The Ionospheric Plasma Perturbations before a Sequence of Strong Earthquakes in Southeast Asia and Northern Oceania in 2018
<p>Location of the four investigated EQs that occurred in southeast Asia and northern Oceania in 2018. The stars represent the epicenters, and the red lines are the geomagnetic latitude lines. The green star represents the Loyalty Islands Ms 7.1 EQ, and the red star represents the Southeast of Loyalty Islands Ms 6.9 EQ, and the blue star represents the Indonesia Ms 7.4 EQ, and the purple star represents the Papua New Guinea Ms 7.1 EQ.</p> "> Figure 2
<p>The space weather index from August to October 2018. From top to bottom: (<b>a</b>) the space weather index for August 2018, (<b>b</b>) the space weather index for September 2018, and (<b>c</b>) the space weather index for October 2018. The red vertical lines represent the times of four strong EQs.</p> "> Figure 3
<p>The range of orbital regions selected for data analysis is shown in the black dashed-bordered rectangle, taking the Ms 7.4 Indonesia EQ as an example. The red star represents the epicenter, and the blue lines are the ascending orbits of the CSES-01 during the period. Format of annotation information: mmdd-orbit number.</p> "> Figure 4
<p>The synchronous abnormal perturbations of <span class="html-italic">Te</span>, <span class="html-italic">Ne</span>, <span class="html-italic">No</span><sup>+</sup>, <span class="html-italic">V<sub>z</sub></span>, <span class="html-italic">Ex</span>, and <span class="html-italic">Ez</span> of orbit 2939_1 occurred on 14 August 2018, 15 days before the Ms 7.1 Loyalty Islands EQ influential area. The red star represents the epicenter position, the blue oblique line in the left diagram is the orbit track, the red circles indicate the regions where the perturbation occur for each parameter, and the dotted lines represent the latitude location of the epicenter.</p> "> Figure 5
<p>Same format as <a href="#remotesensing-15-05735-f004" class="html-fig">Figure 4</a>, but shows that the synchronous abnormal perturbations recorded by orbit 3775_1 on 8 October 2018, 8 days before the Ms 6.9 Southeast of Loyalty Islands EQ influential area.</p> "> Figure 6
<p>Same format as <a href="#remotesensing-15-05735-f004" class="html-fig">Figure 4</a>, but the synchronous abnormal perturbations of <span class="html-italic">Te</span>, <span class="html-italic">No</span><sup>+</sup>, <span class="html-italic">V<sub>z</sub></span>, <span class="html-italic">Ex</span>, and <span class="html-italic">Ez</span> recorded by orbit 3458_1 on 17 September 2018, 11 days before the Ms 7.4 Indonesia EQ influential area.</p> "> Figure 7
<p>Same format as <a href="#remotesensing-15-05735-f004" class="html-fig">Figure 4</a>, but for the synchronous abnormal perturbations of <span class="html-italic">Te</span>, <span class="html-italic">Ne</span>, <span class="html-italic">No</span><sup>+</sup>, <span class="html-italic">V<sub>z</sub></span>, <span class="html-italic">Ex,</span> and <span class="html-italic">Ez</span> of orbit 3806_1 on 10 October 2018, 1 day before the Ms 7.1 Papua New Guinea EQ influential area.</p> "> Figure 8
<p>The variation of the (<b>a</b>) <span class="html-italic">No</span><sup>+</sup> and (<b>b</b>) <span class="html-italic">V<sub>z</sub></span> detected by orbit 2939_1 with its revisiting orbits from 4 August to 8 September, which are impacted by the Ms 7.1 Loyalty Islands EQ, instead of the geomagnetic storm.</p> "> Figure 9
<p>Same format as <a href="#remotesensing-15-05735-f008" class="html-fig">Figure 8</a>, but for the variation of the (<b>a</b>) <span class="html-italic">No</span><sup>+</sup> and (<b>b</b>) <span class="html-italic">V<sub>z</sub></span> detected by orbit 3458_1 with its revisiting orbits from 2 September to 27 September, which are impacted by the Ms 7.4 Indonesia EQ, instead of the geomagnetic storm.</p> "> Figure 10
<p>Same format as <a href="#remotesensing-15-05735-f008" class="html-fig">Figure 8</a>, but for the variation of the (<b>a</b>) <span class="html-italic">No</span><sup>+</sup> and (<b>b</b>) <span class="html-italic">V<sub>z</sub></span> detected by orbit 3775_1 with its revisiting orbits from 28 September to 23 October, which were jointly affected by strong geomagnetic storms and the Ms 6.9 Southeast of Loyalty Islands EQ.</p> "> Figure 11
<p>Same format as <a href="#remotesensing-15-05735-f008" class="html-fig">Figure 8</a>, but for the variation of the (<b>a</b>) <span class="html-italic">No</span><sup>+</sup> and (<b>b</b>) <span class="html-italic">V<sub>z</sub></span> detected by the orbit 3806_1 with its revisiting orbits from 15 September to 10 October, which are jointly affected by a strong geomagnetic storm and the Ms 7.1 Papua New Guinea EQ.</p> "> Figure 12
<p>The possible schematic diagram of the plasma perturbation process induced by the seismo-ionospheric coupling.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Seismic Data
2.2. CSES-01 Satellite Data
2.3. Geomagnetic and Solar Conditions Data
2.4. Method
3. Results
3.1. Single-Orbit Analysis
3.2. Multi-Orbit Analysis
4. Discussion
4.1. Spatial Distributions of EQ Precursor
4.2. Mechanism of the Seismo-Ionospheric Coupling
4.3. Difference with Magnetic Storm Anomaly
5. Conclusions
- (1)
- The No+, Ne, Te, and Vz values show significant synchronous disturbances at the same position near the epicenters from 1 to 15 days before the series of strong EQs occurred in southeast Asia and northern Oceania within 50 days. Regarding time and space characteristics, these plasma perturbations are possibly explained as seismo-ionospheric precursors.
- (2)
- The No+ and Vz seemed like promising parameters for analyzing ionospheric disturbances excited by strong seismic activity. Local ionospheric perturbations caused by strong EQs are often accompanied by a change in Vz, which is not easily influenced by the geomagnetic storm. Meanwhile, the variation of No+ could reflect the combined effects induced by strong EQ and intense geomagnetic storms on the ionospheric plasma environment.
- (3)
- Based on the long-term data analysis results of CSES-01, the absolute value differences of plasma in different locations are large. It may be more effective to extract precursory seismic anomalies by long-term monitoring of the critical areas and checking the relative abnormal changes of the revisiting orbits.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulinets, S.A.; Boyarchuk, K.A.; Hegai, V.V.; Kim, V.P.; Lomonosov, A.M. Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling. Adv. Space Res. 2000, 26, 1209–1218. [Google Scholar] [CrossRef]
- Yokoyama, T.; Su, S.Y.; Fukao, S. Plasma blobs and irregularities concurrently observed by ROCSAT-1 and Equatorial At-mosphere Radar. J. Geophys. Res. Space Phys. 2007, 112, 515–526. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, C.H.; Lin, C.H.; Tsai, H.F.; Kamogawa, M. Ionospheric disturbances triggered by the 11 March 2011 M9.0 Tohoku earthquake. J. Geophys. Res. Space Phys. 2011, 116, A06319. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Macmillan, S.; Olsen, N. Observatory data and the Swarm mission. Earth Planets Space 2013, 65, 1355–1362. [Google Scholar] [CrossRef]
- Maruyama, T.; Shinagawa, H. Infrasonic sounds excited by seismic waves of the 2011 Tohoku-oki earthquake as visualized in ionograms. J. Geophys. Res. Space Phys. 2014, 119, 4094–4108. [Google Scholar] [CrossRef]
- Parrot, M.; Benoist, D.; Berthelier, J.; Błęcki, J.J.; Chapuis, Y.; Colin, F.; Elie, F.; Fergeau, P.; Lagoutte, D.; Lefeuvre, F.; et al. The magnetic field experiment IMSC and its data processing onboard DEMETER: Scientific objectives, description and first results. Plan. Space Sci. 2006, 54, 441–455. [Google Scholar] [CrossRef]
- Cussac, T.; Clair, M.A.; Ultré-Guerard, P.; Buisson, F.; Rey, N. The DEMETER microsatellite and ground segment. Plan. Space Sci. 2006, 54, 413–427. [Google Scholar] [CrossRef]
- Berthelier, J.; Godefroy, M.; Leblanc, F.; Seran, E.; Peschard, D.; Gilbert, P.; Artru, J. IAP, the thermal plasma analyzer on DEMETER. Plan. Space Sci. 2006, 54, 487–501. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; et al. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Pulinets, S.A.; Tsai, Y.B.; Chuo, Y.J. Seismo-ionospheric signatures prior to M ≥ 6.0 Taiwan earthquakes. Geophys. Res. Lett. 2000, 27, 3113–3116. [Google Scholar] [CrossRef]
- Ouyang, X.; Zhang, X.; Shen, X.; Huang, J.; Liu, J.; Zeren, Z.; Zhao, S. Disturbance of O+ Density Before Major Earthquake Detected by DEMETER Satellite. Chin. J. Space Sci. 2011, 31, 607–617. [Google Scholar] [CrossRef]
- Piersanti, M.; Materassi, M.; Battiston, R.; Carbone, V.; Cicone, A.; D’angelo, G.; Diego, P.; Ubertini, P. Magnetospheric–Ionospheric–Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan Earthquake. Remote Sens. 2020, 12, 3299. [Google Scholar] [CrossRef]
- Liu, D.; Zeren, Z.; Shen, X.; Zhao, S.; Yan, R.; Wang, X.; Liu, C.; Guan, Y.; Zhu, X.; Miao, Y.; et al. Typical ionospheric disturbances revealed by the plasma analyzer package onboard the China Seismo-Electromagnetic Satellite. Adv. Space Res. 2021, 68, 3796–3805. [Google Scholar] [CrossRef]
- Li, M.; Shen, X.; Parrot, M.; Zhang, X.; Zhang, Y.; Yu, C.; Yan, R.; Liu, D.; Lu, H.; Guo, F.; et al. Primary Joint Statistical Seismic Influence on Ionospheric Parameters Recorded by the CSES and DEMETER Satellites. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028116. [Google Scholar] [CrossRef]
- Li, Z.; Yang, B.; Huang, J.; Yin, H.; Yang, X.; Liu, H.; Zhang, F.; Lu, H. Analysis of pre-earthquake space electric field disturbance observed by CSES. Atmosphere 2022, 13, 934. [Google Scholar] [CrossRef]
- Song, R.; Hattori, K.; Zhang, X.; Sanaka, S. Seismic-ionospheric effects prior to four earthquakes in Indonesia detected by the China seismo-electromagnetic satellite. J. Atmos. Terr. Phys. 2020, 205, 105291. [Google Scholar] [CrossRef]
- Zeren, Z.; Yan, R.; Lin, J.; Wang, Q.; Yang, Y.; Lv, F.; Huang, J.; Cui, J.; Liu, Q.; Zhao, S.; et al. The Possible Seismo-Ionospheric Perturbations Recorded by the China-Seismo-Electromagnetic Satellite. Remote Sens. 2022, 14, 905. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, X.; Zhang, X.; Wang, Z.; Zhou, C.; Zhang, Y. Using a Spatial Analysis Method to Study the Seismo-Ionospheric Disturbances of Electron Density Observed by China Seismo-Electromagnetic Satellite. Front. Earth Sci. 2022, 10, 811658. [Google Scholar] [CrossRef]
- Oyama, K.-I.; Devi, M.; Ryu, K.; Chen, C.H.; Liu, J.Y.; Liu, H.; Bankov, L.; Kodama, T. Modifications of the ionosphere prior to large earthquakes: Report from the Ionosphere Precursor Study Group. Geosci. Lett. 2016, 3, 6. [Google Scholar] [CrossRef]
- Yang, Y.; Zhima, Z.; Shen, X.; Chu, W.; Huang, J.; Wang, Q.; Yan, R.; Xu, S.; Lu, H.; Liu, D. The First Intense Geomagnetic Storm Event Recorded by the China Seismo-Electromagnetic Satellite. Space Weather. 2020, 18, e2019SW002243. [Google Scholar] [CrossRef]
- Marchitelli, V.; Harabaglia, P.; Troise, C.; De Natale, G. On the correlation between solar activity and large earthquakes worldwide. Sci. Rep. 2020, 10, 11495. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Huang, J.; Lei, J.; Li, S.; Zeren, Z.; Li, C.; Zhu, X.; Yu, W. The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results. Earth Planet. Phys. 2018, 2, 469–478. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Chen, W.; Zhu, K.; Marchetti, D.; Cheng, Y.; Fan, M.; Wang, S.; Wen, J.; Zhang, D.; et al. Are There One or More Geophysical Coupling Mechanisms before Earthquakes? The Case Study of Lushan (China) 2013. Remote Sens. 2023, 15, 1521. [Google Scholar] [CrossRef]
- Takeuchi, A.; Lau, B.; Freund, F. Current and surface potential induced by stress-activated positive holes in igneous rocks. Phys. Chem. Earth 2006, 31, 240–247. [Google Scholar] [CrossRef]
- Kuo, C.L.; Huba, J.D.; Joyce, G.; Lee, L.C. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J. Geophys. Res. Space Phys. 2011, 116, A10317. [Google Scholar] [CrossRef]
- Liu, J.; Wan, W. Spatial-temporal distribution of the ionospheric perturbations prior to MS ≥ 6.0 earthquakes in China main land. Chin. J. Geophys. 2014, 57, 2181–2189. [Google Scholar] [CrossRef]
- Bell, T.; Graf, K.; Inan, U.; Piddyachiy, D.; Parrot, M. DEMETER observations of ionospheric heating by powerful VLF transmitters. Geophys. Res. Lett. 2011, 38, L11103. [Google Scholar] [CrossRef]
- Tao, D.; Liu, W.; Ma, Y. Plasma perturbations in the coexisting environment of VLF transmitter emission, lightning strokes and seismic activity. Sci. China Technol. Sci. 2018, 61, 678–686. [Google Scholar] [CrossRef]
- Appleton, E.V. Two Anomalies in the Ionosphere. Nature 1946, 157, 691. [Google Scholar] [CrossRef]
- Whalen, J.A. Mapping a bubble at dip equator and anomaly with oblique ionospheric soundings of range spread F. J. Geophys. Res. 1996, 101, 5185–5193. [Google Scholar] [CrossRef]
- Hanson, W.B.; Moffett, R.J. Ionization transport effects in the equatorial F region. J. Geophys. Res. 1966, 71, 5559–5572. [Google Scholar] [CrossRef]
- Abdu, M.A. Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions. J. Atmos. Terres. Phys. 1997, 59, 1505–1519. [Google Scholar] [CrossRef]
- Wu, L.; Qi, Y.; Mao, W.; Lu, J.; Ding, Y.; Peng, B.; Xie, B. Scrutinizing and rooting the multiple anomalies of Nepal earthquake sequence in 2015 with the deviation–time–space criterion and homologous lithosphere–coversphere–atmosphere–ionosphere coupling physics. Nat. Hazards Earth Syst Sci. 2023, 23, 231–249. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Liu, J.; Yang, M.; Yang, X.; Du, X.; Lü, J.; Xiao, J. Seismo-Ionospheric Effects Prior to Two Earthquakes in Taiwan Detected by the China Seismo-Electromagnetic Satellite. Atmosphere 2022, 13, 1523. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; Parrot, M.; Saradjian, M.R. Electron and ion density variations before strong earthquakes (M > 6.0) using DEMETER and GPS data. Nat. Hazards Earth Syst. Sci. 2010, 10, 7–18. [Google Scholar] [CrossRef]
- Freund, F.T.; Kulahci, I.G.; Cyr, G.; Ling, J.; Winnick, M.; Tregloan-Reed, J.; Freund, M.M. Air ionization at rock surfaces and pre-earthquake signals. J. Atmos. Solar-Terr. Phys. 2009, 71, 1824–1834. [Google Scholar] [CrossRef]
- Freund, F.T. Earthquake forewarning—A multidisciplinary challenge from the ground up to space. Acta Geophys. 2013, 61, 775–807. [Google Scholar] [CrossRef]
- Freund, F.T.; Daneshvar, M.M.; Ebrahimi, M. Atmospheric Storm Anomalies Prior to Major Earthquakes in the Japan Region. Sustainability 2022, 14, 10241. [Google Scholar] [CrossRef]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An improved coupling model for the lithosphere-atmosphere-ionosphere system. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Ruzhin, Y.Y.; Sorokin, V.M.; Yashchenko, A.K. Physical mechanism of ionospheric total electron content perturbations over a seismoactive region. Geomagn. Aeron. 2014, 54, 337–346. [Google Scholar] [CrossRef]
- Wait, J.R. Mode conversion and refraction effects in the Earth-ionosphere waveguide for VLF radio waves. J. Geophys. Res. Atmos. 1968, 73, 3537–3548. [Google Scholar] [CrossRef]
- Zhao, S.; Liao, L.; Zhang, X. Trans-ionospheric VLF wave power absorption of terrestrial VLF signal. Chin. J. Geophys. 2017, 60, 3004–3014. [Google Scholar] [CrossRef]
- Fu, S.; Pu, Z.; Zong, Q.; Xiao, C.; Xie, L.; Wilken, B. Ion composition variations in the ring current during intense magnetic storms and their relationship with evolution of storms. Chin. J. Geophys. 2001, 44, 1–11. [Google Scholar] [CrossRef]
No. | Region | Date and Time (UTC) | Magnitude (Ms/Mw) 1 | Latitude (°N) | Longitude (°E) | Focal Depth (km) |
---|---|---|---|---|---|---|
1 | Loyalty Islands | 29 August 2018 at 03:51:54 | 7.1/7.1 | −21.95 | 170.10 | 20 |
2 | Southeast of Loyalty Islands | 16 August 2018 at 01:03:42 | 6.9/6.5 | −21.65 | 169.61 | 17 |
3 | Indonesia | 28 September 2018 at 10:02:44 | 7.4/7.5 | −0.25 | 119.90 | 20 |
4 | Papua New Guinea | 10 October 2018 at 20:48:18 | 7.1/7.0 | −5.70 | 151.25 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Zeren, Z.; Huang, H.; Yang, D.; Yan, R.; Wang, Q.; Shen, X.; Liu, C.; Guan, Y. The Ionospheric Plasma Perturbations before a Sequence of Strong Earthquakes in Southeast Asia and Northern Oceania in 2018. Remote Sens. 2023, 15, 5735. https://doi.org/10.3390/rs15245735
Liu D, Zeren Z, Huang H, Yang D, Yan R, Wang Q, Shen X, Liu C, Guan Y. The Ionospheric Plasma Perturbations before a Sequence of Strong Earthquakes in Southeast Asia and Northern Oceania in 2018. Remote Sensing. 2023; 15(24):5735. https://doi.org/10.3390/rs15245735
Chicago/Turabian StyleLiu, Dapeng, Zhima Zeren, He Huang, Dehe Yang, Rui Yan, Qiao Wang, Xuhui Shen, Chao Liu, and Yibing Guan. 2023. "The Ionospheric Plasma Perturbations before a Sequence of Strong Earthquakes in Southeast Asia and Northern Oceania in 2018" Remote Sensing 15, no. 24: 5735. https://doi.org/10.3390/rs15245735
APA StyleLiu, D., Zeren, Z., Huang, H., Yang, D., Yan, R., Wang, Q., Shen, X., Liu, C., & Guan, Y. (2023). The Ionospheric Plasma Perturbations before a Sequence of Strong Earthquakes in Southeast Asia and Northern Oceania in 2018. Remote Sensing, 15(24), 5735. https://doi.org/10.3390/rs15245735