High-Resolution Azimuth Missing Data SAR Imaging Based on Sparse Representation Autofocusing
<p>(<b>a</b>) The sparse representation signal <math display="inline"><semantics><mrow><msub><mi>S</mi><mrow><mi>y</mi><mi>p</mi><mi>c</mi><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>,</mo><msub><mi>f</mi><mi>a</mi></msub><mo>)</mo></mrow></mrow></semantics></math> obtained by Non-PE echo. (<b>b</b>) The sparse representation signal <math display="inline"><semantics><mrow><msub><mover accent="true"><mi>S</mi><mo>˜</mo></mover><mrow><mi>y</mi><mi>p</mi><mi>c</mi><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>,</mo><msub><mi>f</mi><mi>a</mi></msub><mo>)</mo></mrow></mrow></semantics></math> obtained by PE echo.</p> "> Figure 2
<p>(<b>a</b>) The sparse representation signal <math display="inline"><semantics><mrow><msub><mover accent="true"><mi>S</mi><mo>˜</mo></mover><mrow><mi>y</mi><mi>p</mi><mi>c</mi><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>,</mo><msub><mi>f</mi><mi>a</mi></msub><mo>)</mo></mrow></mrow></semantics></math> obtained by sparse representation autofocusing with PE echo. (<b>b</b>) Normalized error between <math display="inline"><semantics><mrow><msub><mi>S</mi><mrow><mi>y</mi><mi>p</mi><mi>c</mi><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>,</mo><msub><mi>f</mi><mi>a</mi></msub><mo>)</mo></mrow></mrow></semantics></math> and <math display="inline"><semantics><mrow><msub><mover accent="true"><mi>S</mi><mo>˜</mo></mover><mrow><mi>y</mi><mi>p</mi><mi>c</mi><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>,</mo><msub><mi>f</mi><mi>a</mi></msub><mo>)</mo></mrow></mrow></semantics></math>. (<b>c</b>) Normalized error between <math display="inline"><semantics><mrow><msub><mover accent="true"><mi>S</mi><mo>˜</mo></mover><mrow><mi>y</mi><mi>p</mi><mi>c</mi><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>,</mo><msub><mi>f</mi><mi>a</mi></msub><mo>)</mo></mrow></mrow></semantics></math> and <math display="inline"><semantics><mrow><msub><mover accent="true"><mi>S</mi><mo>˜</mo></mover><mrow><mi>y</mi><mi>p</mi><mi>c</mi><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>,</mo><msub><mi>f</mi><mi>a</mi></msub><mo>)</mo></mrow></mrow></semantics></math>.</p> "> Figure 3
<p>Flow chart of the proposed SRA-AMDIA.</p> "> Figure 4
<p>(<b>a</b>) Geometric arrangement of the simulations. Target 1 to Target 5 are labeled. (<b>b</b>) The imaging result obtained by RDA for the non-PE complete echo.</p> "> Figure 5
<p>(<b>a</b>) S-PE model. (<b>b</b>) R-PE model. (<b>c</b>) L-PE model. (<b>d</b>) The imaging results obtained by RDA for the S-PE complete echo. (<b>e</b>) The imaging results obtained by RDA for the R-PE complete echo. (<b>f</b>) The imaging results obtained by RDA for the L-PE complete echo.</p> "> Figure 6
<p>(<b>a</b>) RDA 50% periodic S-PE-AMD echo result. (<b>b</b>) RDA 50% periodic R-PE-AMD echo result. (<b>c</b>) RDA 50% periodic L-PE-AMD echo result. (<b>d</b>) SOA-AMDIA 50% periodic S-PE-AMD echo result. (<b>e</b>) SOA-AMDIA 50% periodic R-PE-AMD echo result. (<b>f</b>) SOA-AMDIA 50% periodic L-PE-AMD echo result. (<b>g</b>) SOA-AMDIA+Autofocusing 50% periodic S-PE-AMD echo result. (<b>h</b>) SOA-AMDIA+Autofocusing 50% periodic R-PE-AMD echo result. (<b>i</b>) SOA-AMDIA+Autofocusing 50% periodic L-PE-AMD echo result. (<b>j</b>) Proposed SRA-AMDIA 50% periodic S-PE-AMD echo result. (<b>k</b>) Proposed SRA-AMDIA 50% periodic R-PE-AMD echo result. (<b>l</b>) Proposed SRA-AMDIA 50% periodic L-PE-AMD echo result.</p> "> Figure 7
<p>(<b>a</b>) RDA 50% random PE-AMD echo result. (<b>b</b>) SOA-AMDIA 50% random PE-AMD echo result. (<b>c</b>) SOA-AMDIA+Autofocusing 50% random PE-AMD echo result. (<b>d</b>) Proposed SRA-AMDIA 50% random PE-AMD echo result.</p> "> Figure 8
<p>Proposed SRA-AMDIA PE-AMD results when (<b>a</b>) AMR <math display="inline"><semantics><mrow><mo>=</mo><mn>55</mn><mo>%</mo></mrow></semantics></math>; (<b>b</b>) AMR <math display="inline"><semantics><mrow><mo>=</mo><mn>60</mn><mo>%</mo></mrow></semantics></math>; (<b>c</b>) AMR <math display="inline"><semantics><mrow><mo>=</mo><mn>65</mn><mo>%</mo></mrow></semantics></math>; (<b>d</b>) AMR <math display="inline"><semantics><mrow><mo>=</mo><mn>70</mn><mo>%</mo></mrow></semantics></math>; (<b>e</b>) AMR <math display="inline"><semantics><mrow><mo>=</mo><mn>75</mn><mo>%</mo></mrow></semantics></math>; (<b>f</b>) AMR <math display="inline"><semantics><mrow><mo>=</mo><mn>80</mn><mo>%</mo></mrow></semantics></math>; (<b>g</b>) AMR <math display="inline"><semantics><mrow><mo>=</mo><mn>85</mn><mo>%</mo></mrow></semantics></math>; (<b>h</b>) AMR <math display="inline"><semantics><mrow><mo>=</mo><mn>90</mn><mo>%</mo></mrow></semantics></math>; (<b>i</b>) AMR <math display="inline"><semantics><mrow><mo>=</mo><mn>95</mn><mo>%</mo></mrow></semantics></math>.</p> "> Figure 9
<p>(<b>a</b>) Layout of the experimental equipment. (<b>b</b>) Layout of the targets. (<b>c</b>) RDA imaging result of the MMW-SAR experiment.</p> "> Figure 10
<p>(<b>a</b>) RDA Measured PE Complete Echo Result. (<b>b</b>) RDA Measured PE-AMD Echo Result. (<b>c</b>) SOA-AMDIA Measured PE-AMD Echo Result. (<b>d</b>) Proposed SRA-AMDIA Measured PE-AMD Echo Result.</p> ">
Abstract
:1. Introduction
2. PE-AMD Echo Modeling
3. Analysis of Phase Error Effect on Complete Echo Reconstruction
4. Proposed Sparse Representation Autofocusing Azimuth Missing Data Imaging Algorithm
4.1. Sparse Representation Signal Autofocusing
4.2. Complete Echo Reconstruction and Imaging
5. Experiment Results and Analysis
5.1. Imaging Performance Analysis of Different Phase Error Models
5.2. Imaging Performance Analysis of Different Azimuth Missing Types
5.3. Imaging Performance Analysis of Different Azimuth Missing Ratios
5.4. Real Measured Data Verification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brown, W.M. Synthetic aperture radar. IEEE Trans. Aerosp. Electron. Syst. 1967, AES-3, 217–229. [Google Scholar] [CrossRef]
- Perry, R.; Dipietro, R.; Fante, R. SAR imaging of moving targets. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 188–200. [Google Scholar] [CrossRef]
- Krieger, G. MIMO-SAR: Opportunities and pitfalls. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2628–2645. [Google Scholar] [CrossRef] [Green Version]
- Feng, D.; An, D.; Chen, L.; Huang, X. Holographic SAR tomography 3-D reconstruction based on iterative adaptive approach and generalized likelihood ratio test. IEEE Trans. Geosci. Remote Sens. 2020, 59, 305–315. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.; Sun, H.; Ying, W. Multireceiver SAS imagery based on monostatic conversion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10835–10853. [Google Scholar] [CrossRef]
- Zhu, X.X.; Montazeri, S.; Ali, M.; Hua, Y.; Wang, Y.; Mou, L.; Shi, Y.; Xu, F.; Bamler, R. Deep learning meets SAR: Concepts, models, pitfalls, and perspectives. IEEE Geosci. Remote Sens. Mag. 2021, 9, 143–172. [Google Scholar] [CrossRef]
- Chen, J.; Xing, M.; Yu, H.; Liang, B.; Peng, J.; Sun, G.C. Motion compensation/autofocus in airborne synthetic aperture radar: A review. IEEE Geosci. Remote Sens. Mag. 2021, 10, 185–206. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, Z.; Fan, C.; Han, S.; Huang, X. Robust Radar Waveform Optimization Under Target Interpulse Fluctuation and Practical Constraints Via Sequential Lagrange Dual Approximation. IEEE Trans. Aerosp. Electron. Syst. 2023. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Pu, W.; Li, Z.; Yang, J. An effective autofocus method for fast factorized back-projection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6145–6154. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, F.; Chen, Z.; Li, J.; Hong, W. An improved map-drift algorithm for unmanned aerial vehicle SAR imaging. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1–5. [Google Scholar] [CrossRef]
- Ding, Z.; Zhu, K.; Zhang, T.; Li, L.; Wang, Y.; Wang, G.; Gao, Y.; Wei, Y.; Zeng, T. An autofocus back projection algorithm for GEO SAR based on minimum entropy. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5226114. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, L.; Li, J.; Lu, J.; Li, Y. Time-Domain Azimuth-Variant MOCO Algorithm for Airborne SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4508605. [Google Scholar] [CrossRef]
- Adorf, H.M. Interpolation of Irregularly Sampled Data Series—A Survey. Astron. Data Anal. Softw. Syst. 1995, 77, 460. [Google Scholar]
- Salzman, J.; Akamine, D.; Lefevre, R.; Kirk, J.C. Interrupted synthetic aperture radar (SAR). IEEE Aerosp. Electron. Syst. Mag. 2002, 17, 33–39. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Yu, H.; Chen, J.; Xing, M.; Hong, W. Sparse synthetic aperture radar imaging from compressed sensing and machine learning: Theories, applications, and trends. IEEE Geosci. Remote Sens. Mag. 2022, 10, 32–69. [Google Scholar] [CrossRef]
- Jiang, N.; Feng, D.; Wang, J.; Huang, X. Missing data SAR imaging algorithm based on two dimensional frequency domain recovery. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 2490–2493. [Google Scholar]
- Li, J.; Stoica, P. An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Trans. Signal Process. 1996, 44, 1469–1484. [Google Scholar] [CrossRef]
- Stoica, P.; Larsson, E.G.; Li, J. Adaptive filter-bank approach to restoration and spectral analysis of gapped data. Astron. J. 2000, 120, 2163. [Google Scholar] [CrossRef] [Green Version]
- Larsson, E.G.; Stoica, P.; Li, J. Amplitude spectrum estimation for two-dimensional gapped data. IEEE Trans. Signal Process. 2002, 50, 1343–1354. [Google Scholar] [CrossRef]
- Wang, Y.; Stoica, P.; Li, J.; Marzetta, T.L. Nonparametric spectral analysis with missing data via the EM algorithm. Digit. Signal Process. 2005, 15, 191–206. [Google Scholar] [CrossRef]
- Stoica, P.; Li, J.; Ling, J.; Cheng, Y. Missing data recovery via a nonparametric iterative adaptive approach. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; pp. 3369–3372. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.J.; Zhang, X.L.; Shi, J.; Xiang, G. Sparse reconstruction for SAR imaging based on compressed sensing. Prog. Electromagn. Res. 2010, 109, 63–81. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Thompson, J.; Huang, X.; Jin, T.; Zhou, Z. Random-frequency SAR imaging based on compressed sensing. IEEE Trans. Geosci. Remote Sens. 2012, 51, 983–994. [Google Scholar] [CrossRef]
- Bi, H.; Bi, G.; Zhang, B.; Hong, W.; Wu, Y. From theory to application: Real-time sparse SAR imaging. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2928–2936. [Google Scholar] [CrossRef]
- Onhon, N.Ö.; Cetin, M. A sparsity-driven approach for joint SAR imaging and phase error correction. IEEE Trans. Image Process. 2011, 21, 2075–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Huang, X.; Thompson, J.; Jin, T.; Zhou, Z. Compressed sensing radar imaging with compensation of observation position error. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4608–4620. [Google Scholar] [CrossRef]
- Pu, W. Deep SAR imaging and motion compensation. IEEE Trans. Image Process. 2021, 30, 2232–2247. [Google Scholar] [CrossRef]
- Yang, J.; Thompson, J.; Huang, X.; Jin, T.; Zhou, Z. Segmented reconstruction for compressed sensing SAR imaging. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4214–4225. [Google Scholar] [CrossRef]
- Sun, S.; Zhu, G.; Jin, T. Novel methods to accelerate CS radar imaging by NUFFT. IEEE Trans. Geosci. Remote Sens. 2014, 53, 557–566. [Google Scholar]
- Qian, Y.; Zhu, D. High-resolution SAR imaging from azimuth periodically gapped raw data via generalised orthogonal matching pursuit. Electron. Lett. 2018, 54, 1235–1237. [Google Scholar] [CrossRef]
- Liu, K.; Yu, W.; Lv, J. Azimuth interrupted FMCW SAR for high-resolution imaging. IEEE Geosci. Remote Sens. Lett. 2020, 19, 4001105. [Google Scholar] [CrossRef]
- Liu, K.; Yu, W.; Lv, J.; Tang, Z. Parameter Design and Imaging Method of Spaceborne Azimuth Interrupted FMCW SAR. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4015505. [Google Scholar] [CrossRef]
- Wu, J.; Feng, D.; Wang, J.; Huang, X. SAR Imaging from Azimuth Missing Raw Data via Sparsity Adaptive StOMP. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4501605. [Google Scholar] [CrossRef]
- Jiang, N.; Xin, Q.; Zhu, J.; Feng, D.; Wang, J.; Huang, X. Enhancement synthetic aperture imaging algorithm with azimuth missing data. Electron. Lett. 2023, 59, e12729. [Google Scholar] [CrossRef]
- Jiang, N.; Zhu, J.; Feng, D.; Xie, Z.; Wang, J.; Huang, X. High-Resolution SAR Imaging with Azimuth Missing Data Based on Sub-Echo Segmentation and Reconstruction. Remote Sens. 2023, 15, 2428. [Google Scholar] [CrossRef]
- Jiang, N.; Feng, D.; Wang, J.; Zhu, J.; Huang, X. Along-track Swarm SAR: Echo Modeling and Sub-aperture Collaboration Imaging based on Sparse Constraints. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5602–5617. [Google Scholar] [CrossRef]
- Zhu, D.; Jiang, R.; Mao, X.; Zhu, Z. Multi-subaperture PGA for SAR autofocusing. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 468–488. [Google Scholar] [CrossRef]
- Zeng, H.; Yang, W.; Wang, P.; Chen, J. A modified PGA for spaceborne SAR scintillation compensation based on the weighted maximum likelihood estimator and data division. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3938–3947. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, B.; Xing, M.; Bao, Z.; Guo, L. The space-variant phase-error matching map-drift algorithm for highly squinted SAR. IEEE Geosci. Remote Sens. Lett. 2012, 10, 845–849. [Google Scholar] [CrossRef]
- Berizzi, F.; Corsini, G. Autofocusing of inverse synthetic aperture radar images using contrast optimization. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1185–1191. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Li, X. Fast entropy minimization based autofocusing technique for ISAR imaging. IEEE Trans. Signal Process. 2015, 63, 3425–3434. [Google Scholar] [CrossRef]
- Zeng, T.; Wang, R.; Li, F. SAR image autofocus utilizing minimum-entropy criterion. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1552–1556. [Google Scholar] [CrossRef]
- Morrison, R.L.; Do, M.N.; Munson, D.C. SAR image autofocus by sharpness optimization: A theoretical study. IEEE Trans. Image Process. 2007, 16, 2309–2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, N.; Wang, J.; Feng, D.; Kang, N.; Huang, X. SAR imaging method for moving target with azimuth missing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7100–7113. [Google Scholar] [CrossRef]
- Wang, J.; Kwon, S.; Shim, B. Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 2012, 60, 6202–6216. [Google Scholar] [CrossRef] [Green Version]
Step1 | Input the indices number of each selection P, the maximum number of iterations , the threshold parameter and ; |
Step2 | Initialize the iteration parameter = 1, let the residue signal , and set a new sensing matrix ; |
Step3 | Let ; |
Step4 | Calculate the largest p values in from the largest to smallest, and then the corresponding are selected; |
Step5 | Update matrix and calculate the estimated value of complete signal vector by , where H represents the conjugate transpose operation; |
Step6 | Update residue signal ; |
Step7 | If or , let . Else go to Step 3. |
Parameters | Value |
---|---|
: Central frequency | 1 GHz |
: Shortest central slant range | 2864 m |
B: Signal frequency bandwidth | 100 MHz |
: Range sampling rate | 200 MHz |
: Pulse repetition frequency | 200 Hz |
: Range samples | 334 |
: Azimuth samples | 1000 |
: Iteration termination threshold | 10 |
RDA Non-PE Complete Echo | RDA PE-AMD | SOA- AMDIA | SOA-AMDIA+ Autofocusing | SRA- AMDIA | ||
---|---|---|---|---|---|---|
IRW (m) | 0.95 | S-PE | 0.74 | 0.70 | 0.74 | 0.95 |
R-PE | 0.77 | 0.85 | 0.89 | 0.95 | ||
L-PE | 0.75 | 0.75 | 0.80 | 0.95 | ||
PSLR (dB) | −13.08 | S-PE | −3.67 | −6.51 | −5.04 | −12.68 |
R-PE | −1.03 | −5.50 | −5.92 | −12.76 | ||
L-PE | −2.50 | −0.57 | −2.58 | −13.02 |
RDA Non-PE Complete Echo | RDA PE-AMD | SOA- AMDIA | SOA-AMDIA+ Autofocusing | SRA- AMDIA | ||
---|---|---|---|---|---|---|
IE | 1.18 | S-PE | 1.77 | 1.37 | 1.31 | 1.18 |
R-PE | 2.34 | 1.96 | 1.88 | 1.18 | ||
L-PE | 1.83 | 1.49 | 1.37 | 1.18 | ||
IC | 23.29 | S-PE | 16.07 | 21.37 | 21.36 | 23.29 |
R-PE | 15.99 | 15.95 | 15.95 | 23.29 | ||
L-PE | 16.02 | 18.30 | 21.35 | 23.29 |
RDA Non-PE Complete Echo | RDA PE-AMD | SOA- AMDIA | SOA-AMDIA+ Autofocusing | SRA- AMDIA | |
---|---|---|---|---|---|
IRW (m) | 0.95 | 0.85 | 0.80 | 0.75 | 0.95 |
PSLR (dB) | −13.08 | −3.88 | −3.50 | −2.21 | −11.30 |
RDA Non-PE Complete Echo | RDA PE-AMD | SOA- AMDIA | SOA-AMDIA+ Autofocusing | SRA- AMDIA | |
---|---|---|---|---|---|
IE | 1.18 | 2.00 | 1.34 | 1.28 | 1.18 |
IC | 23.29 | 15.95 | 21.36 | 21.30 | 23.29 |
Parameters | Value |
---|---|
: Central frequency | 77 GHz |
B: Signal frequency bandwidth | 2.56 GHz |
: Range sampling rate | 10 MHz |
: Pulse repetition frequency | 100 Hz |
: Number of range samples | 1024 |
: Number of azimuth samples | 1960 |
: Velocity of MMW-radar | 2.13 cm/s |
Different Imaging Results | IE Value |
---|---|
RDA Measured Non-PE Complete Echo Result (Figure 9c) | 1.93 |
RDA Measured PE Complete Echo Result (Figure 10a) | 2.15 |
RDA Measured PE-AMD Echo Result (Figure 10b) | 2.29 |
SOA-AMDIA Measured PE-AMD Echo Result (Figure 10c) | 2.19 |
Proposed SRA-AMDIA Measured PE-AMD Echo Result (Figure 10d) | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, N.; Du, H.; Ge, S.; Zhu, J.; Feng, D.; Wang, J.; Huang, X. High-Resolution Azimuth Missing Data SAR Imaging Based on Sparse Representation Autofocusing. Remote Sens. 2023, 15, 3425. https://doi.org/10.3390/rs15133425
Jiang N, Du H, Ge S, Zhu J, Feng D, Wang J, Huang X. High-Resolution Azimuth Missing Data SAR Imaging Based on Sparse Representation Autofocusing. Remote Sensing. 2023; 15(13):3425. https://doi.org/10.3390/rs15133425
Chicago/Turabian StyleJiang, Nan, Huagui Du, Shaodi Ge, Jiahua Zhu, Dong Feng, Jian Wang, and Xiaotao Huang. 2023. "High-Resolution Azimuth Missing Data SAR Imaging Based on Sparse Representation Autofocusing" Remote Sensing 15, no. 13: 3425. https://doi.org/10.3390/rs15133425
APA StyleJiang, N., Du, H., Ge, S., Zhu, J., Feng, D., Wang, J., & Huang, X. (2023). High-Resolution Azimuth Missing Data SAR Imaging Based on Sparse Representation Autofocusing. Remote Sensing, 15(13), 3425. https://doi.org/10.3390/rs15133425