High-Resolution SAR Imaging with Azimuth Missing Data Based on Sub-Echo Segmentation and Reconstruction
<p>The comparison between the complete, periodical missing, and random missing signal.</p> "> Figure 2
<p>Flowchart of the proposed SSR-AMDIA.</p> "> Figure 3
<p><math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>pc</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>f</mi> <mi>η</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> results obtained by (<b>a</b>) the SOA-AMDIA; (<b>b</b>) the proposed SSR-AMDIA without range segmentation; (<b>c</b>) the proposed SSR-AMDIA.</p> "> Figure 4
<p>The normalized recovery error between <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">s</mi> <mi>rcmc</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi mathvariant="bold-italic">s</mi> <mo>^</mo> </mover> <mi>rcmc</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> by using (<b>a</b>) the SOA-AMDIA; (<b>b</b>) the proposed SSR-AMDIA.</p> "> Figure 5
<p>(<b>a</b>) Residual Quadratic Phase Error <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Φ</mi> <mi>QPE</mi> </msub> </semantics></math> after PFA. The inner white contour line represents an error of <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>/</mo> <mn>4</mn> </mrow> </semantics></math>, while the outer white contour line represents an error of <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>. The black contour circle denotes the maximum well-focused radius <math display="inline"><semantics> <msub> <mi>r</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math> deduced in [<a href="#B28-remotesensing-15-02428" class="html-bibr">28</a>], where the <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>148.3</mn> </mrow> </semantics></math> m. (<b>b</b>) Simulated image of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="bold-italic">S</mi> <mi>pc</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>f</mi> <mi>η</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> obtained by the SOA-AMDIA. The meaning of the red contour circle is the same as the black contour circle in (<b>a</b>).</p> "> Figure 6
<p>(<b>a</b>) Residual Quadratic Phase Error <math display="inline"><semantics> <msub> <mover accent="true"> <mi mathvariant="sans-serif">Φ</mi> <mo>˜</mo> </mover> <mi>QPE</mi> </msub> </semantics></math> after the RCMC and phase compensation. The inner white contour line represents an error of <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>/</mo> <mn>4</mn> </mrow> </semantics></math>, while the outer white contour line represents an error of <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>. (<b>b</b>) Simulated image of <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mi>pc</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>f</mi> <mi>η</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> obtained by (<a href="#FD17-remotesensing-15-02428" class="html-disp-formula">17</a>) when <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The meaning of the red contour lines is the same as the white contour lines in sub-figure (<b>a</b>).</p> "> Figure 7
<p>Simulated images of <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>S</mi> </mrow> <mi>pc</mi> <msub> <mi>k</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mi>f</mi> <mi>η</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> obtained by (<a href="#FD17-remotesensing-15-02428" class="html-disp-formula">17</a>) when <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>(<b>a</b>) Synthetic point targets grid. (<b>b</b>) Simulated image obtained by the SOA-AMDIA. (<b>c</b>) Simulated image obtained by the proposed SSR-AMDIA. (<b>d</b>) Zoomed <math display="inline"><semantics> <msub> <mi>P</mi> <mi>A</mi> </msub> </semantics></math>. (<b>e</b>) Zoomed <math display="inline"><semantics> <msubsup> <mi>P</mi> <mi>A</mi> <mo>′</mo> </msubsup> </semantics></math>. (<b>f</b>) Zoomed <math display="inline"><semantics> <msub> <mi>P</mi> <mi>B</mi> </msub> </semantics></math>. (<b>g</b>) Zoomed <math display="inline"><semantics> <msubsup> <mi>P</mi> <mi>B</mi> <mo>′</mo> </msubsup> </semantics></math>.</p> "> Figure 9
<p>(<b>a</b>) The 77 GHz millimeter-wave SAR system for the real measured experiment. The electric track length equals 1.57 m and the radar height equals 1.40 m. (<b>b</b>) The large imaging scene consists of five triangle reflectors. They are Target1 (11.10, −1.10), Target2 (11.10, 1.12), Target3 (10.12, 0.00), Target4 (9.24, −1.10), and Target5 (9.28, 1.02). (<b>c</b>) The image result obtained by using the Range Doppler algorithm with the real measured complete echo.</p> "> Figure 10
<p>(<b>a</b>) Real measure data image targets obtained by the SOA-AMDIA with 50% periodic AMD echo. (Note that since the scene center point in this experiment is located at half of the maximum slant range, which is the (15, 0), all targets cannot be well-focused using the SOA-AMDIA.) (<b>b</b>) Real measure data image obtained by the proposed SSR-AMDIA with 50% periodic AMD echo.</p> "> Figure 11
<p>(<b>a</b>) Real measure data image obtained by the SOA-AMDIA with 50% random AMD echo. (Note that since the scene center point in this experiment is located at half of the maximum slant range, which is the (15, 0), all targets cannot be well-focused using the SOA-AMDIA.) (<b>b</b>) Real measure data image obtained by the proposed SSR-AMDIA with 50% random AMD echo.</p> "> Figure 12
<p>Image result obtained by the proposed SSR-AMDIA with the real measured SAR data when (<b>a</b>) AMR = 55%; (<b>b</b>) AMR = 60%; (<b>c</b>) AMR = 65%; (<b>d</b>) AMR = 70%; (<b>e</b>) AMR = 75%; (<b>f</b>) AMR = 80%; (<b>g</b>) AMR = 85%.</p> "> Figure 13
<p>(<b>a</b>) Image Entropy results obtained by the SOA-AMDIA and the proposed SSR-AMDIA in different AMR cases. (<b>b</b>) Running times of the SOA-AMDIA and the proposed SSR-AMDIA in different AMR cases.</p> ">
Abstract
:1. Introduction
- We first rebuilt the full RCMC echo rather than the full raw echo. The SOA-AMDIA only focuses on reconstructing the full raw echo before range compression and RCMC processing, resulting in an inaccurate reconstruction of azimuth far-field targets. Thus, the proposed algorithm first eliminates the negative effect of range migration on echo recovery. It significantly reduces the azimuth far-field target’s residual phase error, and expands the azimuth maximum Depth of Focus (DOF) of the sparse domain signal. Additionally, the computational cost can also be reduced if the range direction’s targets are adequately sparse.
- We first exploited range segmentation to improve the SOA-AMDIA. Instead of using one PCF for the whole imaging scene, we redesigned a series of PCFs for each sub-scene. It ensures the significant reduction of the range far-field target’s residual phase error, and the imaging range limits can be eliminated with a reasonable segmentation strategy.
- We also carried out the mathematical derivation for the two-dimensional maximum DOFs of the proposed algorithm. The advantage of the proposed SSR-AMDIA over SOA-AMDIA for the imaging scene scope is theoretically verified.
2. SAR Signal Models
2.1. Complete SAR Echo Model
2.2. SAR Echo Model with Azimuth Missing Data
3. Sub-Echo Segmentation and Reconstruction Azimuth Missing Data SAR Imaging Algorithm
3.1. Range Compression and Range Cell Migration Correction
3.2. Reconstructing the Sub-Echoes
3.3. Combining the Sub-Echoes and Entire Scene Imaging
4. Parameter Analysis
4.1. Azimuth Maximum Depth of Focus
4.2. Range Segmentation Strategy
4.3. Computational Complexity
5. Simulation and Real-Measured Experiment Validation
5.1. Simulation Verification of the Proposed SSR-AMDIA
5.2. Measured Data Verification of the Proposed SSR-AMDIA
5.3. Imaging Performance Effects on Different Azimuth Missing Ratios
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pinheiro, M.; Rodriguez-Cassola, M.; Prats-Iraola, P.; Reigber, A.; Krieger, G.; Moreira, A. Reconstruction of coherent pairs of synthetic aperture radar data acquired in interrupted mode. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1876–1893. [Google Scholar] [CrossRef]
- Qian, Y.; Zhu, D. SAR Image Formation From Azimuth Periodically Gapped Raw Data Via Complex ISTA. In Proceedings of the 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Jiang, N.; Feng, D.; Wang, J.; Huang, X. Missing data SAR imaging algorithm based on two dimensional frequency domain recovery. In Proceedings of the 2022 IEEE International Geoscience and Remote Sening Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Salzman, J.; Akamine, D.; Lefevre, R.; Kirk, J.C. Interrupted synthetic aperture radar (SAR). IEEE Aerosp. Electron. Syst. Mag. 2002, 17, 33–39. [Google Scholar] [CrossRef]
- Li, J.; Stoica, P. An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Trans. Signal Process. 1996, 44, 1469–1484. [Google Scholar] [CrossRef]
- Stoica, P.; Larsson, E.G.; Li, J. Adaptive filter-bank approach to restoration and spectral analysis of gapped data. Astron. J. 2000, 120, 2163. [Google Scholar] [CrossRef]
- Larsson, E.G.; Stoica, P.; Li, J. Amplitude spectrum estimation for two-dimensional gapped data. IEEE Trans. Signal Process. 2002, 50, 1343–1354. [Google Scholar] [CrossRef]
- Wang, Y.; Stoica, P.; Li, J.; Marzetta, T.L. Nonparametric spectral analysis with missing data via the EM algorithm. Digit. Signal Process. 2005, 15, 191–206. [Google Scholar] [CrossRef]
- Stoica, P.; Li, J.; Ling, J.; Cheng, Y. Missing data recovery via a nonparametric iterative adaptive approach. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 3369–3372. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Yang, J.; Thompson, J.; Huang, X.; Jin, T.; Zhou, Z. Random-frequency SAR imaging based on compressed sensing. IEEE Trans. Geosci. Remote Sens. 2012, 51, 983–994. [Google Scholar] [CrossRef]
- Bi, H.; Zhu, D.; Bi, G.; Zhang, B.; Hong, W.; Wu, Y. FMCW SAR sparse imaging based on approximated observation: An overview on current technologies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4825–4835. [Google Scholar] [CrossRef]
- Zhou, K.; Li, D.; He, F.; Quan, S.; Su, Y. A Sparse Imaging Method for Frequency Agile SAR. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Yang, J.; Thompson, J.; Huang, X.; Jin, T.; Zhou, Z. Segmented reconstruction for compressed sensing SAR imaging. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4214–4225. [Google Scholar] [CrossRef]
- Sun, S.; Zhu, G.; Jin, T. Novel methods to accelerate CS radar imaging by NUFFT. IEEE Trans. Geosci. Remote Sens. 2014, 53, 557–566. [Google Scholar]
- Qian, Y.; Zhu, D. High-resolution SAR imaging from azimuth periodically gapped raw data via generalised orthogonal matching pursuit. Electron. Lett. 2018, 54, 1235–1237. [Google Scholar] [CrossRef]
- Gorham, L.A.; Rigling, B.D. Scene size limits for polar format algorithm. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 73–84. [Google Scholar] [CrossRef]
- Chen, J.; An, D.; Wang, W.; Luo, Y.; Chen, L.; Zhou, Z. Extended Polar Format Algorithm for Large-Scene High-Resolution WAS-SAR Imaging. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5326–5338. [Google Scholar] [CrossRef]
- Liu, K.; Yu, W.; Lv, J. Azimuth interrupted FMCW SAR for high-resolution imaging. IEEE Geosci. Remote Sens. Lett. 2020, 19, 4001105. [Google Scholar] [CrossRef]
- Liu, K.; Yu, W.; Lv, J.; Tang, Z. Parameter Design and Imaging Method of Spaceborne Azimuth Interrupted FMCW SAR. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4015505. [Google Scholar] [CrossRef]
- Wu, J.; Feng, D.; Wang, J.; Huang, X. SAR Imaging from Azimuth Missing Raw Data via Sparsity Adaptive StOMP. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4501605. [Google Scholar] [CrossRef]
- Jiang, N.; Wang, J.; Feng, D.; Kang, N.; Huang, X. SAR Imaging Method for Moving Target With Azimuth Missing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7100–7113. [Google Scholar] [CrossRef]
- Jiang, N.; Xin, Q.; Zhu, J.; Feng, D.; Wang, J.; Huang, X. Enhancement synthetic aperture imaging algorithm with azimuth missing data. Electron. Lett. 2023, 59, e12729. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, F.H. Digital processing of synthetic aperture radar data. Artech House 2005, 1, 108–110. [Google Scholar]
- Wang, J.; Kwon, S.; Shim, B. Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 2012, 60, 6202–6216. [Google Scholar] [CrossRef]
- Liu, K.; Yu, W. Interrupted FMCW SAR imaging via sparse reconstruction. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1564–1567. [Google Scholar]
- Rigling, B.D.; Moses, R.L. Taylor expansion of the differential range for monostatic SAR. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 60–64. [Google Scholar] [CrossRef]
- Walker, J.L. Range-Doppler imaging of rotating objects. IEEE Trans. Aerosp. Electron. Syst. 1980, AES-16, 23–52. [Google Scholar] [CrossRef]
- Quegan, S. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. J. Atmos. Sol.-Terr. Phys. 1997, 59, 597–598. [Google Scholar] [CrossRef]
- Xie, Z.; Fan, C.; Xu, Z.; Zhu, J.; Huang, X.; Senior Member, I. Robust joint code-filter design under uncertain target interpulse fluctuation. Signal Process. 2022, 201, 108687. [Google Scholar] [CrossRef]
- Xie, Z.; Xu, Z.; Fan, C.; Han, S.; Huang, X. Robust Radar Waveform Optimization Under Target Interpulse Fluctuation and Practical Constraints Via Sequential Lagrange Dual Approximation. IEEE Trans. Aerosp. Electron. Syst. 2023; early access. [Google Scholar]
Step 1 | Input the indices number of each selection P, the maximum number of iterations , the threshold parameter and ; |
Step 2 | Initialize the iteration parameter = 1, let the residue signal , and set a new sensing matrix ; |
Step 3 | Let ; |
Step 4 | Calculate the largest P values in from the largest to smallest and then the corresponding are selected; |
Step 5 | Update matrix and calculate the estimated value of complete signal vector by , where H represents the conjugate transpose operation; |
Step 6 | Update residue signal ; |
Step 7 | If or , let . Else go to Step 3. |
Parameters | Value |
---|---|
Central frequency/ | 1 GHz |
Shortest central slant range / | 3300 m |
Signal frequency bandwidth / B | 100 MHz |
Range sampling rate / | 200 MHz |
Pulse repetition frequency / PRF | 197 Hz |
Range samples / | 1002 |
Azimuth samples / | 2048 |
Azimuth missing ratio / AMR | 50% |
SOA-AMDIA | SSR-AMDIA | |
---|---|---|
50% Periodic Missing | 53.25 | 7.92 |
50% Random Missing | 29.39 | 7.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, N.; Zhu, J.; Feng, D.; Xie, Z.; Wang, J.; Huang, X. High-Resolution SAR Imaging with Azimuth Missing Data Based on Sub-Echo Segmentation and Reconstruction. Remote Sens. 2023, 15, 2428. https://doi.org/10.3390/rs15092428
Jiang N, Zhu J, Feng D, Xie Z, Wang J, Huang X. High-Resolution SAR Imaging with Azimuth Missing Data Based on Sub-Echo Segmentation and Reconstruction. Remote Sensing. 2023; 15(9):2428. https://doi.org/10.3390/rs15092428
Chicago/Turabian StyleJiang, Nan, Jiahua Zhu, Dong Feng, Zhuang Xie, Jian Wang, and Xiaotao Huang. 2023. "High-Resolution SAR Imaging with Azimuth Missing Data Based on Sub-Echo Segmentation and Reconstruction" Remote Sensing 15, no. 9: 2428. https://doi.org/10.3390/rs15092428
APA StyleJiang, N., Zhu, J., Feng, D., Xie, Z., Wang, J., & Huang, X. (2023). High-Resolution SAR Imaging with Azimuth Missing Data Based on Sub-Echo Segmentation and Reconstruction. Remote Sensing, 15(9), 2428. https://doi.org/10.3390/rs15092428