Hyperspectral Image Super-Resolution by Deep Spatial-Spectral Exploitation
"> Figure 1
<p>Workflow of the proposed method.</p> "> Figure 2
<p>Correlation between neighboring bands in the Pavia university scene.</p> "> Figure 3
<p>General architecture of the deep IDN.</p> "> Figure 4
<p>Visual exhibition of the HSIs used for validating the performance, in which all the gray images are generated by the 15th band in the corresponding HSIs.</p> "> Figure 5
<p>(<b>a</b>) CCs of two-times down-sampled Pavia with different intervals; and (<b>b</b>) CCs of four-times down-sampled Pavia minus that of two-times down-sampled Pavia with different intervals.</p> "> Figure 6
<p>Variation of PSNR and computation time with “<span class="html-italic">d</span>” for the Pavia University at the scaling factor of 2.</p> "> Figure 7
<p>Visual exhibition of the fourth band created by the Pavia University HSIs, which are reconstructed by different single methods when scaling factor is 4.</p> "> Figure 8
<p>PSNRs of different bands in: (<b>a</b>) the 8× reconstructed Pavia University HSIs; an (<b>b</b>) 8× reconstructed Washington DC Mall HSIs via different single based methods.</p> "> Figure 9
<p>Visual exhibition of the 90th band created by the Washington DC Mall HSIs, which are reconstructed by different single methods when scaling factor is 4.</p> "> Figure 10
<p>Spectral curves of the randomly selected point in the 8× reconstructed HR HSIs without IDN method.</p> "> Figure 11
<p>Visual exhibition of the 99th band created by the Salinas HSIs, which are reconstructed by different single methods when scaling factor is 4.</p> "> Figure 12
<p>PSNRs of different bands in: (<b>a</b>) the 4× reconstructed Salinas HSIs; and (<b>b</b>) the 8× reconstructed Botswana via different single based methods</p> "> Figure 13
<p>Visual exhibition of the 198th band created by the Scene02 HSIs, which are reconstructed by different single methods when scaling factor is 8.</p> "> Figure 14
<p>PSNRs for different bands in the 8× reconstructed Scene02 HSIs via different single based methods.</p> "> Figure 15
<p>The gap of the performance between the IDN and the proposal on the “fake_and_real_food” HSI at scaling factors of 2, 4 and 8.</p> ">
Abstract
:1. Introduction
2. Proposed Method
2.1. Framework Overview
2.2. Bands’ Selection and Super-Resolution by IDN
2.2.1. Correlation Analysis
2.2.2. Super-Resolution via IDN
2.3. Spectral-Interpolation for the Unselected Bands
2.4. Intra-Fusion
Algorithm 1: Pseudocode of the proposal. |
3. Experimental Setup and Data Analysis
3.1. Experimental Setup
3.2. Data Analysis
3.2.1. Pavia University
3.2.2. Washington DC Mall
3.2.3. Salinas
3.2.4. Botswana
3.2.5. Scene02
3.2.6. CAVE Database
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, F.; Du, B.; Zhang, L. Scene Classification via a Gradient Boosting Random Convolutional Network Framework. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1793–1802. [Google Scholar] [CrossRef]
- Sun, W.; Du, Q. Graph-Regularized Fast and Robust Principal Component Analysis for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3185–3195. [Google Scholar] [CrossRef]
- Du, B.; Zhang, L. A Discriminative Metric Learning Based Anomaly Detection Method. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6844–6857. [Google Scholar]
- Andrejchenko, V.; Liao, W.; Philips, W.; Scheunders, P. Decision Fusion Framework for Hyperspectral Image Classification Based on Markov and Conditional Random Fields. Remote Sens. 2019, 11, 624. [Google Scholar] [CrossRef]
- Sun, W.; Tian, L.; Xu, Y.; Du, B.; Du, Q. A Randomized Subspace Learning Based Anomaly Detector for Hyperspectral Imagery. Remote Sens. 2018, 10, 417. [Google Scholar] [Green Version]
- Dong, W.; Fu, F.; Shi, G.; Cao, X.; Wu, J.; Li, G.; Li, X. Hyperspectral Image Super-resolution via Non-negative Structured Sparse Representation. IEEE Trans. Image Process. 2016, 25, 2337–2351. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Zhuo, H.; Li, S. Super-Resolution of Hyperspectral Image via Superpixel-Based Sparse Representation. Neurocomputing 2018, 273, 171–177. [Google Scholar] [CrossRef]
- Dian, R.; Fang, L.; Li, S. Hyperspectral Image Super-Resolution via Non-local Sparse Tensor Factorization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Kanatsoulis, C.I.; Fu, X.; Sidiropoulos, N.D.; Ma, W.K. Hyperspectral Super-Resolution: A Coupled Tensor Factorization Approach. IEEE Trans. Signal Process. 2018, 66, 6503–6517. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wei, W.; Bai, C.; Gao, Y.; Zhang, Y. Exploiting Clustering Manifold Structure for Hyperspectral Imagery Super-Resolution. IEEE Trans. Image Process. 2018, 27, 5969–5982. [Google Scholar] [CrossRef]
- Han, X.H.; Shi, B.; Zheng, Y. Self-Similarity Constrained Sparse Representation for Hyperspectral Image Super-Resolution. IEEE Trans. Image Process. 2018, 27, 5625–5637. [Google Scholar] [CrossRef]
- Atkinson, P.M. Mapping sub-pixel vector boundaries from remotely sensed images. In Proceedings of the GISRUK ’96, Canterbury, UK, 10–12 April 1996; pp. 29–41. [Google Scholar]
- Irmak, H.; Akar, G.B.; Yuksel, S.E. A MAP-Based Approach for Hyperspectral Imagery Super-resolution. IEEE Trans. Image Process. 2018, 27, 2942–2951. [Google Scholar] [CrossRef]
- Arun, P.V.; Buddhiraju, K.M.; Porwal, A. CNN based sub-pixel mapping for hyperspectral images. Neurocomputing 2018, 311, 51–64. [Google Scholar] [CrossRef]
- Xu, X.; Tong, X.; Plaza, A.; Li, J.; Zhong, Y.; Xie, H.; Zhang, L. A New Spectral-Spatial Sub-Pixel Mapping Model for Remotely Sensed Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6763–6778. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, X.; Lu, X. Hyperspectral Image Superresolution by Transfer Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1963–1974. [Google Scholar] [CrossRef]
- He, Z.; Liu, L. Hyperspectral Image Super-Resolution Inspired by Deep Laplacian Pyramid Network. Remote Sens. 2018, 10, 1939. [Google Scholar] [CrossRef]
- Mei, S.; Yuan, X.; Ji, J.; Zhang, Y.; Wan, S.; Du, Q. Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network. Remote Sens. 2017, 9, 1139. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, X.; Gao, X. Fast and Accurate Single Image Super-Resolution via Information Distillation Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Beijing, China, 20 August 2018; pp. 723–731. [Google Scholar]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image Super-Resolution Via Sparse Representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In Proceedings of the IEEE International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 416–423. [Google Scholar]
- Li, Y.; Xie, W.; Li, H. Hyperspectral image reconstruction by deep convolutional neural network for classification. Pattern Recognit. 2017, 63, 371–383. [Google Scholar] [CrossRef]
- Xu, Y.; Bo, D.; Fan, Z.; Zhang, L. Hyperspectral image classification via a random patches network. ISPRS J. Photogramm. Remote Sens. 2018, 142, 344–357. [Google Scholar] [CrossRef]
- Marrie, R.A.; Dawson, N.V.; Garland, A. Quantile regression and restricted cubic splines are useful for exploring relationships between continuous variables. J. Clin. Epidemiol. 2009, 62, 511–517. [Google Scholar] [CrossRef]
- Chang, C.I.; Du, Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2004, 42, 608–619. [Google Scholar] [CrossRef]
- Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion. IEEE Trans. Geosci. Remote Sens. 2012, 50, 528–537. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5835–5843. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Yokoya, N. Texture-guided multisensor superresolution for remotely sensed images. Remote Sens. 2017, 9, 316. [Google Scholar] [CrossRef]
- Yuhas, R.; Goetz, A.F.H.; Boardman, J.W. Descrimination among semi-arid landscape endmembers using the Spectral Angle Mapper (SAM) algorithm. In Proceedings of the Summaries of the Third Annual JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 1–5 June 1992; pp. 147–149. [Google Scholar]
- Loncan, L.; Almeida, L.B.; Bioucasdias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simoes, M. Hyperspectral pansharpening: A review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [Google Scholar] [CrossRef]
- Kwan, C.; Choi, J.H.; Chan, S.H.; Zhou, J.; Budavari, B. A Super-Resolution and Fusion Approach to Enhancing Hyperspectral Images. Remote Sens. 2018, 10, 1416. [Google Scholar] [CrossRef]
Interval d | Scaling Factor | CC | SAM | RMSE | ERGAS | PSNR | SSIM |
---|---|---|---|---|---|---|---|
2× | −0.005% | 0.507% | 0.100% | 0.052% | −0.026% | −0.037% | |
4× | 0.003% | −0.017% | −0.003% | −0.048% | 0.001% | −0.017% | |
8× | 0.009% | −0.090% | −0.011% | −0.053% | 0.004% | −0.010% | |
2× | −0.014% | 1.239% | 0.223% | 0.283% | −0.058% | −0.071% | |
4× | −0.005% | 0.195% | 0.018% | 0.075% | −0.006% | −0.058% | |
8× | −0.005% | −0.060% | −0.006% | 0.054% | 0.002% | −0.056% | |
2× | −0.026% | 2.461% | 0.549% | 0.227% | −0.143% | −0.110% | |
4× | −0.008% | 0.599% | 0.083% | −0.228% | −0.027% | −0.073% | |
8× | 0.004% | 0.160% | 0.030% | −0.260% | −0.011% | −0.087% | |
2× | −0.134% | 14.244% | 3.408% | 3.390% | −0.879% | −0.648% | |
4× | −0.080% | 4.823% | 0.611% | 0.192% | −0.197% | −0.559% | |
8× | −0.047% | 1.254% | 0.155% | −0.283% | −0.057% | −0.499% |
Interval d | Scaling Factor | CC | SAM | RMSE | ERGAS | PSNR | SSIM |
---|---|---|---|---|---|---|---|
4× − 2× | 0.008% | −0.525% | −0.104% | −0.100% | 0.027% | 0.020% | |
8× − 4× | 0.006% | −0.072% | −0.007% | −0.006% | 0.003% | 0.007% | |
4× − 2× | 0.009% | −1.043% | −0.204% | −0.209% | 0.052% | 0.013% | |
8× − 4× | 0.000% | −0.255% | −0.024% | −0.020% | 0.008% | 0.002% | |
4× − 2× | 0.017% | −1.862% | −0.466% | −0.455% | 0.117% | 0.037% | |
8× − 4× | 0.013% | −0.439% | −0.053% | −0.032% | 0.016% | −0.013% | |
4× − 2× | 0.053% | −9.421% | −2.797% | −3.198% | 0.682% | 0.089% | |
8× − 4× | 0.034% | −3.568% | −0.456% | −0.475% | 0.140% | 0.060% |
Pavia University | CAVE | Washington DC Mall | Salinas | Botswana | scene02 | |
---|---|---|---|---|---|---|
2× | 3 | 2 | 2 | 2 | 2 | 2 |
4× | 9 | 3 | 3 | 3 | 3 | 3 |
8× | 9 | 3 | 3 | 3 | 3 | 3 |
Scaling Factor | Algorithm | CC | SAM | RMSE | ERGAS | PSNR | SSIM | Time (s) |
---|---|---|---|---|---|---|---|---|
2× | Bicubic | 0.9478 | 4.1099 | 0.0312 | 10.2627 | 30.1239 | 0.9024 | 0.0113 * |
SRCNN | 0.9670 | 3.8253 | 0.0246 | 8.0368 | 32.1771 | 0.9359 | 146.4056 | |
VDSR | 0.9715 | 3.6195 | 0.0229 | 7.4459 | 32.8153 | 0.9449 | 53.2367 | |
LapSRN | 0.9710 | 3.4385 | 0.0231 | 7.4874 | 32.7146 | 0.9457 | 81.1535 | |
IDN | 0.9737 | 3.4503 | 0.0219 | 7.1422 | 33.1886 | 0.9503 | 47.5715 | |
Proposal | 0.9731 | 3.5608 | 0.0221 | 7.2108 | 33.1264 | 0.9482 | 22.9895 | |
4× | Bicubic | 0.8632 | 6.2994 | 0.0508 | 8.0125 | 25.8874 | 0.7182 | 0.0045 * |
SRCNN | 0.8802 | 6.1240 | 0.0473 | 7.5101 | 26.5115 | 0.7551 | 135.9020 | |
VDSR | 0.8814 | 6.3009 | 0.0470 | 7.4961 | 26.5508 | 0.7613 | 50.8616 | |
LapSRN | 0.8890 | 5.7116 | 0.0458 | 7.2154 | 26.7848 | 0.7776 | 24.0806 | |
IDN | 0.8906 | 5.7168 | 0.0452 | 7.1654 | 26.8934 | 0.7831 | 11.8475 | |
Proposal | 0.8907 | 5.6563 | 0.0452 | 7.1565 | 26.9029 | 0.7837 | 6.6167 | |
8× | Bicubic | 0.7272 | 9.2785 | 0.0711 | 5.4737 | 22.9664 | 0.5081 | 0.0105 * |
SRCNN | 0.7292 | 9.2148 | 0.0707 | 5.4644 | 23.0061 | 0.5107 | 152.1849 | |
VDSR | 0.7232 | 9.3343 | 0.0713 | 5.4955 | 22.9329 | 0.5030 | 50.6967 | |
LapSRN | 0.7489 | 9.0115 | 0.0682 | 5.3306 | 23.3192 | 0.5289 | 19.3687 | |
IDN | 0.7709 | 8.6351 | 0.0652 | 5.0774 | 23.7182 | 0.5710 | 13.9152 | |
Proposal | 0.7739 | 8.2311 | 0.0646 | 5.0448 | 23.7915 | 0.5759 | 5.4009 |
Scaling Factor | Algorithm | CC | SAM | RMSE | ERGAS | PSNR | SSIM | Time (s) |
---|---|---|---|---|---|---|---|---|
2× | Bicubic | 0.9146 | 3.9147 | 0.0067 | 132.1512 | 43.4877 | 0.9755 | 0.1141 * |
SRCNN | 0.9278 | 4.3988 | 0.0068 | 37.7941 | 43.3780 | 0.9741 | 1368.6865 | |
VDSR | 0.9248 | 4.5313 | 0.0064 | 60.8111 | 43.8360 | 0.9779 | 467.5891 | |
LapSRN | 0.9064 | 3.4886 | 0.0056 | 137.4491 | 45.0408 | 0.9828 | 187.9704 | |
IDN | 0.9472 | 3.4280 | 0.0054 | 95.1557 | 45.2791 | 0.9837 | 438.5749 | |
Proposal | 0.9190 | 3.4311 | 0.0056 | 79.2654 | 45.0717 | 0.9833 | 286.9364 | |
4× | Bicubic | 0.8255 | 6.5297 | 0.0107 | 72.3078 | 39.4441 | 0.9374 | 0.0991 * |
SRCNN | 0.8186 | 7.1202 | 0.0108 | 239.5115 | 39.3414 | 0.9329 | 1268.5417 | |
VDSR | 0.8138 | 7.7250 | 0.0116 | 47.0651 | 38.7003 | 0.9316 | 468.6285 | |
LapSRN | 0.7216 | 7.2031 | 0.0106 | 2533.9007 | 39.4647 | 0.9289 | 225.3079 | |
IDN | 0.8514 | 6.4612 | 0.0101 | 46.0912 | 39.8993 | 0.9443 | 64.0762 | |
Proposal | 0.8310 | 6.2754 | 0.0101 | 60.8714 | 39.9268 | 0.9447 | 69.6417 | |
8× | Bicubic | 0.7181 | 9.0515 | 0.0144 | 35.0310 | 36.8363 | 0.9011 | 0.0807 * |
SRCNN | 0.6821 | 9.8476 | 0.0149 | 681.0136 | 36.5157 | 0.8959 | 1365.1717 | |
VDSR | 0.7095 | 9.1466 | 0.0144 | 24.4473 | 36.8106 | 0.9004 | 469.7174 | |
LapSRN | 0.5078 | 11.9678 | 0.0152 | 7.9641 | 36.3660 | 0.8064 | 169.2427 | |
IDN | 0.7213 | 9.0498 | 0.0140 | 29.7419 | 37.0500 | 0.9054 | 137.0598 | |
Proposal | 0.7219 | 8.7892 | 0.0138 | 34.7061 | 37.1833 | 0.9069 | 85.9309 |
Scaling Factor | Algorithm | CC | SAM | RMSE | ERGAS | PSNR | SSIM | Time (s) |
---|---|---|---|---|---|---|---|---|
2× | Bicubic | 0.9833 | 0.8145 | 0.0073 | 2.8216 | 42.6932 | 0.9881 | 0.0875 * |
SRCNN | 0.9845 | 0.7838 | 0.006044008 | 2.9319 | 44.3735 | 0.9910 | 478.2165 | |
VDSR | 0.9855 | 0.7296 | 0.0056 | 2.6816 | 45.0141 | 0.9923 | 285.4522 | |
LapSRN | 0.9851 | 0.7027 | 0.0056 | 2.7610 | 45.0584 | 0.9927 | 93.4594 | |
IDN | 0.9899 | 0.6862 | 0.0054 | 2.1774 | 45.2783 | 0.9930 | 153.7260 | |
Proposal | 0.9831 | 0.7937 | 0.0055 | 2.7174 | 45.1159 | 0.9927 | 142.5217 | |
4× | Bicubic | 0.9618 | 1.3393 | 0.0126 | 2.1649 | 38.0198 | 0.9671 | 0.0656 * |
SRCNN | 0.9647 | 1.2653 | 0.0105 | 2.3292 | 39.5892 | 0.9733 | 474.2595 | |
VDSR | 0.9669 | 1.2002 | 0.0098 | 2.0414 | 40.2124 | 0.9773 | 288.5284 | |
LapSRN | 0.9595 | 1.1927 | 0.0095 | 4.7102 | 40.4442 | 0.9774 | 112.7037 | |
IDN | 0.9709 | 1.1292 | 0.0095 | 1.9040 | 40.4857 | 0.9796 | 40.9700 | |
Proposal | 0.9690 | 1.2063 | 0.0095 | 1.9272 | 40.4898 | 0.9799 | 28.2351 | |
8× | Bicubic | 0.9325 | 1.9881 | 0.0177 | 1.4398 | 35.0562 | 0.9469 | 0.0624 * |
SRCNN | 0.9376 | 1.8607 | 0.0155 | 1.4626 | 36.2152 | 0.9509 | 493.3159 | |
VDSR | 0.9328 | 1.9848 | 0.0176 | 1.4311 | 35.0677 | 0.9470 | 278.9407 | |
LapSRN | 0.9164 | 1.8910 | 0.0146 | 2.2318 | 36.7126 | 0.9457 | 75.7862 | |
IDN | 0.9457 | 1.5874 | 0.0139 | 1.2972 | 37.1265 | 0.9600 | 47.2434 | |
Proposal | 0.9466 | 1.6081 | 0.0139 | 1.2685 | 37.1643 | 0.9608 | 23.1352 |
Scaling Factor | Algorithm | CC | SAM | RMSE | ERGAS | PSNR | SSIM | Time (s) |
---|---|---|---|---|---|---|---|---|
2× | Bicubic | 0.9749 | 1.5638 | 0.0027 | 3.2346 | 51.4286 | 0.9936 | 0.1697 * |
SRCNN | 0.9726 | 1.7866 | 0.0027 | 4.7684 | 51.3234 | 0.9930 | 1841.7661 | |
VDSR | 0.9733 | 1.7494 | 0.0026 | 3.6777 | 51.5523 | 0.9938 | 665.7049 | |
LapSRN | 0.9613 | 1.5565 | 0.0024 | 4.8883 | 52.2804 | 0.9947 | 215.5832 | |
IDN | 0.9790 | 1.5057 | 0.0025 | 2.9631 | 52.1939 | 0.9946 | 382.3559 | |
Proposal | 0.9750 | 1.6567 | 0.0025 | 3.3550 | 52.1000 | 0.9945 | 194.3229 | |
4× | Bicubic | 0.9360 | 2.2719 | 0.0041 | 2.5785 | 47.6567 | 0.9852 | 0.1545 * |
SRCNN | 0.9264 | 2.7466 | 0.0044 | 4.0511 | 47.1981 | 0.9830 | 1837.1380 | |
VDSR | 0.9333 | 2.4853 | 0.0043 | 2.6621 | 47.3913 | 0.9845 | 664.6281 | |
LapSRN | 0.8693 | 2.8898 | 0.0044 | 17.7117 | 47.0433 | 0.9784 | 260.7957 | |
IDN | 0.9359 | 2.3089 | 0.0041 | 2.5866 | 47.7809 | 0.9857 | 100.8897 | |
Proposal | 0.9348 | 2.3693 | 0.0041 | 2.6304 | 47.7727 | 0.9857 | 110.1546 | |
8× | Bicubic | 0.8849 | 2.8682 | 0.0054 | 1.7057 | 45.3479 | 0.9776 | 0.1050 * |
SRCNN | 0.8768 | 3.3473 | 0.0056 | 1.8735 | 45.0566 | 0.9743 | 1937.2458 | |
VDSR | 0.8849 | 2.8933 | 0.0054 | 1.7005 | 45.3436 | 0.9774 | 649.2971 | |
LapSRN | 0.7188 | 5.6478 | 0.0068 | 4.4614 | 43.3178 | 0.9264 | 181.4325 | |
IDN | 0.8849 | 2.8926 | 0.0053 | 1.7069 | 45.4540 | 0.9780 | 111.4147 | |
Proposal | 0.8842 | 2.9210 | 0.0053 | 1.7239 | 45.4730 | 0.9780 | 95.1863 |
Scaling Factor | Algorithm | CC | SAM | RMSE | ERGAS | PSNR | SSIM | Time (s) |
---|---|---|---|---|---|---|---|---|
2× | Bicubic | 0.9893 | 1.3497 | 0.0038 | 2.5991 | 48.3610 | 0.9893 | 1.7652 * |
SRCNN | 0.9883 | 1.3526 | 0.0034 | 2.5906 | 49.3194 | 0.9902 | 22,196.9520 | |
VDSR | 0.9894 | 1.8098 | 0.0033 | 2.4903 | 49.6012 | 0.9906 | 7087.1100 | |
LapSRN | 0.9894 | 1.2918 | 0.0033 | 2.5009 | 49.6579 | 0.9907 | 2453.7132 | |
IDN | 0.9891 | 1.5624 | 0.0032 | 3.3076 | 49.8186 | 0.9872 | 31,600.1253 | |
Proposal | 0.9864 | 1.6264 | 0.0041 | 3.3196 | 47.7878 | 0.9871 | 16,385.2456 | |
4× | Bicubic | 0.9882 | 1.6586 | 0.0085 | 1.6540 | 41.4224 | 0.9758 | 2.3729 * |
SRCNN | 0.9884 | 1.6882 | 0.0066 | 1.5514 | 43.6492 | 0.9797 | 19,569.4504 | |
VDSR | 0.9887 | 1.6641 | 0.0070 | 1.5190 | 43.0552 | 0.9801 | 7088.5478 | |
LapSRN | 0.9879 | 1.6623 | 0.0065 | 1.6303 | 43.7951 | 0.9806 | 2967.9555 | |
IDN | 0.9890 | 1.6544 | 0.0067 | 1.4828 | 43.5267 | 0.9810 | 1043.8702 | |
Proposal | 0.9853 | 1.8455 | 0.0069 | 1.7098 | 43.2549 | 0.9800 | 837.5474 | |
8× | Bicubic | 0.9813 | 1.9210 | 0.0170 | 1.2834 | 35.4108 | 0.9522 | 1.3983 * |
SRCNN | 0.9840 | 1.9561 | 0.0123 | 2.1736 | 38.1769 | 0.9631 | 20,230.4446 | |
VDSR | 0.9823 | 1.9240 | 0.0159 | 2.4345 | 35.9543 | 0.9543 | 7078.2086 | |
LapSRN | 0.9827 | 1.9827 | 0.0110 | 2.2127 | 39.2082 | 0.9661 | 1995.0681 | |
IDN | 0.9855 | 1.9431 | 0.0112 | 1.9610 | 39.0254 | 0.9682 | 1263.6725 | |
Proposal | 0.9825 | 2.0155 | 0.0108 | 2.0875 | 39.3101 | 0.9687 | 794.5077 |
Scaling Factor | Algorithm | CC | SAM | RMSE | ERGAS | PSNR | SSIM | Time (s) | |
---|---|---|---|---|---|---|---|---|---|
flowers | 2× | Bicubic | 0.9984 | 2.2374 | 0.0077 | 4.7471 | 42.2459 | 0.9903 | 0.0336 * |
SRCNN | 0.9989 | 3.4207 | 0.0063 | 4.1371 | 44.0429 | 0.9909 | 291.4331 | ||
VDSR | 0.9947 | 3.3941 | 0.0147 | 8.8671 | 36.6603 | 0.9667 | 104.7910 | ||
LapSRN | 0.9994 | 2.5744 | 0.0048 | 3.0139 | 46.4618 | 0.9951 | 41.9354 | ||
IDN | 0.9994 | 1.8481 | 0.0045 | 2.8960 | 46.8784 | 0.9957 | 99.0016 | ||
Proposal | 0.9992 | 2.5642 | 0.0051 | 3.4598 | 45.9336 | 0.9939 | 66.4343 | ||
4× | Bicubic | 0.9927 | 3.7917 | 0.0172 | 5.1599 | 35.2872 | 0.9563 | 0.0304 * | |
SRCNN | 0.9939 | 5.1345 | 0.0152 | 4.7506 | 36.3380 | 0.9598 | 294.0630 | ||
VDSR | 0.9923 | 4.1526 | 0.0170 | 5.3323 | 35.3768 | 0.9507 | 105.5385 | ||
LapSRN | 0.9955 | 6.5766 | 0.0133 | 4.1492 | 37.5383 | 0.9631 | 49.7823 | ||
IDN | 0.9959 | 2.9697 | 0.0128 | 3.8981 | 37.8402 | 0.9733 | 24.3753 | ||
Proposal | 0.9957 | 4.3377 | 0.0129 | 3.9524 | 37.7836 | 0.9711 | 21.0441 | ||
8× | Bicubic | 0.9765 | 6.3186 | 0.0308 | 4.5832 | 30.2423 | 0.8855 | 0.0282 * | |
SRCNN | 0.9766 | 7.6651 | 0.0300 | 4.6077 | 30.4565 | 0.8838 | 304.0369 | ||
VDSR | 0.9765 | 6.2937 | 0.0305 | 4.5635 | 30.3116 | 0.8876 | 104.5376 | ||
LapSRN | 0.9833 | 12.2898 | 0.0259 | 3.7601 | 31.7479 | 0.8482 | 37.3913 | ||
IDN | 0.9851 | 4.6558 | 0.0247 | 3.6355 | 32.1417 | 0.9249 | 28.4277 | ||
Proposal | 0.9849 | 6.6257 | 0.0248 | 3.6574 | 32.1266 | 0.9221 | 20.1004 | ||
fake_and_real_food | 2× | Bicubic | 0.9974 | 2.2996 | 0.0076 | 7.4718 | 42.4225 | 0.9905 | 0.0334 * |
SRCNN | 0.9979 | 2.7596 | 0.0068 | 6.6207 | 43.3160 | 0.9907 | 277.1336 | ||
VDSR | 0.9982 | 2.5201 | 0.0063 | 6.1294 | 44.0514 | 0.9919 | 105.6183 | ||
LapSRN | 0.9988 | 2.1301 | 0.0052 | 5.0164 | 45.7448 | 0.9944 | 41.4651 | ||
IDN | 0.9989 | 1.8804 | 0.0050 | 4.7845 | 46.0583 | 0.9950 | 98.3872 | ||
Proposal | 0.9986 | 2.6043 | 0.0056 | 5.3368 | 45.1141 | 0.9927 | 68.0450 | ||
4× | Bicubic | 0.9898 | 3.5765 | 0.0153 | 7.3000 | 36.3087 | 0.9641 | 0.0230 * | |
SRCNN | 0.9931 | 4.0173 | 0.0127 | 5.8726 | 37.8964 | 0.9701 | 296.6172 | ||
VDSR | 0.9915 | 4.0963 | 0.0140 | 6.5949 | 37.0649 | 0.9666 | 104.8076 | ||
LapSRN | 0.9953 | 3.9114 | 0.0105 | 5.0602 | 39.5662 | 0.9761 | 49.7072 | ||
IDN | 0.9954 | 2.8206 | 0.0104 | 4.8477 | 39.6913 | 0.9816 | 24.5117 | ||
Proposal | 0.9951 | 3.8955 | 0.0106 | 4.9266 | 39.4917 | 0.9781 | 22.3028 | ||
8× | Bicubic | 0.9704 | 5.4984 | 0.0270 | 5.9880 | 31.3585 | 0.9111 | 0.0305 * | |
SRCNN | 0.9746 | 6.5774 | 0.0254 | 5.4663 | 31.8919 | 0.9150 | 298.1715 | ||
VDSR | 0.9717 | 5.5900 | 0.0263 | 5.8597 | 31.6012 | 0.9130 | 104.9534 | ||
LapSRN | 0.9843 | 8.2559 | 0.0200 | 4.1520 | 33.9588 | 0.9114 | 37.2533 | ||
IDN | 0.9864 | 4.0106 | 0.0184 | 4.0935 | 34.6995 | 0.9534 | 28.1883 | ||
Proposal | 0.9860 | 4.7878 | 0.0185 | 4.1123 | 34.6518 | 0.9498 | 20.3372 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Zhao, M.; Li, Y. Hyperspectral Image Super-Resolution by Deep Spatial-Spectral Exploitation. Remote Sens. 2019, 11, 1229. https://doi.org/10.3390/rs11101229
Hu J, Zhao M, Li Y. Hyperspectral Image Super-Resolution by Deep Spatial-Spectral Exploitation. Remote Sensing. 2019; 11(10):1229. https://doi.org/10.3390/rs11101229
Chicago/Turabian StyleHu, Jing, Minghua Zhao, and Yunsong Li. 2019. "Hyperspectral Image Super-Resolution by Deep Spatial-Spectral Exploitation" Remote Sensing 11, no. 10: 1229. https://doi.org/10.3390/rs11101229
APA StyleHu, J., Zhao, M., & Li, Y. (2019). Hyperspectral Image Super-Resolution by Deep Spatial-Spectral Exploitation. Remote Sensing, 11(10), 1229. https://doi.org/10.3390/rs11101229