Three-Dimensional Distribution and Transport Features of Dust and Polluted Dust over China and Surrounding Areas from CALIPSO
"> Figure 1
<p>Study areas and the four selected subregions (TD: Taklimakan Desert; TP: Tibetan Plateau; SCB: Sichuan Basin; NC: Northern China).</p> "> Figure 2
<p>Distributions of seasonal mean DOD in the four altitude layers during 2007–2020 (Arrows represent the wind field. The subplots of (<b>a</b>–<b>d</b>), (<b>e</b>–<b>h</b>), (<b>i</b>–<b>l</b>) and (<b>m</b>–<b>p</b>) represent the results of 0–2, 2–4, 4–6 and 6–8 km, respectively).</p> "> Figure 3
<p>Distributions of seasonal mean PDOD in the four altitude layers during 2007–2020 (Arrows represent the wind field. The subplots of (<b>a</b>–<b>d</b>), (<b>e</b>–<b>h</b>), (<b>i</b>–<b>l</b>) and (<b>m</b>–<b>p</b>) represent the results of 0–2, 2–4, 4–6 and 6–8 km, respectively).</p> "> Figure 4
<p>Seasonal vertical distributions of dust extinction coefficient (σ<sub>D</sub>) over five longitudinal belts (70–80, 80–90, 90–100, 100–110 and 110–120°E) during 2007–2020 (The black block indicates the mean elevation. The arrows represent the wind field).</p> "> Figure 5
<p>Seasonal vertical distributions of σ<sub>D</sub> over six latitudinal belts (20–24, 24–28, 28–32, 32–36, 36–40 and 40–44°N) during 2007–2020 (The black block indicates the mean elevation. The arrows represent the wind field).</p> "> Figure 6
<p>Seasonal profiles of σ<sub>D</sub> over (<b>a</b>) the Taklamakan Desert, (<b>b</b>) the central Tibetan Plateau, (<b>c</b>) the Sichuan Basin and (<b>d</b>) north China.</p> "> Figure 7
<p>Seasonal vertical distributions of polluted dust extinction coefficient (σ<sub>PD</sub>) over five longitudinal belts (70–80, 80–90, 90–100, 100–110 and 110–120°E) during 2007–2020 (The black block indicates the mean elevation. The arrows represent the wind field).</p> "> Figure 8
<p>Seasonal vertical distributions of σ<sub>PD</sub> over six latitudinal belts (20–24, 24–28, 28–32, 32–36, 36–40 and 40–44°N) during 2007–2020 (The black block indicates the mean elevation. The arrows represent the wind field).</p> "> Figure 9
<p>Seasonal profiles of σ<sub>PD</sub> over (<b>a</b>) the Taklamakan Desert, (<b>b</b>) the central Tibetan Plateau, (<b>c</b>) the Sichuan Basin, and (<b>d</b>) north China.</p> "> Figure 10
<p>Annual trends of (<b>a</b>) DOD and (<b>b</b>) PDOD during 2007–2020 (The dots represent the trend is significant at the confidence level of 0.05).</p> "> Figure 11
<p>Monthly varitions in DOD and three meteorological factors ((<b>a</b>–<b>d</b>) surface wind speed, (<b>e</b>–<b>h</b>) PBLH and (<b>i</b>–<b>l</b>) precipitation) over four sub-regions from 2007 to 2020 (The blue and orange lines represent the DOD and the variables for the right axes, respectively. The superscript asterisk means the correlation is significant at the level of 0.05).</p> "> Figure 12
<p>Monthly varitions in PDOD and three meteorological factors ((<b>a</b>–<b>d</b>) surface wind speed, (<b>e</b>–<b>h</b>) PBLH and (<b>i</b>–<b>l</b>) precipitation) over four sub-regions from 2007 to 2020 (The blue and orange lines represent the PDOD and the variables for the right axes, respectively. The superscript asterisk means the correlation is significant at the level of 0.05).</p> "> Figure 13
<p>The (<b>a</b>–<b>d</b>) top altitude, (<b>e</b>–<b>h</b>) base altitude and (<b>i</b>–<b>l</b>) thickness of dust layer in each season during 2007–2020 (Three rows of subplots represent the top, base and thickness, respectively. The arrows represent the surface wind. The dashed line means the boundary of TP).</p> "> Figure 14
<p>The (<b>a</b>–<b>d</b>) top altitude, (<b>e</b>–<b>h</b>) base altitude and (<b>i</b>–<b>l</b>) thickness of polluted dust layer in each season during 2007–2020 (Three rows of subplots represent the top, base and thickness, respectively. The arrows represent the surface wind. The dashed line means the boundary of TP).</p> "> Figure 15
<p>Variations in seasonal mean layers of dust and polluted dust in four sub regions (TD, TP, SCB and NC represent Taklamakan Desert, Tibetan Plateau, Sichuan Basin and north China, respectively).</p> "> Figure 16
<p>Correlations between monthly mean layer top heights of (<b>a</b>–<b>d</b>) dust and (<b>e</b>–<b>h</b>) polluted dust and planetary boundary layer heights in the four selected regions from 2007 to 2020 (The red lines represent the results of linear fit. The superscript asterisk represents the correlation is siginicant at the confidence level of 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. CALIOP Level 3 Aerosol Product
2.2. ERA-5 Reanalysis
3. Results
3.1. Optical Depths of Dust and Polluted Dust
3.2. Transport and Mean Profiles of Dust and Polluted Dust
3.3. The Correlations between Meteorological Factors and DOD/PDOD
3.4. Variations of Dust and Polluted Dust Layers
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, Climate, and the Hydrological Cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, J.; Zhao, Y.; Li, Y.; Zhao, Y.; Wu, X. Distinct Diurnal Cycle of Supercooled Water Cloud Fraction Dominated by Dust Extinction Coefficient. Geophys. Res. Lett. 2022, 49, e2021GL097006. [Google Scholar] [CrossRef]
- Ramachandran, S.; Ghosh, S.; Verma, A.; Panigrahi, P.K. Multiscale Periodicities in Aerosol Optical Depth over India. Environ. Res. Lett. 2013, 8, 014034. [Google Scholar] [CrossRef]
- Higurashi, A.; Nakajima, T. Detection of Aerosol Types over the East China Sea near Japan from Four-Channel Satellite Data. Geophys. Res. Lett. 2002, 29, 17. [Google Scholar] [CrossRef]
- Omar, A.H. Development of Global Aerosol Models Using Cluster Analysis of Aerosol Robotic Network (AERONET) Measurements. J. Geophys. Res. 2005, 110, D10S14. [Google Scholar] [CrossRef]
- Singh, A.; Anchule, A.; Banerjee, T.; Aditi, K.; Mhawish, A. Three-Dimensional Nature of Summertime Aerosols over South Asia. Sci. Total Environ. 2022, 842, 156834. [Google Scholar] [CrossRef]
- Burton, S.P.; Ferrare, R.A.; Hostetler, C.A.; Hair, J.W.; Rogers, R.R.; Obland, M.D.; Butler, C.F.; Cook, A.L.; Harper, D.B.; Froyd, K.D. Aerosol Classification Using Airborne High Spectral Resolution Lidar Measurements—Methodology and Examples. Atmos. Meas. Tech. 2012, 5, 73–98. [Google Scholar] [CrossRef]
- Guo, J.; Lou, M.; Miao, Y.; Wang, Y.; Zeng, Z.; Liu, H.; He, J.; Xu, H.; Wang, F.; Min, M.; et al. Trans-Pacific Transport of Dust Aerosols from East Asia: Insights Gained from Multiple Observations and Modeling. Environ. Pollut. 2017, 230, 1030–1039. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, H.; Goloub, P.; Li, Z.; Veselovskii, I.; Podvin, T.; Li, K.; Korenskiy, M. The Characterization of Taklamakan Dust Properties Using a Multiwavelength Raman Polarization Lidar in Kashi, China. Atmos. Chem. Phys. 2020, 20, 13817–13834. [Google Scholar] [CrossRef]
- Hofer, J.; Althausen, D.; Abdullaev, S.F.; Makhmudov, A.N.; Nazarov, B.I.; Schettler, G.; Engelmann, R.; Baars, H.; Fomba, K.W.; Müller, K.; et al. Long-Term Profiling of Mineral Dust and Pollution Aerosol with Multiwavelength Polarization Raman Lidar at the Central Asian Site of Dushanbe, Tajikistan: Case Studies. Atmos. Chem. Phys. 2017, 17, 14559–14577. [Google Scholar] [CrossRef]
- Hofer, J.; Ansmann, A.; Althausen, D.; Engelmann, R.; Baars, H.; Abdullaev, S.F.; Makhmudov, A.N. Long-Term Profiling of Aerosol Light Extinction, Particle Mass, Cloud Condensation Nuclei, and Ice-Nucleating Particle Concentration over Dushanbe, Tajikistan, in Central Asia. Atmos. Chem. Phys. 2020, 20, 4695–4711. [Google Scholar] [CrossRef]
- Han, Y.; Wang, T.; Tang, J.; Wang, C.; Jian, B.; Huang, Z.; Huang, J. New Insights into the Asian Dust Cycle Derived from CALIPSO Lidar Measurements. Remote Sens. Environ. 2022, 272, 112906. [Google Scholar] [CrossRef]
- Wang, T.; Tang, J.; Sun, M.; Liu, X.; Huang, Y.; Huang, J.; Han, Y.; Cheng, Y.; Huang, Z.; Li, J. Identifying a Transport Mechanism of Dust Aerosols over South Asia to the Tibetan Plateau: A Case Study. Sci. Total Environ. 2021, 758, 143714. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Xu, X.; Yang, Y.; Luo, T. Diurnal Vertical Distribution and Transport of Dust Aerosol over and around Tibetan Plateau from Lidar on International Space Station. Atmos. Res. 2023, 294, 106939. [Google Scholar] [CrossRef]
- Zhao, Z.; Cao, J.; Shen, Z.; Xu, B.; Zhu, C.; Chen, L.-W.A.; Su, X.; Liu, S.; Han, Y.; Wang, G.; et al. Aerosol Particles at a High-Altitude Site on the Southeast Tibetan Plateau, China. J. Geophys. Res. Atmos. 2013, 118, 11360–11375. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Arimoto, R.; An, Z.S. Dust Emission from Chinese Desert Sources Linked to Variations in Atmospheric Circulation. J. Geophys. Res. 1997, 102, 28041–28047. [Google Scholar] [CrossRef]
- Laurent, B.; Marticorena, B.; Bergametti, G.; Mei, F. Modeling Mineral Dust Emissions from Chinese and Mongolian Deserts. Glob. Planet. Chang. 2006, 52, 121–141. [Google Scholar] [CrossRef]
- Chen, S.-P.; Lu, C.-H.; McQueen, J.; Lee, P. Application of Satellite Observations in Conjunction with Aerosol Reanalysis to Characterize Long-Range Transport of African and Asian Dust on Air Quality in the Contiguous U.S. Atmos. Environ. 2018, 187, 174–195. [Google Scholar] [CrossRef]
- Xu, C.; Ma, Y.M.; You, C.; Zhu, Z.K. The Regional Distribution Characteristics of Aerosol Optical Depth over the Tibetan Plateau. Atmos. Chem. Phys. 2015, 15, 12065–12078. [Google Scholar] [CrossRef]
- Liang, L.; Han, Z.; Li, J.; Xia, X.; Sun, Y.; Liao, H.; Liu, R.; Liang, M.; Gao, Y.; Zhang, R. Emission, Transport, Deposition, Chemical and Radiative Impacts of Mineral Dust during Severe Dust Storm Periods in March 2021 over East Asia. Sci. Total Environ. 2022, 852, 158459. [Google Scholar] [CrossRef]
- Sun, H.; Pan, Z.; Liu, X. Numerical Simulation of Spatial-temporal Distribution of Dust Aerosol and Its Direct Radiative Effects on East Asian Climate. J. Geophys. Res. 2012, 117, D13. [Google Scholar] [CrossRef]
- Perlwitz, J.; Tegen, I.; Miller, R.L. Interactive Soil Dust Aerosol Model in the GISS GCM: 1. Sensitivity of the Soil Dust Cycle to Radiative Properties of Soil Dust Aerosols. J. Geophys. Res. 2001, 106, 18167–18192. [Google Scholar] [CrossRef]
- Ahn, H.-J.; Park, S.-U.; Chang, L.-S. Effect of Direct Radiative Forcing of Asian Dust on the Meteorological Fields in East Asia during an Asian Dust Event Period. J. Appl. Meteorol. Climatol. 2007, 46, 1655–1681. [Google Scholar] [CrossRef]
- Ma, M.; Yang, X.; He, Q.; Zhou, C.; Mamtimin, A.; Huo, W.; Yang, F. Characteristics of Dust Devil and Its Dust Emission in Northern Margin of the Taklimakan Desert. Aeolian Res. 2020, 44, 100579. [Google Scholar] [CrossRef]
- Kai, K.; Tsunematsu, N.; Matsumoto, T.; Zhou, H.; Hu, S.; Nagai, T.; Matsumura, T.; Abo, M. Vertical Structure of the Dust Layer and Middle-Level Clouds over the Taklamakan Desert by LIDAR. In Proceedings of the 22nd Internation Laser Radar Conference (ILRC 2004), Matera, Italy, 12–16 July 2004; Volume 561, p. 895. [Google Scholar]
- Huang, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhao, Q.; Yi, Y.; Ayers, J.K. Long-Range Transport and Vertical Structure of Asian Dust from CALIPSO and Surface Measurements during PACDEX. J. Geophys. Res. 2008, 113, D23212. [Google Scholar] [CrossRef]
- Iwasaka, Y.; Minoura, H.; Nagaya, K. The Transport and Spacial Scale of Asian Dust-Storm Clouds: A Case Study of the Dust-Storm Event of April 1979. Tellus B 1983, 35, 189–196. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, M.; Sun, X.; Chen, H.; Wang, Y.; Fan, X.; Pan, Y.; Quan, J.; Liu, J.; Wang, Y.; et al. Environmental Impacts of Three Asian Dust Events in the Northern China and the Northwestern Pacific in Spring 2021. Sci. Total Environ. 2023, 859, 160230. [Google Scholar] [CrossRef]
- Nee, J.B.; Chiang, C.; Hu, H.; Hu, S.; Yu, J. Lidar Measurements of Asian Dust Storms and Dust Cloud Interactions. J. Geophys. Res. 2007, 112, 2007JD008476. [Google Scholar] [CrossRef]
- Han, Y.; Wu, Y.; Wang, T.; Xie, C.; Zhao, K.; Zhuang, B.; Li, S. Characterizing a Persistent Asian Dust Transport Event: Optical Properties and Impact on Air Quality through the Ground-Based and Satellite Measurements over Nanjing, China. Atmos. Environ. 2015, 115, 304–316. [Google Scholar] [CrossRef]
- He, Y.; Yi, F.; Yin, Z.; Liu, F.; Yi, Y.; Zhou, J. Mega Asian Dust Event over China on 27–31 March 2021 Observed with Space-Borne Instruments and Ground-Based Polarization Lidar. Atmos. Environ. 2022, 285, 119238. [Google Scholar] [CrossRef]
- Sassen, K. Indirect Climate Forcing over the Western US from Asian Dust Storms. Geophys. Res. Lett. 2002, 29, 103–1-103–104. [Google Scholar] [CrossRef]
- Uno, I.; Eguchi, K.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Uematsu, M.; Liu, Z.; Wang, Z.; Hara, Y.; Sugimoto, N. Asian Dust Transported One Full Circuit around the Globe. Nat. Geosci 2009, 2, 557–560. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A., Jr.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO Mission: A Global 3D View of Aerosols and Clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Winker, D.M.; Hunt, W.H.; Hostetler, C.A. Status and Performance of the CALIOP Lidar. In Proceedings of the Laser Radar Techniques for Atmospheric Sensing, Maspalomas, Canary Islands, Spain, 4 September 2004; Volume 5575, pp. 8–15. [Google Scholar]
- Huang, J.; Wang, T.; Wang, W.; Li, Z.; Yan, H. Climate Effects of Dust Aerosols over East Asian Arid and Semiarid Regions. J. Geophys. Res. Atmos. 2014, 119, 11398–11416. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Wang, Q.; Cong, Z.; Yang, X.; Fan, H. Aerosol Characteristics at the Three Poles of the Earth as Characterized by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations. Atmos. Chem. Phys. 2021, 21, 4849–4868. [Google Scholar] [CrossRef]
- Huang, K.; Zhuang, G.; Li, J.; Wang, Q.; Sun, Y.; Lin, Y.; Fu, J.S. Mixing of Asian Dust with Pollution Aerosol and the Transformation of Aerosol Components during the Dust Storm over China in Spring 2007. J. Geophys. Res. 2010, 115, D7. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, J.H.; Tackett, J.L.; Su, H.; Fu, R. Seasonal and Diurnal Variations of Aerosol Extinction Profile and Type Distribution from CALIPSO 5-year Observations. J. Geophys. Res. Atmos. 2013, 118, 4572–4596. [Google Scholar] [CrossRef]
- Tackett, J.L.; Winker, D.M.; Getzewich, B.J.; Vaughan, M.A.; Young, S.A.; Kar, J. CALIPSO Lidar Level 3 Aerosol Profile Product: Version 3 Algorithm Design. Atmos. Meas. Tech. 2018, 11, 4129–4152. [Google Scholar] [CrossRef] [PubMed]
- Winker, D.M.; Tackett, J.L.; Getzewich, B.J.; Liu, Z.; Vaughan, M.A.; Rogers, R.R. The Global 3-D Distribution of Tropospheric Aerosols as Characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [Google Scholar] [CrossRef]
- Pan, H.; Huang, J.; Kumar, K.R.; An, L.; Zhang, J. The CALIPSO Retrieved Spatiotemporal and Vertical Distributions of AOD and Extinction Coefficient for Different Aerosol Types during 2007–2019: A Recent Perspective over Global and Regional Scales. Atmos. Environ. 2022, 274, 118986. [Google Scholar] [CrossRef]
- Ouyang, W.; Guo, B.; Cai, G.; Li, Q.; Han, S.; Liu, B.; Liu, X. The Washing Effect of Precipitation on Particulate Matter and the Pollution Dynamics of Rainwater in Downtown Beijing. Sci. Total Environ. 2015, 505, 306–314. [Google Scholar] [CrossRef]
- Sen, A.; Abdelmaksoud, A.S.; Nazeer Ahammed, Y.; Alghamdi, M.A.; Banerjee, T.; Bhat, M.A.; Chatterjee, A.; Choudhuri, A.K.; Das, T.; Dhir, A.; et al. Variations in Particulate Matter over Indo-Gangetic Plains and Indo-Himalayan Range during Four Field Campaigns in Winter Monsoon and Summer Monsoon: Role of Pollution Pathways. Atmos. Environ. 2017, 154, 200–224. [Google Scholar] [CrossRef]
- Huang, K.; Fu, J.S.; Hsu, N.C.; Gao, Y.; Dong, X.; Tsay, S.-C.; Lam, Y.F. Impact Assessment of Biomass Burning on Air Quality in Southeast and East Asia during BASE-ASIA. Atmos. Environ. 2013, 78, 291–302. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Li, J.; Jia, R.; Jiang, N.; Kang, L.; Ma, X.; Xie, T. Comparison of Dust Emissions, Transport, and Deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci. China Earth Sci. 2017, 60, 1338–1355. [Google Scholar] [CrossRef]
- Han, Y.; Wang, T.; Tan, R.; Tang, J.; Wang, C.; He, S.; Dong, Y.; Huang, Z.; Bi, J. CALIOP-Based Quantification of Central Asian Dust Transport. Remote Sens. 2022, 14, 1416. [Google Scholar] [CrossRef]
- Kok, J.F.; Adebiyi, A.A.; Albani, S.; Balkanski, Y.; Checa-Garcia, R.; Chin, M.; Colarco, P.R.; Hamilton, D.S.; Huang, Y.; Ito, A.; et al. Contribution of the World’s Main Dust Source Regions to the Global Cycle of Desert Dust. Atmos. Chem. Phys. 2021, 21, 8169–8193. [Google Scholar] [CrossRef]
- Lamancusa, C.; Wagstrom, K. Global Transport of Dust Emitted from Different Regions of the Sahara. Atmos. Environ. 2019, 214, 116734. [Google Scholar] [CrossRef]
- Xu, X.; Wu, H.; Yang, X.; Xie, L. Distribution and Transport Characteristics of Dust Aerosol over Tibetan Plateau and Taklimakan Desert in China Using MERRA-2 and CALIPSO Data. Atmos. Environ. 2020, 237, 117670. [Google Scholar] [CrossRef]
- Gui, K.; Yao, W.; Che, H.; An, L.; Zheng, Y.; Li, L.; Zhao, H.; Zhang, L.; Zhong, J.; Wang, Y.; et al. Record-Breaking Dust Loading during Two Mega Dust Storm Events over Northern China in March 2021: Aerosol Optical and Radiative Properties and Meteorological Drivers. Atmos. Chem. Phys. 2022, 22, 7905–7932. [Google Scholar] [CrossRef]
- Liu, Z.; Omar, A.; Vaughan, M.; Hair, J.; Kittaka, C.; Hu, Y.; Powell, K.; Trepte, C.; Winker, D.; Hostetler, C.; et al. CALIPSO Lidar Observations of the Optical Properties of Saharan Dust: A Case Study of Long-Range Transport. J. Geophys. Res. 2008, 113, D07207. [Google Scholar] [CrossRef]
- Wonsick, M.M.; Pinker, R.T.; Ma, Y. Investigation of the “Elevated Heat Pump” Hypothesis of the Asian Monsoon Using Satellite Observations. Atmos. Chem. Phys. 2014, 14, 8749–8761. [Google Scholar] [CrossRef]
- Huang, K.; Fu, J.S.; Lin, N.; Wang, S.; Dong, X.; Wang, G. Superposition of Gobi Dust and Southeast Asian Biomass Burning: The Effect of Multisource Long-Range Transport on Aerosol Optical Properties and Regional Meteorology Modification. J. Geophys. Res. Atmos. 2019, 124, 9464–9483. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, H.; Chen, D.; Liu, H. Human Activity Intensity and Its Spatial-Temporal Evolution in China’s Border Areas. Land 2022, 11, 1089. [Google Scholar] [CrossRef]
- Tindan, J.Z.; Jin, Q.; Pu, B. Understanding Day–Night Differences in Dust Aerosols over the Dust Belt of North Africa, the Middle East, and Asia. Atmos. Chem. Phys. 2023, 23, 5435–5466. [Google Scholar] [CrossRef]
- Ge, J.M.; Huang, J.P.; Xu, C.P.; Qi, Y.L.; Liu, H.Y. Characteristics of Taklimakan Dust Emission and Distribution: A Satellite and Reanalysis Field Perspective. J. Geophys. Res. Atmos. 2014, 119, 11772–11783. [Google Scholar] [CrossRef]
- Zhu, H.; Li, R.; Yang, S.; Zhao, C.; Jiang, Z.; Huang, C. The Impacts of Dust Aerosol and Convective Available Potential Energy on Precipitation Vertical Structure in Southeastern China as Seen from Multisource Observations. Atmos. Chem. Phys. 2023, 23, 2421–2437. [Google Scholar] [CrossRef]
- Schepanski, K. Transport of Mineral Dust and Its Impact on Climate. Geosciences 2018, 8, 151. [Google Scholar] [CrossRef]
- Chang, L.; Zou, T. Spatio-Temporal Analysis of Air Pollution in North China Plain. Env. Ecol. Stat. 2022, 29, 271–293. [Google Scholar] [CrossRef]
- Ning, G.; Yim, S.H.L.; Wang, S.; Duan, B.; Nie, C.; Yang, X.; Wang, J.; Shang, K. Synergistic Effects of Synoptic Weather Patterns and Topography on Air Quality: A Case of the Sichuan Basin of China. Clim. Dyn. 2019, 53, 6729–6744. [Google Scholar] [CrossRef]
- Liao, T.; Gui, K.; Li, Y.; Wang, X.; Sun, Y. Seasonal Distribution and Vertical Structure of Different Types of Aerosols in Southwest China Observed from CALIOP. Atmos. Environ. 2021, 246, 118145. [Google Scholar] [CrossRef]
- Sun, T.; Che, H.; Qi, B.; Wang, Y.; Dong, Y.; Xia, X.; Wang, H.; Gui, K.; Zheng, Y.; Zhao, H.; et al. Aerosol Optical Characteristics and Their Vertical Distributions under Enhanced Haze Pollution Events: Effect of the Regional Transport of Different Aerosol Types over Eastern China. Atmos. Chem. Phys. 2018, 18, 2949–2971. [Google Scholar] [CrossRef]
- Zheng, Y.; Che, H.; Xia, X.; Wang, Y.; Wang, H.; Wu, Y.; Tao, J.; Zhao, H.; An, L.; Li, L.; et al. Five-Year Observation of Aerosol Optical Properties and Its Radiative Effects to Planetary Boundary Layer during Air Pollution Episodes in North China: Intercomparison of a Plain Site and a Mountainous Site in Beijing. Sci. Total Environ. 2019, 674, 140–158. [Google Scholar] [CrossRef]
- Liu, S.; Xing, J.; Zhao, B.; Wang, J.; Wang, S.; Zhang, X.; Ding, A. Understanding of Aerosol–Climate Interactions in China: Aerosol Impacts on Solar Radiation, Temperature, Cloud, and Precipitation and Its Changes Under Future Climate and Emission Scenarios. Curr. Pollut. Rep 2019, 5, 36–51. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, J.; Wang, T.; Li, J.; Yan, H.; He, Y. Aerosol-Cloud Interactions over the Tibetan Plateau: An Overview. Earth-Sci. Rev. 2022, 234, 104216. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, S. Linkages between Aerosol Pollution and Planetary Boundary Layer Structure in China. Sci. Total Environ. 2019, 650, 288–296. [Google Scholar] [CrossRef]
- Feng, X.; Wang, S.; Guo, J. Temperature Inversions in the Lower Troposphere over the Sichuan Basin, China: Seasonal Feature and Relation with Regional Atmospheric Circulations. Atmos. Res. 2022, 271, 106097. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, X.; Zhao, T.; Gong, S.; Xu, X.; Li, Y.; Luo, L.; Gui, K.; Wang, H.; Zheng, Y.; et al. A Modelling Study of the Terrain Effects on Haze Pollution in the Sichuan Basin. Atmos. Environ. 2019, 196, 77–85. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.; Meng, L.; Zhang, Q.; Zhang, H.; He, Q.; Zhao, T. Research on the Development of the Deep Atmospheric Boundary Layer, Turbulent Motion, and Dust Stagnation. Adv. Earth Sci. 2022, 37, 991–1004. [Google Scholar] [CrossRef]
- Ma, Y.; Xin, J.; Wang, Z.; Tian, Y.; Wu, L.; Tang, G.; Zhang, W.; De Arellano, J.V.-G.; Zhao, D.; Jia, D.; et al. How Do Aerosols above the Residual Layer Affect the Planetary Boundary Layer Height? Sci. Total Environ. 2022, 814, 151953. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, T.; Tie, X.; Wang, Z. The Warming Tibetan Plateau Improves Winter Air Quality in the Sichuan Basin, China. Atmos. Chem. Phys. 2020, 20, 14873–14887. [Google Scholar] [CrossRef]
- Xin, J.; Ma, Y.; Zhao, D.; Gong, C.; Ren, X.; Tang, G.; Xia, X.; Wang, Z.; Cao, J.; De Arellano, J.V.-G.; et al. The Feedback Effects of Aerosols from Different Sources on the Urban Boundary Layer in Beijing China. Environ. Pollut. 2023, 325, 121440. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, D.; Wang, T.; Ji, M.; Wang, X. Interannual Variability of Dust Height and the Dynamics of Its Formation over East Asia. Sci. Total Environ. 2021, 751, 142288. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Yang, Y.; Xiong, Z.; Gong, J.; Luo, T. Three-Dimensional Distribution and Transport Features of Dust and Polluted Dust over China and Surrounding Areas from CALIPSO. Remote Sens. 2023, 15, 5734. https://doi.org/10.3390/rs15245734
Xu X, Yang Y, Xiong Z, Gong J, Luo T. Three-Dimensional Distribution and Transport Features of Dust and Polluted Dust over China and Surrounding Areas from CALIPSO. Remote Sensing. 2023; 15(24):5734. https://doi.org/10.3390/rs15245734
Chicago/Turabian StyleXu, Xiaofeng, Yudi Yang, Zixu Xiong, Jianming Gong, and Tianyang Luo. 2023. "Three-Dimensional Distribution and Transport Features of Dust and Polluted Dust over China and Surrounding Areas from CALIPSO" Remote Sensing 15, no. 24: 5734. https://doi.org/10.3390/rs15245734
APA StyleXu, X., Yang, Y., Xiong, Z., Gong, J., & Luo, T. (2023). Three-Dimensional Distribution and Transport Features of Dust and Polluted Dust over China and Surrounding Areas from CALIPSO. Remote Sensing, 15(24), 5734. https://doi.org/10.3390/rs15245734