Mapping Topsoil Carbon Storage Dynamics of Croplands Based on Temporal Mosaicking Images of Landsat and Machine Learning Approach
<p>Location of the study region (<b>a</b>), elevation and sampling sites (<b>b</b>), land cover in 2005 (<b>c</b>) and 2020 (<b>d</b>).</p> "> Figure 2
<p>Flowchart of the study.</p> "> Figure 3
<p>Map of the frequency of bare soil detection during 2003–2005 (<b>a</b>), and 2018–2020 (<b>b</b>), monthly frequency in April, May, October, and November during 2003–2005 (<b>c</b>–<b>f</b>), and 2018–2020 (<b>g</b>–<b>j</b>) (0.1 < ND, VI < 0.25, VG1 > 0, VG2 > 0, and BSI > 0.05).</p> "> Figure 4
<p>Accuracy evaluation of RF_<sub>bare</sub> in 2005 (<b>a</b>), and 2020 (<b>b</b>).</p> "> Figure 5
<p>Distribution of SOCD in 2005 (<b>a</b>) and 2020 (<b>b</b>) and difference (<b>c</b>).</p> "> Figure 6
<p>Topsoil SOC storage for croplands in counties (<b>a</b>), SOC storage loss caused by conversion from cropland into built–up land and its proportion to total SOC storage of transferred cropland (<b>b</b>).</p> "> Figure 7
<p>RI of covariates for predicting SOC density using RF model in 2005 (<b>a</b>) and 2020 (<b>b</b>), which are shown in the decreasing order and converted to 100%.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Source
2.2.1. Soil Sampling and Laboratory Analysis
2.2.2. Multitemporal Image Data
2.2.3. Land Cover Mapping
2.2.4. Geographic Auxiliary Data
3. Methodology
3.1. Calculation of SOC
3.2. Synthesis of Bare Soil Image via Temporal Mosaicking
3.3. Random Forest Model
3.4. Model Validation
3.5. Comparative Models
3.6. Importance of Variables
4. Results
4.1. Accuracy Evaluation of Bare Soil Images and Prediction Results
4.2. Changes in SOC Density of Croplands
4.3. Changes in SOC Storage
4.4. The Relative Importance of Environmental Data
5. Discussion
5.1. Random Forest Model Incorporating Bare Soil Images
5.2. Dynamics of SOC Stock in Topsoil of Croplands from 2005 to 2020
5.3. The Drving Factors of SOC Prediction Models
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, G.Y.; Xu, M.G.; He, X.H.; Zhang, W.J.; Huang, S.M.; Yang, X.Y.; Liu, H.; Peng, C.; Shirato, Y.; Lizumi, T.; et al. Soil organic carbon sequestration in upland soils of northern China under variable fertilizer management and climate change scenarios. Glob. Biogeochem. Cycles 2014, 28, 319–333. [Google Scholar] [CrossRef]
- Luo, Z.K.; Wang, G.C.; Wang, E.L. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat. Commun. 2019, 10, 3688. [Google Scholar] [CrossRef]
- Xie, E.Z.; Zhang, X.; Lu, F.Y.; Peng, Y.X.; Zhao, Y.C. Spatiotemporal changes in cropland soil organic carbon in a rapidly urbanizing area of southeastern China from 1980 to 2015. Land Degrad. Dev. 2022, 33, 1323–1336. [Google Scholar] [CrossRef]
- Gál, A.; Vyn, T.J.; Michéli, E.; Kladivko, E.J.; McFee, W.W. Soil carbon and nitrogen accumulation with long-term no-till versus moldboard plowing overestimated with tilled-zone sampling depths. Soil Tillage Res. 2007, 96, 42–51. [Google Scholar] [CrossRef]
- Man, W.D.; Yu, H.; Li, L.; Liu, M.Y.; Mao, D.H.; Ren, C.Y.; Wang, Z.M.; Jia, M.M.; Miao, Z.H.; Lu, C.Y.; et al. Spatial expansion and soil organic carbon storage changes of croplands in the Sanjiang Plain, China. Sustainability 2017, 9, 563. [Google Scholar] [CrossRef]
- Yu, Y.Q.; Huang, Y.; Zhang, W. Projected changes in soil organic carbon stocks of China’s croplands under different agricultural managements, 2011–2050. Agric. Ecosyst. Environ. 2013, 178, 109–120. [Google Scholar] [CrossRef]
- Yang, R.M.; Zhang, G.L.; Liu, F.; Lu, Y.Y.; Yang, F.; Yang, F.; Yang, M.; Zhao, Y.G.; Li, D.C. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol. Indic. 2016, 60, 870–878. [Google Scholar] [CrossRef]
- Zhao, M.S.; Rossiter, D.G.; Li, D.C.; Zhao, Y.G.; Liu, F.; Zhang, G.L. Mapping soil organic matter in low-relief areas based on land surface diurnal temperature difference and a vegetation index. Ecol. Indic. 2014, 39, 120–133. [Google Scholar] [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Peerbhay, K.; Dovey, S. Predicting soil organic carbon stocks under commercial forest plantations in KwaZulu-Natal province, South Africa using remotely sensed data. GISci. Remote Sens. 2020, 57, 450–463. [Google Scholar] [CrossRef]
- Li, X.Y.; Shang, B.B.; Wang, D.Y.; Wang, Z.M.; Wen, X.; Kang, Y.D. Mapping of soil organic carbon and total nitrogen of croplands in the Corn Belt of Northeast China based on a geographically weighted regression Kriging model. Comput. Geosci. 2020, 135, 104392. [Google Scholar] [CrossRef]
- Martin, M.P.; Orton, T.G.; Lacarce, E.; Meersmans, J.; Saby, N.P.A.; Paroissien, J.B.; Jolivet, C.; Boulonne, L.; Arrouays, D. Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale. Geoderma 2014, 223, 97–107. [Google Scholar] [CrossRef]
- Mao, D.H.; Wang, Z.M.; Li, L.; Miao, Z.H.; Ma, W.H.; Song, C.C.; Ren, C.Y.; Jia, M.M. Soil organic carbon in the Sanjiang Plain of China: Storage, distribution and controlling factors. Biogeosciences 2015, 12, 1635–1645. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Orgill, S.; Gray, J.; Cowie, A.; Clark, A.; Liu, D.L. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Sci. Total Environ. 2018, 630, 367–378. [Google Scholar] [CrossRef]
- Wang, K.; Qi, Y.B.; Guo, W.J.; Zhang, J.L.; Chang, Q.R. Retrieval and mapping of soil organic carbon using Sentinel-2A spectral images from bare cropland in Autumn. Remote Sens. 2021, 13, 1072. [Google Scholar] [CrossRef]
- Rogge, D.; Bauer, A.; Zeidler, J.; Mueller, A.; Esch, T.; Heiden, U. Building an exposed soil composite processor (SCMap) for mapping spatial and temporal characteristics of soils with Landsat Imagery (1984–2014). Remote Sens. Environ. 2018, 205, 1–17. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Lagacherie, P.; Loiseau, T.; Baghdadi, N.; Urbina-Salazar, D.; Loubet, B.; Arrouays, D. Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands. Int. J. Appl. Earth Obs. 2021, 96, 102277. [Google Scholar] [CrossRef]
- Nascimento, C.M.; Mendes, W.d.S.; Silvero, N.E.Q.; Poppiel, R.R.; Sayão, V.M.; Dotto, A.C.; Santos, N.V.d.; Amorim, M.T.A.; Demattê, J.A.M. Soil degradation index developed by multitemporal remote sensing images, climate variables, terrain and soil atributes. J. Environ. Manag. 2021, 277, 111316. [Google Scholar] [CrossRef] [PubMed]
- Mzid, N.; Pignatti, S.; Huang, W.J.; Casa, R. An analysis of bare soil occurrence in Arable croplands for remote sensing topsoil applications. Remote Sens. 2021, 13, 474. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Chen, L.P.; Li, J.J.; Chu, C.J.; Huang, F.; Che, J.B.; Zhang, C.; Li, C.C. Research on the definition of soil types in typical black soil regions of Northeast China. Sci. Soil Water Conserv. 2020, 4, 123–129. [Google Scholar]
- Yan, B.X.; Yang, Y.H.; Liu, X.T. Current situation and evolutive trend of soil erosion in black soil region of northeast China. Chin. J. Soil Water Conserv. 2008, 12, 26–30. (In Chinese) [Google Scholar]
- Wang, L.X.; Cai, Q.G.; Shen, B. Soil and water conservation and soil improvement in the black soil region of northeast China. In Research on Several Strategic Issues Concerning the Allocation of Soil and Water Resources, Ecological and Environmental Protection, and Sustainable Development in the Northeast Region (Agriculture Volume); Shi, Y., Ed.; Science Press: Beijing, China, 2007; pp. 230–231. [Google Scholar]
- Liu, B.Y.; Yan, B.X.; Shen, B. Current status of agricultural land soil erosion and comprehensive management strategies in the black soil region of Northeast China. Chin. J. Soil Water Conserv. 2008, 6, 1–8. [Google Scholar]
- Gong, Z.T. Soil Genesis and Systematic Classification; Science Press: Beijing, China, 2007. [Google Scholar]
- Zhang, C.H.; Wang, Z.M.; Ren, C.Y.; Song, K.S.; Zhang, B.; Liu, D.W. Spatial and temporal changes of organic carbon in agricultural soils of Songnen Plain Maize belt. Trans. CSAE 2010, 26, 300–307. (In Chinese) [Google Scholar]
- Han, T.F.; Du, J.X.; Qu, X.L.; Ma, C.B.; Wang, H.Y.; Huang, J.; Liu, K.L. Factors affecting change in topsoil organic carbon pool density in Chinese farmlands from 1988 to 2019. J. Plant Nutr. Fertil. 2022, 28, 1145–1157. (In Chinese) [Google Scholar]
- Li, X.Y.; Yang, L.M.; Ren, Y.X.; Li, H.Y.; Wang, Z.M. Impacts of urban sprawl on soil resources in the Changchun–Jilin Economic Zone, China, 2000–2015. Int. J. Environ. Res. Public Health 2018, 15, 1186. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.H.; Tian, Y.L.; Wang, Z.M.; Jia, M.M.; Du, J.; Song, C.C. Wetland changes in the Amur River Basin: Differing trends and proximate causes on the Chinese and Russian sides. J. Environ. Manag. 2021, 1, 111670. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.F. Land cover in China; Science Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Mann, L.K. Changes in soil carbon storage after cultivation. Soil Sci. 1986, 142, 279–288. [Google Scholar] [CrossRef]
- Li, X.Y.; Shi, Z.Y.; Xing, Z.H.; Wang, M.; Wang, M.C. Dynamic evaluation of cropland degradation risk by combining multi-temporal remote sensing and geographical data in the Black Soil Region of Jilin Province, China. Appl. Geogr. 2023, 154, 102920. [Google Scholar] [CrossRef]
- Bangelesa, F.; Adam, E.; Knight, J.; Dhau, I.; Ramudzuli, M.; Mokotjomela, T.M. Predicting soil organic carbon content using hyperspectral remote sensing in a degraded mountain landscape in Lesotho. Appl. Environ. Soil Sci. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Usowicz, B.; Marczewski, W.; Usowicz, J.B.; Lukowski, M.; Lipiec, J. Comparison of surface soil moisture from SMOS satellite and ground measurement. Int. Agrophys. 2014, 28, 359–369. [Google Scholar] [CrossRef]
- Lin, L.I.-K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Huete, A.R.; Ferreira, L.G.; Nanni, M.R.; Alves, M.C.; Fiorio, P.R. Methodology for bare soil detection and discrimination by Landsat TM Image. Open Remote Sens. J. 2009, 2, 24–35. [Google Scholar] [CrossRef]
- Geng, J.; Tan, Q.; Lv, J.; Fang, H. Assessing spatial variations in soil organic carbon and C: N ratio in Northeast China’s black soil region: Insights from Landsat-9 satellite and crop growth information. Soil Till. Res. 2024, 1, 105897. [Google Scholar] [CrossRef]
- Diek, S.; Fornzllaz, F.; Schaepman, M.E.; Jong, R.D. Barest pixel composite for agricultural areas using Landsat time series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Liu, Q.; He, L.; Guo, L.; Wang, M.D.; Deng, D.P.; LV, P.; Wang, R.; Jia, Z.F.; Hu, Z.W.; Wu, G.F.; et al. Digital mapping of soil organic carbon density using newly developed bare soil spectral indices and deep neural network. Catena 2022, 219, 106603. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, Y.; Lu, Q.; Yuan, Z.; Li, H.; Huang, Q. Estimating the spatial distribution of soil total arsenic in the suspected contaminated area using uav-borne hyperspectral imagery and deep learning. Ecol. Ind. 2021, 133, 108384. [Google Scholar] [CrossRef]
- Habibi, V.; Ahmadi, H.; Jafari, M.; Moeini, A. Machine learning and multispectral data-based detection of soil salinity in an arid region. Central Iran. Environ. Monit. Assess. 2020, 192, 759. [Google Scholar] [CrossRef] [PubMed]
- Zuo, W.G.; Gu, B.X.; Zou, X.W.; Peng, K.; Shan, Y.L.; Yi, S.Q.; Shan, Y.H.; Gu, C.H.; Bai, Y.C. Soil organic carbon sequestration in croplands can make remarkable contributions to China’s carbon neutrality. J. Clean. Prod. 2023, 382, 135268. [Google Scholar] [CrossRef]
- Campo, J.L. Warming to increase cropland carbon sink. Nat. Clim. Chang. 2023, 13, 121–122. [Google Scholar] [CrossRef]
- Ou, Y.; Rousseau, A.N.; Wang, L.X.; Yan, B.X. Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors—A case study of the black soil region of Northeastern China. Agric. Ecosyst. Environ. 2017, 245, 22–31. [Google Scholar] [CrossRef]
- Yu, Y.Q.; Huang, Y.; Zhang, W. Modelling soil organic carbon change in croplands of China, 1980–2009. Glob. Planet Chang. 2012, 82–83, 115–128. [Google Scholar] [CrossRef]
- Li, H.; Pei, J.B.; Wang, J.K.; Li, S.Y.; Gao, G.W. Organic carbon density and storage of the major black soil regions in Northeast China. J. Soil Sci. Plant Nut. 2013, 13, 883–893. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhang, Y. Identification of key factors limiting topsoil organic carbon in China. Environ. Earth Sci. 2022, 81, 533. [Google Scholar] [CrossRef]
- Hunt, J.R.; Celestina, C.; Kirkegaard, J.A. The realities of climate change, conservation agriculture and soil carbon sequestration. Glob. Chang. Biol. 2020, 26, 3188–3189. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Tian, H.Q.; Tao, B.; Huang, Y.; Pan, S.F. China’s crop productivity and soil carbon storage as influenced by multifactor global change. Glob. Chang. Biol. 2012, 18, 2945–2957. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chang, N.J.; Xiao, J.F.; Zhou, Q.B.; Wu, W.B. Mapping dynamics of soil organic matter in cropland with MODIS data and machina learning algorithms. Sci. Total Environ. 2019, 669, 844–855. [Google Scholar] [CrossRef] [PubMed]
- Rostaminia, M.; Rahmani, A.; Mousavi, S.R.; Tahizadeh-Mehrjardi, R.; Maghsodi, Z. Spatial prediction of soil organic carbon stocks in an arid rangeland using machine learning algorithms. Environ. Monit. Assess. 2021, 193, 815. [Google Scholar] [CrossRef]
- Sun, L.Y.; Song, F.B.; Liu, S.Q.; Cao, Q.J.; Liu, F.L.; Zhu, X.C. Integrated agricultural management practice improves soil quality in Northeast China. Arch. Agron. Soil. Sci. 2018, 64, 1932–1943. [Google Scholar] [CrossRef]
2005 | Cropland | Built-Up Land | Grassland | Woodland | Wetland | Water Body | Barren Land |
---|---|---|---|---|---|---|---|
CA | 0.936 | 0.933 | 0.856 | 0.895 | 0.882 | 0.978 | 0.919 |
PA | 0.950 | 0.936 | 0.910 | 0.901 | 0.835 | 0.899 | 0.832 |
OA | 0.912 | ||||||
2020 | |||||||
CA | 0.923 | 0.920 | 0.840 | 0.913 | 0.905 | 0.971 | 0.870 |
PA | 0.957 | 0.945 | 0.850 | 0.921 | 0.874 | 0.859 | 0.798 |
OA | 0.905 |
RF_bare | RF_single | MLR | SVM | |||||
---|---|---|---|---|---|---|---|---|
2005 | 2020 | 2005 | 2020 | 2005 | 2020 | 2005 | 2020 | |
R2 | 0.58 | 0.53 | 0.51 | 0.43 | 0.34 | 0.45 | 0.38 | 0.23 |
RMSE (kg/m2) | 0.82 | 0.84 | 0.84 | 0.86 | 0.97 | 0.85 | 0.98 | 1.01 |
SOCD_c | MAT | MAP | ||||
---|---|---|---|---|---|---|
2005 | 2020 | 2005 | 2020 | 2005 | 2020 | |
SOCD_mean2005 | 0.985 ** | −0.626 ** | 0.538 ** | |||
SOCD_c2005 | 1 | −0.609 ** | 0.527 ** | |||
SOCD_mean2020 | 0.972 ** | −0.611 ** | 0.605 ** | |||
SOCD_c2020 | 1 | −0.601 ** | 0.589 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wen, H.; Xing, Z.; Cheng, L.; Wang, D.; Wang, M. Mapping Topsoil Carbon Storage Dynamics of Croplands Based on Temporal Mosaicking Images of Landsat and Machine Learning Approach. Remote Sens. 2024, 16, 2010. https://doi.org/10.3390/rs16112010
Li X, Wen H, Xing Z, Cheng L, Wang D, Wang M. Mapping Topsoil Carbon Storage Dynamics of Croplands Based on Temporal Mosaicking Images of Landsat and Machine Learning Approach. Remote Sensing. 2024; 16(11):2010. https://doi.org/10.3390/rs16112010
Chicago/Turabian StyleLi, Xiaoyan, Huiqing Wen, Zihan Xing, Lina Cheng, Dongyan Wang, and Mingchang Wang. 2024. "Mapping Topsoil Carbon Storage Dynamics of Croplands Based on Temporal Mosaicking Images of Landsat and Machine Learning Approach" Remote Sensing 16, no. 11: 2010. https://doi.org/10.3390/rs16112010
APA StyleLi, X., Wen, H., Xing, Z., Cheng, L., Wang, D., & Wang, M. (2024). Mapping Topsoil Carbon Storage Dynamics of Croplands Based on Temporal Mosaicking Images of Landsat and Machine Learning Approach. Remote Sensing, 16(11), 2010. https://doi.org/10.3390/rs16112010