.3390/rs17050915
Chicago/Turabian StyleCelebrezze, Joe V., Okikiola M. Alegbeleye, Doug A. Glavich, Lisa A. Shipley, and Arjan J. H. Meddens. 2025. "Classifying Rocky Land Cover Using Random Forest Modeling: Lessons Learned and Potential Applications in Washington, USA" Remote Sensing 17, no. 5: 915. https://doi.org/10.3390/rs17050915
APA StyleCelebrezze, J. V., Alegbeleye, O. M., Glavich, D. A., Shipley, L. A., & Meddens, A. J. H. (2025). Classifying Rocky Land Cover Using Random Forest Modeling: Lessons Learned and Potential Applications in Washington, USA. Remote Sensing, 17(5), 915. https://doi.org/10.3390/rs17050915