Impacts of Urban Sprawl on Soil Resources in the Changchun–Jilin Economic Zone, China, 2000–2015
<p>Location of the Changchun–Jilin Economic Zone (CJEZ).</p> "> Figure 2
<p>Land cover map of the CJEZ in 2000 (<b>a</b>) and 2015 (<b>b</b>).</p> "> Figure 3
<p>Distributions of soil types and sampling points.</p> "> Figure 4
<p>Distribution of urban land (<b>a</b>) and common urbanization intensity index (CUII) (<b>b</b>) in the CJEZ in 2000 and 2015.</p> "> Figure 5
<p>Distribution map of soil quality of the CJEZ.</p> "> Figure 6
<p>Change rates of soil landscape metrics during 2000–2015.</p> "> Figure 7
<p>Local varying estimates of relationships between changes of (<b>a</b>) LPI and CUII, (<b>b</b>) ED and CUII, (<b>c</b>) SHDI and CUII, and (<b>d</b>) AI and CUII.</p> "> Figure 7 Cont.
<p>Local varying estimates of relationships between changes of (<b>a</b>) LPI and CUII, (<b>b</b>) ED and CUII, (<b>c</b>) SHDI and CUII, and (<b>d</b>) AI and CUII.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Descriptions
2.2. Data Sources
2.2.1. Land Cover Data
2.2.2. Soil Data
2.3. Methodology
2.3.1. Spatial Analysis of Urbanization
2.3.2. Soil Quality Assessment
2.3.3. Metric Analysis of the Soil Landscape
2.3.4. Geographically Weighted Regression Model
3. Results
3.1. Urban Sprawl in the Past 15 Years
3.2. Soil Types Occupied by Expanding Urban Land
3.3. Quality Evaluation of the Sealed Soils
3.4. Relationships between Soil Landscape and Urban Expansion
4. Discussion
4.1. Charicteristics of Soil Sealing in the Expanding Urban Land
4.2. Impact of Urban Expansion on Soil Landscape
4.3. Implications and Limitations
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Shahbaz, M.; Sbia, R.; Hamdi, H.; Qzturk, I. Economic growth, electricity consumption, urbanization and environmental degradation relationship in United Arab Emirates. Ecol. Indic. 2014, 45, 622–631. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects the 2011 Revision; United Nations: New York, NY, USA, 2012. [Google Scholar]
- Seto, K.C.; Guneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.Z.; Huang, J.K.; Rozelle, S.; Zhang, J.P.; Li, Z.H. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Fragkias, M.; Guneralp, B.; Reilly, M.K. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.; Choe, H. Estimating the impacts of urban expansion on landscape ecology: Forestland perspective in the greater Seoul metropolitan area. J. Urban Plan. Dev. (ASCE) 2011, 137, 425–437. [Google Scholar] [CrossRef]
- Liu, Q.S.; Liang, F.Y.; Bi, X.L.; Duffy, R.; Zhao, Z.P. Effects of urbanization and industrialization on agricultural land use in Shandong Peninsula of China. Ecol. Indic. 2011, 11, 1710–1714. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, A.; Mishra, P.K. Urbanization, air pollution and human health. J. Environ. Res. Dev. 2007, 3, 305–317. [Google Scholar]
- Duley, F.L. Surface factors affecting the rate of intake of water by soils. Soil Sci. Soc. Am. J. 1939, 4, 60–64. [Google Scholar] [CrossRef]
- Xiao, R.; Su, S.L.; Zhang, Z.H.; Qi, J.G.; Jiang, D.W.; Wu, J.P. Dynamics of soil sealing and soil landscape patterns under rapid urbanization. Catena 2013, 109, 1–12. [Google Scholar] [CrossRef]
- Scalenghe, R.; Marsan, F.A. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Li, J.D.; Deng, J.S.; Gu, Q.; Wang, K.; Ye, F.J.; Xu, Z.H.; Jin, S.Q. The accelerated urbanization process: A threat to soil resources in Eastern Chin. Sustainability 2015, 7, 7137–7155. [Google Scholar] [CrossRef]
- Xiao, R.; Su, S.L.; Wang, J.Q.; Zhang, Z.H.; Jiang, D.W.; Wu, J.P. Local spatial modeling of paddy soil landscape patterns in response to urbanization across the urban agglomeration around Hangzhou Bay, China. Appl. Geogr. 2013, 39, 158–171. [Google Scholar] [CrossRef]
- Biasioli, M.; Barberis, R.; Ajmone-marsan, F. The influence of a large city on some soil properties and metals content. Sci. Total Environ. 2006, 356, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Chen, J.; Tan, M.Z.; Sun, Y.Z. Assessing the impact of urban sprawl on soil resources of Nanjing city using satellite images and digital soil databases. Catena 2007, 69, 16–30. [Google Scholar] [CrossRef]
- Kuang, W.H.; Liu, J.Y.; Dong, J.W. The repid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Li, W.B.; Wang, D.Y.; Li, H.; Liu, S.H. Urbanization-induced site condition changes of peri-urban cultivated land in the black soil region of northeast China. Ecol. Indic. 2017, 80, 215–223. [Google Scholar] [CrossRef]
- Uuemaa, E.; Roosaare, J.; Danal, A.; Mander, U. Spatial correlograms of soil cover as an indicator of landscape heterogeneity. Ecol. Indic. 2008, 8, 783–794. [Google Scholar] [CrossRef]
- Lee, N.J. Northeast Asian economic cooperation and the Korean Peninsula Economy: The impact of the Changjitu development Plan. KoreaJ 2011, 51, 130–163. [Google Scholar]
- Tan, J.T.; Zhang, P.Y.; Lo, K.; Li, J.; Liu, S.W. Conceptualizing and measuring economic resilience of resource-based cities: Case study of Northeast China. Chin. Geogr. Sci. 2017, 27, 471–481. [Google Scholar] [CrossRef]
- Man, W.D.; Wang, Z.M.; Liu, M.Y.; Lu, C.Y.; Jia, M.M.; Mao, D.H.; Ren, C.Y. Spatio-temporal dynamics analysis of cropland in Northeast China during 1990–2013 based on remote sensing. Trans. CSAE 2016, 32, 1–10. [Google Scholar]
- Definiens AG. Definiens Professional 8.6 User Guide; Definiens AG: Munchen, Germany, 2011. [Google Scholar]
- Li, X.Y.; Li, H.Y.; Zhang, Y.N.; Yang, L.M. Spatial patterns and the regional differences of rural settlements in Jilin Province, China. Sustainability 2017, 9, 2170. [Google Scholar] [CrossRef]
- Lu, R.K. Analytical method of soil and agricultural chemistry. Chin. Soil Ecol. 2000, 64, 194–200. [Google Scholar]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Tate, C.M.; Cuffney, T.F.; Mcmahon, G.; Giddings, E.M.P.; Coles, J.F.; Zappia, H. Use of an urban intensity index to assess urban effects on streams in three contrasting environmental settings. Am. Fish. Soc. Symp. 2005, 47, 291–315. [Google Scholar]
- Qi, Y.; Darilek, J.L.; Huang, B.; Zhao, Y.; Sun, W.; Gu, Z. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma 2009, 149, 325–334. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Mitchesll, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 40, 25–45. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, H.Y.; Yang, L.M.; Ren, Y.X. Assessment of soil quality of croplands in the Corn Belt of Northeast China. Sustainability 2018, 10, 248. [Google Scholar] [CrossRef]
- Fazel, R.; Rossana, M.; Hossein, A.B.; Zahra, F.; Sima, R.B. Assessment of soil quality indices in agricultural lands of Qazvin province, Iran. Ecol. Indic. 2014, 40, 19–26. [Google Scholar]
- Geri, F.; Amici, V.; Rocchini, D. Human activity impact on thy heterogeneity of Mediterranean landscape. Appl. Geogr. 2010, 31, 292–302. [Google Scholar]
- Li, H.L.; Jian, P.; Liu, Y.X.; Hu, Y.N. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective. Ecol. Indic. 2017, 82, 50–60. [Google Scholar] [CrossRef]
- Jiang, P.H.; Cheng, Q.W.; Zhang, Z.Z.; Tang, H.Q.; Li, M.C. The dynamic mechanism of landscape structure change of arable landscape system in China. Agric. Ecol. Environ. 2018, 251, 26–36. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Shen, H.; Xie, P.; Hu, X.; Wang, Y. Using impervious surfaces to detect urban expansion in Beijing of China in 2000. Chin. Geogr. Sci. 2016, 26, 229–243. [Google Scholar]
- Su, S.L.; Ma, X.Y.; Xiao, R. Agricultural landscape pattern changes in response to urbanization atecoregional scale. Ecol. Indic. 2014, 40, 10–18. [Google Scholar] [CrossRef]
- Li, S.F.; Marinova, D.; Zhao, D. Effects of population and land urbanization on China’s environmental impact: Empirical analysis based on the extended STIRPAT model. Sustainability 2017, 9, 825. [Google Scholar]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. Assessing the Impact of Urban Sprawl on Soil Resources in the United States Using Nighttime ”City Lights” Satellite Images and Digital Soils Maps. 2003. Available online: https://landcover.usgs.gov/luhna/chap3.php (accessed on 24 May 2018).
- Wen, Q.K.; Zhang, Z.X.; Shi, L.F. Extraction of basic trends of urban expansion in China over past 40 years from satellite images. Chin. Geogr. Sci. 2016, 26, 129–142. [Google Scholar] [CrossRef]
- Lo Papa, G.; Palermo, V.; Dazzi, C. Is land-use change a cause of loss of pedodiversity? The case of the Mazzarone study area, Sicily. Geomorphology 2011, 135, 332–342. [Google Scholar] [CrossRef]
- Dietzel, C.; Herold, M.; Hemphill, J.J.; Clarke, K.C. Spatio-temporal dynamics in California’s Central Valley: Empirical links to urban theory. Int. J. Geogr. Inf. Sci. 2005, 19, 175–195. [Google Scholar] [CrossRef]
- Amndson, R.; Guo, Y.; Gong, P. Soil diversity and land use in the United States. Ecosystems 2003, 6, 470–482. [Google Scholar] [CrossRef]
No. | Chinese Soil Classification System | FAO Soil Taxonomy | Area (ha) |
---|---|---|---|
1 | Black soil | Luvic Phaeozem | 371,645.18 |
2 | Brown forest soil | HapicLuvisol | 330,896.95 |
3 | Meadow soil | EutricVertisol | 345,896.88 |
4 | White pulp soil | EutricPlanosols | 185,757.96 |
5 | Paddy soil | HydragricAnthrosol | 111,647.78 |
6 | Dark chernozem | Haplic Chernozems | 11,265.07 |
7 | Aeolian soil | Arenosol | 10,280.84 |
Indicator | Laboratory Analysis Method | Reference |
---|---|---|
Soil organic matter (SOM) | Potassium dichromate oxidation | [24] |
Total nitrogen (TN) | Kjeldahl | [24] |
Available phosphorus (AP) | Sodium bicarbonate extraction, colorimetric detection | [24] |
Available potassium (AK) | Ammonium acetate extraction, flame photometer detection | [24] |
Extractable Fe (Afe) | Flame photometer detection | [24] |
Cation exchange capacity (CEC) | Ammonium acetate extraction | [24] |
pH | Saturated soil paste | [24] |
Indicator | FT | x1 | x2 | SSF | PCA | Weight |
---|---|---|---|---|---|---|
SOM (g/kg) | U(x) | 13 | 50 | 0.712 | 0.168 | |
TN (g/kg) | U(x) | 0.3 | 2.5 | 0.647 | 0.153 | |
AP (mg/kg) | U(x) | 1.5 | 4.5 | 0.612 | 0.144 | |
AK (mg/kg) | U(x) | 5 | 250 | 0.682 | 0.161 | |
AFe (mg/kg) | U(x) | 20 | 300 | 0.628 | 0.155 | |
CEC (cmol/kg) | U(x) | 10 | 35 | 0.656 | 0.148 | |
pH | R(x) | 5 | 7.05 | 0.301 | 0.071 |
Index | Equation | Ecological Connotation | Unit |
---|---|---|---|
Largest Patch Index (LPI) | To indicate ratio of the largest patch area to total landscape area. | % | |
Edge Density (ED) | To denote the complexity of patch’s shape | m/ha | |
Shannon’s Diversity Index (SHDI) | To indicate the landscape heterogeneity. | no | |
Aggregation Index (AI) | To indicate the degree of aggregation among different landscape types. | % |
Land Use Type 2000 | 2015 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Urban Land | Rural Settlement | Forestland | Grass-Land | Wet-Land | Water Body | Cropland | Barren Land | Total | |
Urban land | 55,193 | 55,193 | |||||||
Rural settlement | 598 | 54,564 | 45 | 10 | 50 | 55,267 | |||
Forestland | 430 | 127 | 351,680 | 0 | 2920 | 9 | 355,166 | ||
Grassland | 466 | 233 | 10 | 120 | 398 | 1226 | |||
Wetland | 239 | 0 | 729 | 11,807 | 8030 | 2550 | 1 | 23,357 | |
Waterbody | 129 | 120 | 184 | 25,247 | 258 | 25,937 | |||
Cropland | 24,858 | 540 | 13,644 | 7 | 2191 | 5073 | 729,900 | 6 | 776,219 |
Barren land | 47 | 53 | 141 | 0 | 38 | 45 | 184 | 506 | |
Total | 81,960 | 55,258 | 366,504 | 157 | 14,192 | 38,558 | 736,069 | 201 | 1,292,900 |
Net change | 26,767 | −36 | 11,338 | −912 | −9165 | 12,622 | −40,151 | −306 | |
Change rate (%) | 48.50 | −0.07 | 3.19 | −74.35 | −39.24 | 48.66 | −5.17 | −60.39 | |
Urban land in 2015 | 598 | 430 | 466 | 239 | 129 | 24,858 | 47 | ||
Change rate(%) | 2.23 | 1.61 | 1.74 | 0.89 | 0.48 | 92.87 | 0.17 |
CUII | <0.005 | 0.005–0.05 | 0.05–0.25 | 0.25–0.5 | >0.5 | |
---|---|---|---|---|---|---|
Area | 449,760,000 | 37,280,000 | 42,400,000 | 16,640,000 | 43,680,000 | |
Proportion (%) | 76.26 | 6.32 | 7.19 | 2.82 | 7.41 | |
Changchun | Area (ha) | 22,465,600 | 6,180,000 | 9,751,600 | 5,021,600 | 27,333,600 |
Proportion (%) | 5.00 | 16.58 | 23.00 | 30.18 | 62.58 | |
Jilin | Area (ha) | 45,554,000 | 4,583,600 | 3,842,400 | 1,766,800 | 3,756,000 |
Proportion (%) | 10.13 | 12.30 | 9.06 | 10.62 | 8.60 | |
Jiutai | Area (ha) | 115,872,000 | 7,164,400 | 7,394,800 | 3,790,000 | 6,704,400 |
Proportion (%) | 25.76 | 19.22 | 17.44 | 22.78 | 15.35 | |
Shuangyang | Area (ha) | 49,490,800 | 9,504,000 | 9,706,000 | 3,032,400 | 5,118,400 |
Proportion (%) | 11.00 | 25.49 | 22.89 | 18.22 | 11.72 | |
Yongji | Area (ha) | 186,924,800 | 8,736,800 | 11,117,600 | 2,982,400 | 523,200 |
Proportion (%) | 41.56 | 23.44 | 26.22 | 17.92 | 1.20 |
Soil Types | 2000 | 2015 | Occupied Soil | Occupied Soil/2000 | |||
---|---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | % | |
Black soil | 348,791.85 | 26.35 | 330,231.43 | 25.51 | 18,560.42 | 63.65 | 5.32 |
Brown forest soil | 328,656.07 | 24.83 | 327,856.13 | 25.33 | 799.94 | 2.74 | 0.24 |
Meadow soil | 333,590.70 | 25.20 | 326,923.64 | 25.26 | 6667.06 | 22.86 | 2.00 |
White pulp soil | 181,886.81 | 13.74 | 180,676.78 | 13.96 | 1210.03 | 4.15 | 0.67 |
Paddy soil | 109,682.42 | 8.29 | 108,411.35 | 8.37 | 1271.07 | 4.36 | 1.16 |
Dark chernozem | 10,834.17 | 0.82 | 10,232.84 | 0.79 | 601.32 | 2.06 | 5.55 |
Aeolian soil | 10,189.33 | 0.77 | 10,139.89 | 0.78 | 49.44 | 0.17 | 0.49 |
Area of Soil | Occupied by Expanded Urban Land | |||
---|---|---|---|---|
Area (ha) | Proportion (%) | Area (ha) | Proportion (%) | |
Grade I | 244,037 | 9.15 | 3,927.24 | 13.42 |
Grade II | 687,110 | 25.77 | 15,016.32 | 51.33 |
Grade III | 1,020,913 | 38.28 | 4,119.93 | 14.08 |
Grade IV | 583,058 | 21.86 | 464.67 | 1.59 |
Grade V | 131,680 | 4.94 | 5725.17 | 19.57 |
Ratio | AICc | R2CUII | Adjusted R2CUII | |
---|---|---|---|---|
LPI | −0.6386 | −1346.71 | 0.6024 | 0.4925 |
ED | 0.2170 | −1429.56 | 0.5776 | 0.5049 |
SHDI | 1.1619 | −1326.56 | 0.5059 | 0.4390 |
AI | −0.0469 | −1245.93 | 0.3500 | 0.3456 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yang, L.; Ren, Y.; Li, H.; Wang, Z. Impacts of Urban Sprawl on Soil Resources in the Changchun–Jilin Economic Zone, China, 2000–2015. Int. J. Environ. Res. Public Health 2018, 15, 1186. https://doi.org/10.3390/ijerph15061186
Li X, Yang L, Ren Y, Li H, Wang Z. Impacts of Urban Sprawl on Soil Resources in the Changchun–Jilin Economic Zone, China, 2000–2015. International Journal of Environmental Research and Public Health. 2018; 15(6):1186. https://doi.org/10.3390/ijerph15061186
Chicago/Turabian StyleLi, Xiaoyan, Limin Yang, Yongxing Ren, Huiying Li, and Zongming Wang. 2018. "Impacts of Urban Sprawl on Soil Resources in the Changchun–Jilin Economic Zone, China, 2000–2015" International Journal of Environmental Research and Public Health 15, no. 6: 1186. https://doi.org/10.3390/ijerph15061186
APA StyleLi, X., Yang, L., Ren, Y., Li, H., & Wang, Z. (2018). Impacts of Urban Sprawl on Soil Resources in the Changchun–Jilin Economic Zone, China, 2000–2015. International Journal of Environmental Research and Public Health, 15(6), 1186. https://doi.org/10.3390/ijerph15061186