Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring
"> Figure 1
<p>Test sites in Lower Saxony, Germany. The pie charts show the area share of the different land uses per test site. Test site IDs and discarded test sites (light green) are shown. On the right, test site ID 977 serves as an example showing land cover parcels of the land use types winter wheat, spring barley, maize, and grassland.</p> "> Figure 2
<p>Acquisition dates of S1 scenes that coincide with S2 scenes (<5% clouds) for the test sites.</p> "> Figure 3
<p>Temporal profiles of land use types (mean value over all parcels with lower and upper quartile) for all investigated optical and SAR indices. Phenophases are indicated in background colours.</p> "> Figure 4
<p>Scatterplots of optical indices and respective best SAR indices separated by land use type. Plots with RVI have a header in light grey and plots with vertical transmit, horizontal receive (VH) in dark grey.</p> "> Figure 5
<p>Scatterplot of best optical–best SAR index pair for every phenophase per land use type. There are no data for grassland (GL) during the green phase. Plots with RVI have a header in light grey and plots with VH in dark grey. NDVI has a header in light blue, NDWI in dark blue, and PSRI in green.</p> "> Figure 6
<p>Variable Importance of the multiple linear regression Analysis (MRA) for all observations with grouped optical and SAR variables and grouped auxiliary variables.</p> "> Figure A1
<p>Full model Variable Importance of the Multiple Linear Regression Analysis for all optical index and SAR index pairs by land use types.</p> "> Figure A2
<p>Variable importance of the multiple linear regression analysis for all optical index and SAR index pairs by land use type.</p> "> Figure A3
<p>Variable importance of the multiple linear regression analysis for all optical index and SAR index pairs by land use type and phenophase.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Data
2.1.1. Study Sites
2.1.2. Satellite Data
2.1.3. Land Use Types and Phenological Information
2.1.4. Auxiliary Data
2.2. Methods
2.2.1. Pre-Processing
2.2.2. Correlations and Regressions
- Run: MRA including all observations from all land use types and phenophases.
- Assessment of the variable importance analysis for grouped variables.
- Assessment of the variable importance analysis for individual variables.
- Reduction of the model to the most relevant variables.
- Run: Reduced MRA for data split by land use type.
- Run: Reduced MRA for data split by land use type and phenophase.
3. Results
3.1. Temporal Profiles of Optical and SAR Indices by Land Use Type
3.2. Correlation Analysis between Optical and SAR Indices
3.2.1. Correlations between Optical and SAR Indices by Land Use Type
3.2.2. Correlations between Optical and SAR Indices by Land Use Type and Phenophase
3.3. Multiple Regression Analysis
3.3.1. Multiple Linear Regression Analysis for All Optical and SAR Indices
3.3.2. Multiple Linear Regression Analysis for All Optical and SAR Indices by Land Use Type
3.3.3. Multiple Linear Regression Analysis for All Optical and SAR Indices by Land Use Type and Phenophase
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Land Use Type | Phenophase | Optical Index | Ratio | RVI | VH | VV |
---|---|---|---|---|---|---|
total | total | NDVI | 24 | 28 | 24 | 2 |
NDWI | 22 | 24 | 27 | 4 | ||
PSRI | 27 | 29 | 31 | 4 | ||
Grassland | total | NDVI | 16 | 19 | 15 | 1 |
NDWI | 15 | 16 | 21 | 5 | ||
PSRI | 16 | 18 | 21 | 3 | ||
growing | NDVI | 23 | 26 | 2 | 13 | |
NDWI | 20 | 23 | 0 | 17 | ||
PSRI | 26 | 29 | 4 | 8 | ||
senescence | NDVI | 12 | 14 | 23 | 7 | |
NDWI | 11 | 12 | 33 | 17 | ||
PSRI | 12 | 14 | 25 | 9 | ||
Maize | total | NDVI | 26 | 30 | 47 | 12 |
NDWI | 27 | 30 | 47 | 12 | ||
PSRI | 30 | 32 | 53 | 18 | ||
growing | NDVI | 31 | 35 | 45 | 8 | |
NDWI | 33 | 37 | 46 | 7 | ||
PSRI | 35 | 37 | 48 | 10 | ||
green | NDVI | 12 | 14 | 47 | 28 | |
NDWI | 10 | 11 | 46 | 31 | ||
PSRI | 19 | 22 | 59 | 36 | ||
senescence | NDVI | 49 | 52 | 66 | 29 | |
NDWI | 46 | 48 | 72 | 39 | ||
PSRI | 56 | 56 | 62 | 29 | ||
Spring barley | total | NDVI | 32 | 37 | 29 | 1 |
NDWI | 37 | 42 | 27 | 0 | ||
PSRI | 32 | 33 | 32 | 2 | ||
growing | NDVI | 47 | 54 | 32 | 2 | |
NDWI | 48 | 54 | 25 | 4 | ||
PSRI | 60 | 61 | 39 | 1 | ||
green | NDVI | 10 | 11 | 0 | 7 | |
NDWI | 12 | 14 | 0 | 7 | ||
PSRI | 8 | 8 | 0 | 5 | ||
senescence | NDVI | 16 | 19 | 45 | 35 | |
NDWI | 20 | 22 | 51 | 39 | ||
PSRI | 21 | 22 | 48 | 39 | ||
Winter wheat | total | NDVI | 42 | 47 | 15 | 2 |
NDWI | 47 | 51 | 9 | 6 | ||
PSRI | 46 | 47 | 29 | 0 | ||
growing | NDVI | 44 | 50 | 1 | 25 | |
NDWI | 49 | 54 | 0 | 36 | ||
PSRI | 46 | 49 | 5 | 12 | ||
green | NDVI | 21 | 23 | 0 | 7 | |
NDWI | 27 | 29 | 0 | 9 | ||
PSRI | 20 | 22 | 1 | 4 | ||
senescence | NDVI | 33 | 36 | 53 | 26 | |
NDWI | 29 | 31 | 48 | 28 | ||
PSRI | 44 | 45 | 57 | 34 |
References
- European Commission. CAP Expenditure in the Total EU Expenditure. Common Agricultural Policy: Key Graphs & Figures. 2020. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/cap-expenditure-graph1_en.pdf (accessed on 7 September 2020).
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- European Commission. EU Budget. The CAP after 2020; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-87374-4.
- Gerstl, S.A.W. Physics concepts of optical and radar reflectance signatures A summary review. Int. J. Remote Sens. 1990, 11, 1109–1117. [Google Scholar] [CrossRef]
- Hosseini, M.; McNairn, H.; Mitchell, S.; Dingle Robertson, L.; Davidson, A.; Homayouni, S. Synthetic aperture radar and optical satellite data for estimating the biomass of corn. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101933. [Google Scholar] [CrossRef]
- Macelloni, G.; Paloscia, S.; Pampaloni, P.; Marliani, F.; Gai, M. The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Trans. Geosci. Remote Sens. 2001, 39, 873–884. [Google Scholar] [CrossRef]
- Prabhakara, K.; Hively, W.D.; McCarty, G.W. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data: A review. Int. J. Remote Sens. 2019, 40, 6553–6595. [Google Scholar] [CrossRef]
- Deschamps, B.; McNairn, H.; Shang, J.; Jiao, X. Towards operational radar-only crop type classification: Comparison of a traditional decision tree with a random forest classifier. Can. J. Remote Sens. 2012, 38, 60–68. [Google Scholar] [CrossRef]
- Khabbazan, S.; Vermunt, P.; Steele-Dunne, S.; Ratering Arntz, L.; Marinetti, C.; van der Valk, D.; Iannini, L.; Molijn, R.; Westerdijk, K.; van der Sande, C. Crop Monitoring Using Sentinel-1 Data: A Case Study from The Netherlands. Remote Sens. 2019, 11, 1887. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Liu, C.-A.; Chen, Z.-X.; Shao, Y.; Chen, J.-S.; Hasi, T.; Pan, H.-Z. Research advances of SAR remote sensing for agriculture applications: A review. J. Integr. Agric. 2019, 18, 506–525. [Google Scholar] [CrossRef] [Green Version]
- Fontanelli, G.; Crema, A.; Azar, R.; Stroppiana, D.; Villa, P.; Boschetti, M. Agricultural crop mapping using optical and SAR multi-temporal seasonal data: A case study in Lombardy region, Italy. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1489–1492, ISBN 978-1-4799-5775-0. [Google Scholar]
- Schuster, C.; Schmidt, T.; Conrad, C.; Kleinschmit, B.; Förster, M. Grassland habitat mapping by intra-annual time series analysis—Comparison of RapidEye and TerraSAR-X satellite data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 25–34. [Google Scholar] [CrossRef]
- McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 2009, 64, 434–449. [Google Scholar] [CrossRef]
- McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2014, 30, 525–542. [Google Scholar] [CrossRef]
- Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.; Hong, S. Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean. IEEE Geosci. Remote Sens. Lett. 2012, 9, 564–568. [Google Scholar] [CrossRef]
- Kumar, D.; Srinivasa Rao, S.; Sharma, J.R. Radar Vegetation Index as an Alternative to NDVI for Monitoring of Soyabean and Cotton. In Proceedings of the XXXIII INCA International Congress (Indian Cartographer), Jodhpur, India, 19–21 September 2013; pp. 91–96. [Google Scholar]
- Tavares, P.A.; Beltrão, N.E.S.; Guimarães, U.S.; Teodoro, A.C. Integration of Sentinel-1 and Sentinel-2 for Classification and LULC Mapping in the Urban Area of Belém, Eastern Brazilian Amazon. Sensors 2019, 19, 1140. [Google Scholar] [CrossRef] [Green Version]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Ho Tong Minh, D. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Steinhausen, M.J.; Wagner, P.D.; Narasimhan, B.; Waske, B. Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 595–604. [Google Scholar] [CrossRef]
- van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef] [Green Version]
- Forkuor, G.; Benewinde Zoungrana, J.-B.; Dimobe, K.; Ouattara, B.; Vadrevu, K.P.; Tondoh, J.E. Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets—A case study. Remote Sens. Environ. 2020, 236, 111496. [Google Scholar] [CrossRef]
- Navarro, J.A.; Algeet, N.; Fernández-Landa, A.; Esteban, J.; Rodríguez-Noriega, P.; Guillén-Climent, M.L. Integration of UAV, Sentinel-1, and Sentinel-2 Data for Mangrove Plantation Aboveground Biomass Monitoring in Senegal. Remote Sens. 2019, 11, 77. [Google Scholar] [CrossRef] [Green Version]
- Nuthammachot, N.; Askar, A.; Stratoulias, D.; Wicaksono, P. Combined use of Sentinel-1 and Sentinel-2 data for improving above-ground biomass estimation. Geocarto Int. 2020, 134, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Amazirh, A.; Merlin, O.; Er-Raki, S.; Gao, Q.; Rivalland, V.; Malbeteau, Y.; Khabba, S.; Escorihuela, M.J. Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil. Remote Sens. Environ. 2018, 211, 321–337. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; Mougenot, B.; Fanise, P.; Lili-Chabaane, Z.; Baghdadi, N. Monitoring of surface soil moisture based on optical and radar data over agricultural fields. In Proceedings of the 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 21–24 March 2018; pp. 1–5, ISBN 978-1-5386-5239-8. [Google Scholar]
- Clevers, J.G.P.W.; van Leeuwen, H.J.C. Combined use of optical and microwave remote sensing data for crop growth monitoring. Remote Sens. Environ. 1996, 56, 42–51. [Google Scholar] [CrossRef]
- Mateo-Sanchis, A.; Piles, M.; Muñoz-Marí, J.; Adsuara, J.E.; Pérez-Suay, A.; Camps-Valls, G. Synergistic integration of optical and microwave satellite data for crop yield estimation. Remote Sens. Environ. 2019, 234, 111460. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rüdiger, C.; Strauss, P. Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sens. 2018, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Harfenmeister, K.; Spengler, D.; Weltzien, C. Analyzing Temporal and Spatial Characteristics of Crop Parameters Using Sentinel-1 Backscatter Data. Remote Sens. 2019, 11, 1569. [Google Scholar] [CrossRef] [Green Version]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Betbeder, J.; Fieuzal, R.; Philippets, Y.; Ferro-Famil, L.; Baup, F. Contribution of multitemporal polarimetric synthetic aperture radar data for monitoring winter wheat and rapeseed crops. J. Appl. Remote Sens. 2016, 10, 26020. [Google Scholar] [CrossRef]
- Betbeder, J.; Fieuzal, R.; Baup, F. Assimilation of LAI and Dry Biomass Data from Optical and SAR Images Into an Agro-Meteorological Model to Estimate Soybean Yield. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2540–2553. [Google Scholar] [CrossRef]
- Jia, M.; Tong, L.; Chen, Y.; Gao, J. Multi-temporal radar backscattering measurement of wheat fields and their relationship with biological variables. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4590–4593, ISBN 978-1-4673-1159-5. [Google Scholar]
- Filgueiras, R.; Mantovani, E.C.; Althoff, D.; Fernandes Filho, E.I.; Cunha, F.F.d. Crop NDVI Monitoring Based on Sentinel 1. Remote Sens. 2019, 11, 1441. [Google Scholar] [CrossRef] [Green Version]
- Gonenc, A.; Ozerdem, M.S.; Acar, E. Comparison of NDVI and RVI Vegetation Indices Using Satellite Images. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–4, ISBN 978-1-7281-2116-1. [Google Scholar]
- Suttie, J.M. (Ed.) Grasslands of the World; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005; ISBN 92-5-105337-5.
- Statistisches Bundesamt. Dauergrünland nach Art der Nutzung im Zeitvergleich. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Feldfruechte-Gruenland/Tabellen/zeitreihe-dauergruenland-nach-nutzung.html (accessed on 4 June 2020).
- Deutscher Wetterdienst. Klimareport Niedersachsen; Deutscher Wetterdienst: Offenbach am Main, Germany, 2018.
- Deutscher Wetterdienst. Deutschlandwetter im Jahr 2018. 2018—Ein Außergewöhnliches Wetterjahr Mit Vielen Rekorden; Deutscher Wetterdienst: Offenbach am Main, Germany, 2018.
- Sinergise Laboratory for Geographical Information Systems, Ltd. Sentinelhub. Available online: https://www.sentinel-hub.com (accessed on 25 May 2020).
- Mapzen Terrain Tiles. Available online: https://registry.opendata.aws/terrain-tiles/ (accessed on 25 May 2020).
- European Court of Auditors. The Land Parcel Identification System: A Useful Tool to Determine the Eligibility of Agricultural Land—But Its Management Could Be Further Improved; Special report No 25/2016; European Court of Auditors: Luxembourg, 2016.
- DWD Climate Data Center. Phenological Observations of Crops from Sowing to Harvest; Annual report. Version v006; Deutscher Wetterdienst: Offenbach am Main, Germany, 2019.
- Gale, J. Plants and altitude—Revisited. Ann. Bot. 2004, 94, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanshan, W.; Baoyang, S.; Chaodong, L.; Zhanbin, L.; Bo, M. Runoff and Soil Erosion on Slope Cropland: A Review. J. Resour. Ecol. 2018, 9, 461–470. [Google Scholar] [CrossRef]
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). Soil Map of the Federal Republic of Germany 1:1,000,000 V2.1; Bundesanstalt für Geowissenschaften und Rohstoffe (BGR): Hannover, Germany, 2013.
- Lipiec, J.; Nosalewicz, A.; Pietrusiewicz, J. Crop Responses to Soil Physical Conditions. In Encyclopedia of Agrophysics: Glossary Terms Included; Gliński, J., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 167–176. ISBN 978-90-481-3584-4. [Google Scholar]
- Anderson, S.H. Cropping Systems, Effects on Soil Physical Properties. In Encyclopedia of Agrophysics: Glossary Terms Included; Gliński, J., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 180–184. ISBN 978-90-481-3584-4. [Google Scholar]
- Hatfield, J.L.; Prueger, J.H. Value of Using Different Vegetative Indices to Quantify Agricultural Crop Characteristics at Different Growth Stages under Varying Management Practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Becker, F.; Choudhury, B.J. Relative sensitivity of normalized difference vegetation Index (NDVI) and microwave polarization difference Index (MPDI) for vegetation and desertification monitoring. Remote Sens. Environ. 1988, 24, 297–311. [Google Scholar] [CrossRef]
- Gao, B.-c. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Jackson, T. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- Merzlyak, J.R.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.J. Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect. Remote Sens. Environ. 2013, 137, 94–111. [Google Scholar] [CrossRef]
- Kim, Y.; van Zyl, J.J. A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2519–2527. [Google Scholar] [CrossRef]
- Trudel, M.; Charbonneau, F.; Leconte, R. Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields. Can. J. Remote Sens. 2012, 38, 514–527. [Google Scholar]
- Charbonneau, F.; Trudel, M.; Fernandes, R. Use of Dual Polarization and Multi-Incidence SAR for soil permeability mapping. In Proceedings of the 2005 Advanced Synthetic Aperture Radar (ASAR) Workshop, St-Hubert, QC, Canada, 15–17 November 2005. [Google Scholar]
- Nasirzadehdizaji, R.; Balik Sanli, F.; Abdikan, S.; Cakir, Z.; Sekertekin, A.; Ustuner, M. Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Appl. Sci. 2019, 9, 655. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; van Zyl, J. Vegetation effects on soil moisture estimation. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 800–802. [Google Scholar]
- Rouse, J.W., Jr.; Haas, R.H.; Scheel, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resource Technology Satellite (ERTS) Symposium, Washington, DC, USA, 10–14 December 1973; pp. 48–62. [Google Scholar]
- Cohen, A. Comparing Regression Coefficients Across Subsamples. Sociol. Methods Res. 1983, 12, 77–94. [Google Scholar] [CrossRef]
- Schönbrodt, F.D.; Perugini, M. At what sample size do correlations stabilize? J. Res. Pers. 2013, 47, 609–612. [Google Scholar] [CrossRef] [Green Version]
- Wasserstein, R.L.; Lazar, N.A. The ASA Statement on p-Values: Context, Process, and Purpose. Am. Stat. 2016, 70, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Darlington, R.B. Multiple regression in psychological research and practice. Psychol. Bull. 1968, 69, 161–182. [Google Scholar] [CrossRef]
- Grömping, U. Relative Importance for Linear Regression in R: The Package relaimpo. J. Stat. Soft. 2006, 17. [Google Scholar] [CrossRef] [Green Version]
- Grömping, U.; Lehrkamp, M. Relaimpo: Relative Importance of Regressors in Linear Models; Beuth Hochschule für Technik: Berlin, Germany, 2018. [Google Scholar]
- Meng, J.H.; Dong, T.; Zhang, M.; You, X.; Wu, B. Predicting optimal soybean harvesting dates with satellite data. In Precision Agriculture ’13; Stafford, J.V., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; ISBN 978-90-8686-778-3. [Google Scholar]
- Gao, Y.; Walker, J.P.; Allahmoradi, M.; Monerris, A.; Ryu, D.; Jackson, T.J. Optical Sensing of Vegetation Water Content: A Synthesis Study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1456–1464. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.K.; O’Neill, P.; Cosh, M.; Lang, R.; Joseph, A. Evaluation of radar vegetation indices for vegetation water content estimation using data from a ground-based SMAP simulator. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1296–1299, ISBN 978-1-4799-7929-5. [Google Scholar]
- Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S.; Grégoire, J.-M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Han, D.; Liu, S.; Du, Y.; Xie, X.; Fan, L.; Lei, L.; Li, Z.; Yang, H.; Yang, G. Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery. Sensors 2019, 19, 4013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Holtgrave, A.-K.; Förster, M.; Greifeneder, F.; Notarnicola, C.; Kleinschmit, B. Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG 2018, 23, 148. [Google Scholar] [CrossRef]
- Tucker, C.J. Post senescent grass canopy remote sensing. Remote Sens. Environ. 1978, 7, 203–210. [Google Scholar] [CrossRef]
- Moreau, S.; Le Toan, T. Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing livestock management. Remote Sens. Environ. 2003, 84, 477–492. [Google Scholar] [CrossRef]
- Inoue, Y.; Sakaiya, E.; Zhu, Y.; Takahashi, W. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sens. Environ. 2012, 126, 210–221. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Razani, M.; Dobson, M.C. Effects of Vegetation Cover on the Microwave Radiometric Sensitivity to Soil Moisture. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 51–61. [Google Scholar] [CrossRef]
- Brown, S.C.M.; Quegan, S.; Morrison, K.; Bennett, J.C.; Cookmartin, G. High-resolution measurements of scattering in wheat canopies-implications for crop parameter retrieval. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1602–1610. [Google Scholar] [CrossRef] [Green Version]
- Boerner, W.-M.; Mott, H.; Luneburg, E. Polarimetry in remote sensing: Basic and applied concepts. In Proceedings of the IGARSS ’97, 1997 International Geoscience and Remote Sensing Symposium. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; pp. 1401–1403, ISBN 0-7803-3836-7. [Google Scholar]
- Paris, J.F. Radar Backscattering Properties of Corn and Soybeans at Frequencies of 1.6, 4.75, And 13.3 GHz. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 392–400. [Google Scholar] [CrossRef]
- Ulaby, F.; Batlivala, P.; Dobson, M. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil. IEEE Trans. Geosci. Electron. 1978, 16, 286–295. [Google Scholar] [CrossRef]
- McNairn, H.; Duguay, C.; Boisvert, J.; Huffman, E.; Brisco, B. Defining the Sensitivity of Multi-Frequency and Multi-Polarized Radar Backscatter to Post-Harvest Crop Residue. Can. J. Remote Sens. 2001, 27, 247–263. [Google Scholar] [CrossRef]
- Brisco, B.; Brown, J.F.; Sofko, G.J.; Koehler, J.A.; Wacker, A.G. Tillage effects on the radar backscattering coefficient of grain stubble fields. Int. J. Remote Sens. 1991, 12, 2283–2298. [Google Scholar] [CrossRef]
- McNairn, H.; Shang, J.; Jiao, X.; Deschamps, B. Establishing Crop Poductivity Using Radarsat-2. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2012, XXXIX-B8, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; McNairn, H.; Shang, J.; Pattey, E.; Liu, J.; Champagne, C. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index. Can. J. Remote Sens. 2011, 37, 69–81. [Google Scholar] [CrossRef]
- Shang, J.; Jiao, X.; McNairn, H.; Kovacs, J.; Walters, D.; Ma, B.; Geng, X. Tracking crop phenological development of spring wheat using synthetic aperture radar (SAR) in northern Ontario, Canada. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 12–16 August 2013; pp. 517–521, ISBN 978-1-4799-0868-4. [Google Scholar]
- Mattia, F.; Le Toan, T.; Picard, G.; Posa, F.I.; D’Alessio, A.; Notarnicola, C.; Gatti, A.M.; Rinaldi, M.; Satalino, G.; Pasquariello, G. Multitemporal C-Band Radar Measurements on Wheat Fields. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1551–1560. [Google Scholar] [CrossRef]
- Satalino, G.; Dente, L.; Mattia, F. Integration of MERIS and ASAR Data for LAI Estimation of Wheat Fields. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 2255–2258/, ISBN 0-7803-9510-7. [Google Scholar]
- Wiseman, G.; McNairn, H.; Homayouni, S.; Shang, J. RADARSAT-2 Polarimetric SAR Response to Crop Biomass for Agricultural Production Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4461–4471. [Google Scholar] [CrossRef]
- Liao, C.; Wang, J.; Shang, J.; Huang, X.; Liu, J.; Huffman, T. Sensitivity study of Radarsat-2 polarimetric SAR to crop height and fractional vegetation cover of corn and wheat. Int. J. Remote Sens. 2018, 39, 1475–1490. [Google Scholar] [CrossRef]
- Joerg, H.; Pardini, M.; Hajnsek, I.; Papathanassiou, K.P. 3-D Scattering Characterization of Agricultural Crops at C-Band Using SAR Tomography. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3976–3989. [Google Scholar] [CrossRef]
- Bériaux, E.; Waldner, F.; Collienne, F.; Bogaert, P.; Defourny, P. Maize Leaf Area Index Retrieval from Synthetic Quad Pol SAR Time Series Using the Water Cloud Model. Remote Sens. 2015, 7, 16204–16225. [Google Scholar] [CrossRef] [Green Version]
- Yebra, M.; Dennison, P.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt, E.R.; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Peterson, S.; Roberts, D.; Dennison, P. Mapping live fuel moisture with MODIS data: A multiple regression approach. Remote Sens. Environ. 2008, 112, 4272–4284. [Google Scholar] [CrossRef]
- Kim, Y.; Jackson, T.; Bindlish, R.; Hong, S.; Jung, G.; Lee, K. Retrieval of Wheat Growth Parameters With Radar Vegetation Indices. IEEE Geosci. Remote Sens. Lett. 2014, 11, 808–812. [Google Scholar] [CrossRef]
- Butterfield, H.S.; Malmström, C.M. The effects of phenology on indirect measures of aboveground biomass in annual grasses. Int. J. Remote Sens. 2009, 30, 3133–3146. [Google Scholar] [CrossRef]
- Ban, Y. Orbital effects on ERS-1 SAR temporal backscatter profiles of agricultural crops. Int. J. Remote Sens. 1998, 19, 3465–3470. [Google Scholar] [CrossRef]
- Fieuzal, R.; Baup, F.; Marais-Sicre, C. Monitoring Wheat and Rapeseed by Using Synchronous Optical and Radar Satellite Data—From Temporal Signatures to Crop Parameters Estimation. ARS 2013, 2, 162–180. [Google Scholar] [CrossRef] [Green Version]
- Voormansik, K.; Jagdhuber, T.; Zalite, K.; Noorma, M.; Hajnsek, I. Observations of Cutting Practices in Agricultural Grasslands Using Polarimetric SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1382–1396. [Google Scholar] [CrossRef]
- Wood, D.; McNairn, H.; Brown, R.J.; Dixon, R. The effect of dew on the use of RADARSAT-1 for crop monitoring. Remote Sens. Environ. 2002, 80, 241–247. [Google Scholar] [CrossRef]
- Gu, Y.; Wylie, B.K.; Howard, D.M.; Phuyal, K.P.; Ji, L. NDVI saturation adjustment: A new approach for improving cropland performance estimates in the Greater Platte River Basin, USA. Ecol. Indic. 2013, 30, 1–6. [Google Scholar] [CrossRef]
- Zielinski, R.; Grandgirard, D. Land Parcel Identification System (LPIS) Anomalies’ Sampling and Spatial Pattern. Towards Convergence of Ecological Methodologies and GIS Technologies; Publications Office: Luxembourg, 2008; ISBN 978-92-79-09701-0. [Google Scholar]
Land Use Type | Earliest Beginning of Emergence | Latest Harvest | Considered Period |
---|---|---|---|
Winter Wheat | 4 October 2017 | 14 August 2018 | 1 January–21 August 2018 |
Spring Barley | 1 April 2018 | 15 August 2018 | 25 March–27 August 2018 |
Maize | 27 April 2018 | 30 September 2018 | 20 April–7 October 2018 |
Grassland | - | - | 1 January–31 December 2018 |
Satellite | Name | Original Formula and Bands | Adapted Formula for S1 or S2 | Origin |
---|---|---|---|---|
S1 | Ratio | |||
Radar Vegetation Index (RVI) | Kim and van Zyl [60] | |||
VH | VH | |||
VV | VV | |||
S2 | Normalized Difference Vegetation Index (NDVI) | Rouse et al. [65] | ||
Normalized Difference Water Index (NDWI) | Gao [57] | |||
Plant Senescence Reflectance Index (PSRI) | Merzlyak et al. [58] |
Land Use Type | Optical Index | Ratio | RVI | VH | VV |
---|---|---|---|---|---|
Grassland | NDVI | 0.43 | 0.45 | 0.41 | 0.11 |
NDWI | 0.40 | 0.42 | 0.48 | 0.23 | |
PSRI | −0.38 | −0.40 | −0.44 | −0.18 | |
Maize | NDVI | 0.56 | 0.59 | 0.72 | 0.37 |
NDWI | 0.56 | 0.59 | 0.71 | 0.36 | |
PSRI | −0.51 | −0.54 | −0.72 | −0.41 | |
Spring barley | NDVI | 0.62 | 0.65 | 0.57 | 0.09 |
NDWI | 0.66 | 0.68 | 0.54 | 0.03 | |
PSRI | −0.54 | −0.56 | −0.55 | −0.15 | |
Winter wheat | NDVI | 0.71 | 0.73 | 0.41 | −0.13 |
NDWI | 0.72 | 0.74 | 0.32 | −0.23 | |
PSRI | −0.64 | −0.66 | −0.51 | −0.02 |
Land Use Type | Phenophase | Optical Index | Ratio | RVI | VH | VV |
---|---|---|---|---|---|---|
Grassland | Growing | NDVI | 0.51 | 0.54 | 0.13 | −0.36 |
NDWI | 0.48 | 0.51 | 0.04 | −0.41 | ||
PSRI | −0.48 | −0.51 | −0.18 | 0.29 | ||
Senescence | NDVI | 0.37 | 0.40 | 0.49 | 0.27 | |
NDWI | 0.35 | 0.36 | 0.59 | 0.42 | ||
PSRI | −0.33 | −0.35 | −0.48 | −0.30 | ||
Maize | Growing | NDVI | 0.61 | 0.63 | 0.70 | 0.28 |
NDWI | 0.62 | 0.64 | 0.69 | 0.27 | ||
PSRI | −0.56 | −0.58 | −0.69 | −0.31 | ||
Green | NDVI | 0.37 | 0.41 | 0.73 | 0.56 | |
NDWI | 0.33 | 0.36 | 0.70 | 0.58 | ||
PSRI | −0.40 | −0.43 | −0.76 | −0.58 | ||
Senescence | NDVI | 0.74 | 0.75 | 0.81 | 0.56 | |
NDWI | 0.71 | 0.71 | 0.83 | 0.64 | ||
PSRI | −0.74 | −0.75 | −0.81 | −0.54 | ||
Spring barley | Growing | NDVI | 0.76 | 0.78 | 0.61 | −0.13 |
NDWI | 0.76 | 0.77 | 0.53 | −0.21 | ||
PSRI | −0.73 | −0.76 | −0.61 | 0.12 | ||
Green | NDVI | 0.33 | 0.35 | −0.01 | −0.25 | |
NDWI | 0.37 | 0.39 | 0.01 | −0.27 | ||
PSRI | −0.27 | −0.28 | 0.03 | 0.23 | ||
Senescence | NDVI | 0.45 | 0.47 | 0.68 | 0.60 | |
NDWI | 0.48 | 0.50 | 0.72 | 0.62 | ||
PSRI | −0.44 | −0.46 | −0.70 | −0.63 | ||
Winter wheat | Growing | NDVI | 0.72 | 0.75 | 0.08 | −0.50 |
NDWI | 0.75 | 0.77 | −0.04 | −0.59 | ||
PSRI | −0.64 | −0.67 | −0.21 | 0.35 | ||
Green | NDVI | 0.47 | 0.50 | 0.06 | −0.25 | |
NDWI | 0.54 | 0.56 | 0.06 | −0.28 | ||
PSRI | −0.43 | −0.46 | −0.09 | 0.20 | ||
Senescence | NDVI | 0.63 | 0.64 | 0.71 | 0.52 | |
NDWI | 0.56 | 0.57 | 0.68 | 0.54 | ||
PSRI | −0.65 | −0.66 | −0.77 | −0.58 |
Land Use Type | Optical Index | Ratio | RVI | VH | VV |
---|---|---|---|---|---|
Grassland | NDVI | 24 | 25 | 22 | 7 |
NDWI | 26 | 28 | 28 | 14 | |
PSRI | 21 | 23 | 24 | 9 | |
Maize | NDVI | 42 | 44 | 56 | 26 |
NDWI | 40 | 42 | 55 | 28 | |
PSRI | 40 | 42 | 56 | 26 | |
Spring barley | NDVI | 48 | 50 | 41 | 8 |
NDWI | 48 | 50 | 35 | 6 | |
PSRI | 46 | 48 | 46 | 15 | |
Winter wheat | NDVI | 60 | 62 | 41 | 32 |
NDWI | 58 | 60 | 28 | 27 | |
PSRI | 61 | 63 | 58 | 42 |
Land Use Type | Phenophase | Optical Index | Ratio | RVI | VH | VV |
---|---|---|---|---|---|---|
Grassland | growing | NDVI | 34 | 37 | 15 | 24 |
NDWI | 33 | 35 | 15 | 30 | ||
PSRI | 31 | 34 | 16 | 20 | ||
senescence | NDVI | 21 | 22 | 31 | 14 | |
NDWI | 18 | 19 | 36 | 21 | ||
PSRI | 18 | 20 | 29 | 15 | ||
Maize | growing | NDVI | 49 | 51 | 53 | 22 |
NDWI | 48 | 50 | 53 | 22 | ||
PSRI | 46 | 48 | 52 | 22 | ||
green | NDVI | 33 | 35 | 60 | 42 | |
NDWI | 29 | 30 | 56 | 45 | ||
PSRI | 36 | 38 | 64 | 44 | ||
senescence | NDVI | 60 | 60 | 67 | 39 | |
NDWI | 58 | 58 | 71 | 49 | ||
PSRI | 58 | 59 | 66 | 37 | ||
Spring barley | growing | NDVI | 59 | 62 | 40 | 5 |
NDWI | 59 | 61 | 33 | 8 | ||
PSRI | 56 | 59 | 41 | 6 | ||
green | NDVI | 19 | 20 | 6 | 9 | |
NDWI | 16 | 18 | 5 | 10 | ||
PSRI | 21 | 22 | 11 | 13 | ||
senescence | NDVI | 31 | 32 | 52 | 42 | |
NDWI | 34 | 35 | 55 | 44 | ||
PSRI | 29 | 31 | 53 | 44 | ||
Winter wheat | growing | NDVI | 54 | 58 | 9 | 32 |
NDWI | 57 | 60 | 7 | 41 | ||
PSRI | 43 | 47 | 11 | 19 | ||
green | NDVI | 25 | 28 | 7 | 11 | |
NDWI | 31 | 34 | 11 | 15 | ||
PSRI | 22 | 24 | 6 | 7 | ||
senescence | NDVI | 45 | 46 | 59 | 42 | |
NDWI | 49 | 49 | 60 | 47 | ||
PSRI | 48 | 49 | 66 | 47 |
Run | Optical Index | Ratio | RVI | VH | VV |
---|---|---|---|---|---|
Run 2; data split by land use type | NDVI | −7 | −7 | −10 | −10 |
NDWI | −5 | −5 | −8 | −9 | |
PSRI | −9 | −9 | −12 | −11 | |
Run 3; data split by land use type and phenophase | NDVI | −14 | −14 | −19 | −23 |
NDWI | −13 | −13 | −19 | −26 | |
PSRI | −15 | −15 | −20 | −24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holtgrave, A.-K.; Röder, N.; Ackermann, A.; Erasmi, S.; Kleinschmit, B. Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. Remote Sens. 2020, 12, 2919. https://doi.org/10.3390/rs12182919
Holtgrave A-K, Röder N, Ackermann A, Erasmi S, Kleinschmit B. Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. Remote Sensing. 2020; 12(18):2919. https://doi.org/10.3390/rs12182919
Chicago/Turabian StyleHoltgrave, Ann-Kathrin, Norbert Röder, Andrea Ackermann, Stefan Erasmi, and Birgit Kleinschmit. 2020. "Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring" Remote Sensing 12, no. 18: 2919. https://doi.org/10.3390/rs12182919
APA StyleHoltgrave, A. -K., Röder, N., Ackermann, A., Erasmi, S., & Kleinschmit, B. (2020). Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. Remote Sensing, 12(18), 2919. https://doi.org/10.3390/rs12182919