Hyperspectral Super-Resolution Reconstruction Network Based on Hybrid Convolution and Spectral Symmetry Preservation
<p>Hybrid convolution and spectral symmetry preservation network (HSSPN).</p> "> Figure 2
<p>Res3D network.</p> "> Figure 3
<p>Mixed ECA attention mechanisms and 2D residual convolution network.</p> "> Figure 4
<p>Incremental feature fusion module network.</p> "> Figure 5
<p>Fourier transform upsampling.</p> "> Figure 6
<p>The reconstructed images and detailed comparison images of the face_ms using various algorithms. Reconstructed images with spectral bands 26-17-9 as R-G-B channel with a scale factor of 2.</p> "> Figure 7
<p>Visual comparison of spectral distortion for face_ms image: (<b>a</b>) pixel position (220, 20), (339, 439) on the CAVE dataset with a scale factor of 2; (<b>b</b>) pixel position (250, 20), (293, 499) on the CAVE dataset with a scale factor of 4.</p> "> Figure 7 Cont.
<p>Visual comparison of spectral distortion for face_ms image: (<b>a</b>) pixel position (220, 20), (339, 439) on the CAVE dataset with a scale factor of 2; (<b>b</b>) pixel position (250, 20), (293, 499) on the CAVE dataset with a scale factor of 4.</p> "> Figure 8
<p>The reconstructed images and detailed comparison images of the Pavia using various algorithms. Reconstructed images with spectral bands 60-35-13 as R-G-B channel with a scale factor of 2.</p> "> Figure 9
<p>Visual comparison of spectral distortion for Pavia center image: (<b>a</b>) pixel position (482, 433), (452, 344) on the Pavia center dataset with a scale factor of 2; (<b>b</b>) pixel position (583, 413), (337, 424) on the Pavia center dataset with a scale factor of 4.</p> "> Figure 10
<p>The reconstructed images and detailed comparison images of the Pavia using various algorithms. Reconstructed images with spectral bands 70-100-30 as R-G-B channel with a scale factor of 2.</p> "> Figure 11
<p>Visual comparison of spectral distortion for Chikusei image: (<b>a</b>) pixel position (2248, 2093), (2037, 2124) on the Chikusei dataset with a scale factor of 2; (<b>b</b>) pixel position (1922, 2013), (1897, 1924) on the Chikusei dataset with a scale factor of 4.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structure
2.2. Feature Extraction Module
2.2.1. Multi-Band Feature Extraction Network
2.2.2. Single-Band Feature Extraction Network
2.2.3. Feature Fusion Network
2.2.4. Image Reconstruction Network
2.2.5. Loss Function
3. Results
3.1. Dataset and Parameter Settings
3.2. Evaluation Accuracy
3.3. Rigorousness Experiments and Parameter Settings
3.3.1. Component Analysis
3.3.2. Research on Different Types of 3D Convolutions
3.3.3. Parameter Settings
3.4. Results and Analysis
3.4.1. CAVE
3.4.2. Pavia Center
3.4.3. Chikusei
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jalal, R.; Iqbal, Z.; Henry, M.; Franceschini, G.; Islam, M.S.; Akhter, M.; Khan, Z.T.; Hadi, M.A.; Hossain, M.A.; Mahboob, M.G.; et al. Toward Efficient Land Cover Mapping: An Overview of the National Land Representation System and Land Cover Map 2015 of Bangladesh. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3852–3861. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, N.; Zheng, Z.; Xia, J.; Zhang, L.; Zhang, X.; Zhu, M.; He, Y.; Jiang, L.; Zhou, G.; et al. Monitoring of Drought Change in the Middle Reach of Yangtze River. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4935–4938. [Google Scholar] [CrossRef]
- Goetzke, R.; Braun, M.; Thamm, H.P.; Menz, G. Monitoring and modeling urban land-use change with multitemporal satellitedata. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 4, pp. 510–513. [Google Scholar]
- Darweesh, M.; Mansoori, S.A.; Alahmad, H. Simple Roads Extraction Algorithm Based on Edge Detection Using Satellite Images. In Proceedings of the 2019 IEEE 4th International Conference on Image, Vision and Computing, ICIVC, Xiamen, China, 5–7 July 2019; pp. 578–582. [Google Scholar] [CrossRef]
- Kussul, N.; Shelestov, A.; Yailymova, H.; Yailymov, B.; Lavreniuk, M.; Ilyashenko, M. Satellite Agricultural Monitoring in Ukraineat Country Level: World Bank Project. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1050–1053. [Google Scholar] [CrossRef]
- Di, Y.; Xu, X.; Zhang, G. Research on secondary analysis method of synchronous satellite monitoring data of power grid wildfire. In Proceedings of the 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence, ICIBA, Chongqing, China, 6–8 November 2020; pp. 706–710. [Google Scholar] [CrossRef]
- Chen, M.; Duan, Z.; Lan, Z.; Yi, S. Scene Reconstruction Algorithm for Unstructured Weak-Texture Regions Based on Stereo Vision. Appl. Sci. 2023, 13, 6407. [Google Scholar] [CrossRef]
- Liu, Y.N. Development of hyperspectral imaging remote sensing technology. Natl. Remote Sens. Bull. 2021, 25, 439–459. [Google Scholar] [CrossRef]
- Liu, H.; Gu, Y.; Wang, T.; Li, S. Satellite Video Super-Resolution Based on Adaptively Spatiotemporal Neighbors and Nonlocal Similarity Regularization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8372–8383. [Google Scholar] [CrossRef]
- Akgun, T.; Altunbasak, Y.; Mersereau, R. Super-resolution reconstruction of hyperspectral images. IEEE Trans. Image Process. 2005, 14, 1860–1875. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yu, J.; Sun, W. Super-resolution mapping via multi-dictionary based sparse representation. In Proceedings of the 2014 IEEE InternationalConference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 3523–3527. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Han, Z.; He, S. Hyperspectral Image Super-Resolution via Nonlocal Low-Rank Tensor Approximation and Total Variation Regularization. Remote Sens. 2017, 9, 1286. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 12–26 July 2017; pp. 1132–1140. [Google Scholar] [CrossRef] [Green Version]
- Haris, M.; Shakhnarovich, G.; Ukita, N. Deep Back-Projection Networks for Super-Resolution. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1664–1673. [Google Scholar] [CrossRef] [Green Version]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.-T.; Zhang, L. Second-Order Attention Network for Single Image Super-Resolution. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11057–11066. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, X.; Lu, X. Hyperspectral Image Superresolution by Transfer Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1963–1974. [Google Scholar] [CrossRef]
- Gomez, R.B.; Jazaeri, A.; Kafatos, M. Wavelet-based hyperspectral and multispectral image fusion. In Geo-Spatial Image and Data Exploitation II; SPIE: Bellingham, WA, USA, 2001; pp. 36–42. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Selva, M. Improving Component Substitution Pansharpening Through Multivariate Regression of MS ++Pan Data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [Google Scholar] [CrossRef]
- Wei, Q.; Bioucas-Dias, J.; Dobigeon, N.; Tourneret, J.-Y. Hyperspectral and Multispectral Image Fusion Based on a Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3658–3668. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, N.; Shafait, F.; Mian, A. Bayesian sparse representation for hyperspectral image super resolution. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3631–3640. [Google Scholar] [CrossRef]
- Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion. IEEE Trans. Geosci. Remote Sens. 2011, 50, 528–537. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Z.; Xiao, L.; Sun, J.; Yan, H. A Truncated Matrix Decomposition for Hyperspectral Image Super-Resolution. IEEE Trans. Image Process 2020, 29, 8028–8042. [Google Scholar] [CrossRef]
- Li, S.; Dian, R.; Fang, L.; Bioucas-Dias, J.M. Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization. IEEE Trans. Image Process 2018, 27, 4118–4130. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Chanussot, J.; Wei, Z. Nonlocal Patch Tensor Sparse Representation for Hyperspectral Image Super-Resolution. IEEE Trans. Image Process 2019, 28, 3034–3047. [Google Scholar] [CrossRef] [PubMed]
- Palsson, F.; Sveinsson, J.R.; Ulfarsson, M.O. Multispectral and Hyperspectral Image Fusion Using a 3-D-Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 639–643. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Qi, H.; Kwan, C. Unsupervised Sparse Dirichlet-Net for Hyperspectral Image Super-Resolution. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2511–2520. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Gao, L.; Liao, W.; Hong, D.; Zhang, B.; Cui, X.; Chanussot, J. Coupled Convolutional Neural Network with Adaptive Response Function Learning for Unsupervised Hyperspectral Super Resolution. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2487–2502. [Google Scholar] [CrossRef]
- Jiang, J.; Sun, H.; Liu, X.; Ma, J. Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery. IEEE Trans. Comput. Imaging 2020, 6, 1082–1096. [Google Scholar] [CrossRef]
- Wang, X.; Ma, J.; Jiang, J. Hyperspectral Image Super-Resolution via Recurrent Feedback Embedding and Spatial–Spectral Consistency Regularization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5503113. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, M.; Li, Y. Hyperspectral Image Super-Resolution by Deep Spatial-Spectral Exploitation. Remote Sens. 2019, 11, 1229. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Yuan, X.; Ji, J.; Zhang, Y.; Wan, S.; Du, Q. Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network. Remote Sens. 2017, 9, 1139. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, Q.; Li, X. Mixed 2D/3D Convolutional Network for Hyperspectral Image Super-Resolution. Remote Sens. 2020, 12, 1660. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Li, X. Hyperspectral Image Superresolution Using Spectrum and Feature Context. IEEE Trans. Ind. Electron. 2021, 68, 11276–11285. [Google Scholar] [CrossRef]
- Jia, S.; Zhu, S.; Wang, Z.; Xu, M.; Wang, W.; Guo, Y. Diffused Convolutional Neural Network for Hyperspectral Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5504615. [Google Scholar] [CrossRef]
- Hu, J.; Li, Y.; Xie, W. Hyperspectral Image Super-Resolution by Spectral Difference Learning and Spatial Error Correction. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1825–1829. [Google Scholar] [CrossRef]
- Hu, J.; Jia, X.; Li, Y.; He, G.; Zhao, M. Hyperspectral Image Super-Resolution via Intrafusion Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7459–7471. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Dingl, C.; Wei, W.; Zhang, Y. Single Hyperspectral Image Super-Resolution with Grouped Deep Recursive Residual Network. In Proceedings of the 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), Xi’an, China, 13–16 September 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Lu, X.; Liu, X.; Zhang, L.; Jia, F.; Yang, Y. Hyperspectral image super-resolution based on attention ConvBiLSTM network. Int. J. Remote Sens. 2022, 43, 5059–5074. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, Y.; Liu, J.; Wu, B.; Han, D.; Kurfess, T. 3D separable convolutional neural network for dynamic hand gesture recognition. Neurocomputing 2018, 318, 151–161. [Google Scholar] [CrossRef]
- Qiu, Z.; Yao, T.; Mei, T. Learning spatio-temporal representationwith pseudo-3D residual networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5533–5541. [Google Scholar]
- Hou, J.; Zhu, Z.; Hou, J.; Liu, H.; Zeng, H.; Meng, D. Deep Diversity-Enhanced Feature Representation of Hyperspectral Images. arXiv preprint 2023, arXiv:2301.06132. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 11531–11539. [Google Scholar] [CrossRef]
- Yasuma, F.; Mitsunaga, T.; Iso, D.; Nayar, S.K. Generalized Assorted Pixel Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum. IEEE Trans. Image Process 2010, 19, 2241–2253. [Google Scholar] [CrossRef] [Green Version]
- Yokoya, N.; Iwasaki, A. Airborne Hyperspectral Data Over Chikusei; University of Tokyo: Tokyo, Japan, 2016. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Yuhas, R.; Goetz, A.F.H.; Boardman, J.W. Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In Proceedings of the JPL, Summaries of the Third Annual JPL Airborne Geoscience Workshop; 1–5 June 1992, NASA: Washington, DC, USA, 1992; Volume 1, pp. 147–149. [Google Scholar]
Component | Different Combinations of Components | |||
---|---|---|---|---|
2D Resnet | ✓ | ✓ | ✓ | ✓ |
Deformable Conv | × | ✓ | × | ✓ |
ECA | × | × | ✓ | ✓ |
MPSNR | 33.906 | 34.270 | 34.415 | 34.445 |
SSIM | 0.9443 | 0.9507 | 0.9480 | 0.9486 |
SAM | 3.556 | 3.819 | 3.733 | 3.710 |
Component | Different Combinations of Components | |||||
---|---|---|---|---|---|---|
MER | ✓ | × | ✓ | ✓ | ✓ | ✓ |
Res3D | × | ✓ | ✓ | ✓ | ✓ | ✓ |
IF | × | × | × | ✓ | × | ✓ |
Fourier Upsampling | × | × | × | × | ✓ | ✓ |
PSNR | 34.445 | 34.926 | 36.073 | 36.299 | 36.189 | 36.321 |
SSIM | 0.9486 | 0.9435 | 0.9547 | 0.9550 | 0.9564 | 0.9576 |
SAM | 3.710 | 3.766 | 3.445 | 3.292 | 3.194 | 3.054 |
Type | PSNR | SSIM | SAM | Params |
---|---|---|---|---|
Regular 3D convolution | 36.144 | 0.9498 | 2.977 | 2877 K |
Separable 3D convolution | 36.166 | 0.9551 | 2.987 | 2435 K |
Spectral symmetric 3D convolution | 36.321 | 0.9576 | 2.954 | 2200 K |
Evaluation Accuracy | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|
PSNR | 35.950 | 36.144 | 36.291 | 36.321 | 36.329 |
SSIM | 0.9551 | 0.9552 | 0.9570 | 0.9576 | 0.9591 |
SAM | 3.599 | 3.547 | 3.457 | 3.054 | 2.939 |
Params | 1533 k | 1758 k | 1980 k | 2200 k | 2405 k |
Flops | 581 G | 712 G | 965 G | 1259 G | 1406 G |
Scale | Evaluation Accuracy | Bicubic | VDSR | EDSR | MCNet | SFCSR | Ours |
---|---|---|---|---|---|---|---|
×2 | MPSNR | 39.898 | 43.543 | 43.988 | 44.920 | 45.870 | 46.335 |
SSIM | 0.9663 | 0.9685 | 0.9734 | 0.9749 | 0.9765 | 0.9812 | |
SAM | 2.985 | 2.784 | 2.675 | 2.241 | 2.113 | 1.998 | |
×4 | MPSNR | 33.667 | 37.335 | 38.587 | 39.026 | 40.323 | 41.218 |
SSIM | 0.9071 | 0.9211 | 0.9292 | 0.9319 | 0.9398 | 0.9409 | |
SAM | 4.121 | 4.097 | 3.904 | 3.292 | 3.221 | 3.131 |
Scale | Evaluation Accuracy | Bicubic | VDSR | EDSR | MCNet | SFCSR | Ours |
---|---|---|---|---|---|---|---|
×2 | MPSNR | 32.383 | 34.798 | 35.216 | 35.404 | 35.942 | 36.321 |
SSIM | 0.9020 | 0.9401 | 0.9453 | 0.9493 | 0.9501 | 0.9576 | |
SAM | 4.159 | 3.123 | 3.437 | 3.445 | 3.411 | 3.054 | |
×4 | MPSNR | 27.672 | 28.317 | 28.684 | 28.907 | 28.931 | 30.377 |
SSIM | 0.7111 | 0.7404 | 0.7630 | 0.7726 | 0.7976 | 0.8088 | |
SAM | 5.776 | 5.714 | 5.658 | 5.587 | 5.499 | 5.331 |
Scale | Evaluation Accuracy | Bicubic | VDSR | EDSR | MCNet | SFCSR | Ours |
---|---|---|---|---|---|---|---|
×2 | MPSNR | 39.222 | 43.155 | 46.112 | 45.556 | 45.964 | 46.310 |
SSIM | 0.9654 | 0.9711 | 0.9875 | 0.9797 | 0.9871 | 0.9879 | |
SAM | 4.862 | 3.210 | 2.766 | 2.835 | 2.801 | 2.746 | |
×4 | MPSNR | 33.211 | 36.988 | 38.315 | 37.898 | 38.003 | 38.365 |
SSIM | 0.7925 | 0.8986 | 0.9231 | 0.9011 | 0.9185 | 0.9270 | |
SAM | 6.668 | 5.9354 | 4.989 | 5.553 | 5.135 | 5.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, L.; Dai, D.; Zhang, Z.; Yang, Y.; Deng, M. Hyperspectral Super-Resolution Reconstruction Network Based on Hybrid Convolution and Spectral Symmetry Preservation. Remote Sens. 2023, 15, 3225. https://doi.org/10.3390/rs15133225
Bu L, Dai D, Zhang Z, Yang Y, Deng M. Hyperspectral Super-Resolution Reconstruction Network Based on Hybrid Convolution and Spectral Symmetry Preservation. Remote Sensing. 2023; 15(13):3225. https://doi.org/10.3390/rs15133225
Chicago/Turabian StyleBu, Lijing, Dong Dai, Zhengpeng Zhang, Yin Yang, and Mingjun Deng. 2023. "Hyperspectral Super-Resolution Reconstruction Network Based on Hybrid Convolution and Spectral Symmetry Preservation" Remote Sensing 15, no. 13: 3225. https://doi.org/10.3390/rs15133225
APA StyleBu, L., Dai, D., Zhang, Z., Yang, Y., & Deng, M. (2023). Hyperspectral Super-Resolution Reconstruction Network Based on Hybrid Convolution and Spectral Symmetry Preservation. Remote Sensing, 15(13), 3225. https://doi.org/10.3390/rs15133225