Multilayer Data and Artificial Intelligence for the Delineation of Homogeneous Management Zones in Maize Cultivation
<p>Overall flowchart adopted in this study.</p> "> Figure 2
<p>Illustration of the reducer operation provided by Google Earth Engine (GEE).</p> "> Figure 3
<p>Class maps of test plots from yield data obtained by kriging interpolation with the QGIS Smart-Map plug-in.</p> "> Figure 4
<p>Zone maps of test plots from yield data obtained via fuzzy k-means classification with the QGIS Smart-Map plug-in.</p> "> Figure 5
<p>Class maps of the León test plot for the ten vegetation indices used originating from the CART-supervised ML model.</p> "> Figure 6
<p>Class maps of the Zamora test plot for the ten vegetation indices used, originating from the CART-supervised ML model.</p> "> Figure 7
<p>Class maps of the León test plot for the ten vegetation indices used, originating from the k-means unsupervised ML model.</p> "> Figure 8
<p>Class maps of the Zamora test plot for the ten vegetation indices used, originating from the k-means unsupervised ML model.</p> "> Figure 9
<p>Management zone maps of the León test plot for the ten vegetation indices used, originating from the CART-supervised ML model.</p> "> Figure 10
<p>Management zone maps of the Zamora test plot for the ten vegetation indices used originating from the CART-supervised ML model.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Analysis of Yield Data
2.3. Vegetation Indices
2.4. Machine Learning Models
2.5. Evaluation Metrics and Delineation of Homogeneous Management Zones
3. Results
3.1. Variability and Geospatial Mapping of Crop Plot Yields
3.2. Accuracy of Generated ML Models and Classification Maps
3.3. Management Zone Maps for Variable Application
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quebrajo, L.; Pérez-Ruiz, M.; Rodriguez-Lizana, A.; Agüera, J. An Approach to Precise Nitrogen Management Using Hand-Held Crop Sensor Measurements and Winter Wheat Yield Mapping in a Mediterranean Environment. Sensors 2015, 15, 5504–5517. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Wang, M.; Wang, N. Precision Agriculture—A Worldwide Overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Fanelli, R.M. The Spatial and Temporal Variability of the Effects of Agricultural Practices on the Environment. Environments 2020, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Vélez, S.; Rançon, F.; Barajas, E.; Brunel, G.; Rubio, J.A.; Tisseyre, B. Potential of Functional Analysis Applied to Sentinel-2 Time-Series to Assess Relevant Agronomic Parameters at the within-Field Level in Viticulture. Comput. Electron. Agric. 2022, 194, 106726. [Google Scholar] [CrossRef]
- Cheng, E.; Zhang, B.; Peng, D.; Zhong, L.; Yu, L.; Liu, Y.; Xiao, C.; Li, C.; Li, X.; Chen, Y.; et al. Wheat Yield Estimation Using Remote Sensing Data Based on Machine Learning Approaches. Front. Plant Sci. 2022, 13, 1090970. [Google Scholar] [CrossRef]
- Mallarino, A.P.; Wittry, D.J. Efficacy of Grid and Zone Soil Sampling Approaches for Site-Specific Assessment of Phosphorus, Potassium, PH, and Organic Matter. Precis. Agric. 2004, 5, 131–144. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; Hubbard, N.; Loudjani, P. Precision Agriculture: An Opportunity for EU-Farmers-Potential Support with the CAP 2014–2020; European Parliament: Brussels, Belgium, 2014. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. Understanding the Internet of Things: Definition, Potentials, and Societal Role of a Fast Evolving Paradigm. Ad Hoc Netw. 2017, 56, 122–140. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Lira Saldivar, R.H.; Méndez Argüello, B.; De los Santos Villareal, G.; Vera Reyes, I. Potencial de La Nanotecnología en la Agricultura. Acta Univ. 2018, 28, 9–24. [Google Scholar] [CrossRef]
- Mirabelli, G.; Solina, V. Blockchain and Agricultural Supply Chains Traceability: Research Trends and Future Challenges. Procedia Manuf. 2020, 42, 414–421. [Google Scholar] [CrossRef]
- Ahirwar, S.; Swarnkar, R.; Bhukya, S.; Namwade, G. Application of Drone in Agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2500–2505. [Google Scholar] [CrossRef]
- Shao, G.; Han, W.; Zhang, H.; Zhang, L.; Wang, Y.; Zhang, Y. Prediction of Maize Crop Coefficient from UAV Multisensor Remote Sensing Using Machine Learning Methods. Agric. Water Manag. 2023, 276, 108064. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in Smart Farming: A Comprehensive Review. Internet Things 2022, 18, 100187. [Google Scholar] [CrossRef]
- Nasser Alsammak, H.; Saeed Mohammed, D. Internet of Things (IoT) Work and Communication Technologies in Smart Farm Irrigation Management: A Survey. NTU J. Eng. Technol. 2022, 1, 49–65. [Google Scholar]
- Ramón Fernández, F. Inteligencia Artificial y Agricultura: Nuevos retos en el sector agrario. Campo Jurídico 2020, 8, 123–139. [Google Scholar] [CrossRef]
- Castellanos, R.M.; Morales-Pérez, M. Análisis Crítico Sobre La Conceptualización de La Agricultura de Precisión. Cienc. PC 2016, 2, 23–33. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A Review of Vegetation Indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Andreu, A.; Carpintero, E.; González-Dugo, M.P. Teledetección Para Agricultura; Instituto de Investigación y Formación Agraria y Pesquera (IFAPA): Sevilla, Spain, 2021; pp. 1–41. [Google Scholar]
- Khanal, S.; Kushal, K.C.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote Sensing in Agriculture—Accomplishments, Limitations, and Opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Yuste Martín, Y.; Vargas-Velasco, N.; Moya-Hernández, J. Teledetección Ambiental de Alta Resolución Mediante Aplicación de Vehículos Aéreos No Tripulados. Soc. Esp. Defic. For. 2013, 1–22. Available online: https://www.congresoforestal.es/actas/doc/6cfe/6cfe01-451.pdf (accessed on 27 April 2023).
- Nakar, D. Sentinel-2: Multispectral Instrument (MSI) Design and System Performance. 2019. Available online: https://www.researchgate.net/publication/334432047_Sentinel-2_Multispectral_Instrument_MSI_design_and_system_performance (accessed on 27 April 2023).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Domingos, P. A Few Useful Things to Know about Machine Learning. Commun. ACM 2012, 55, 78–87. [Google Scholar] [CrossRef] [Green Version]
- El Naqa, I.; Li, R.; Murphy, M. Machine Learning in Radiation Oncology; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- González, F.A. Machine learning models in rheumatology. Rev. Colomb. Reumatol. 2015, 22, 77–78. [Google Scholar]
- Fuentes Hurtado, F.J. Aprendizaje No Supervisado; Universidad Internacional de Valencia, España: València, Spain, 2019; pp. 9–12. [Google Scholar]
- Moyroud, N.; Portet, F. Introduction to QGIS. QGIS Generic Tools 2018, 1, 1–17. [Google Scholar]
- Pereira, G.W.; Valente, D.S.M.; Queiroz, D.M.d.; Coelho, A.L.d.F.; Costa, M.M.; Grift, T. Smart-Map: An Open-Source QGIS Plugin for Digital Mapping Using Machine Learning Techniques and Ordinary Kriging. Agronomy 2022, 12, 1350. [Google Scholar] [CrossRef]
- Mazzella, A.; Mazzella, A. The importance of the model choice for experimental semivariogram modeling and its consequence in evaluation process. J. Eng. 2013, 2013, 960105. [Google Scholar] [CrossRef] [Green Version]
- Pedroso, M.; Taylor, J.; Tisseyre, B.; Charnomordic, B.; Guillaume, S. A Segmentation Algorithm for the Delineation of Agricultural Management Zones. Comput. Electron. Agric. 2010, 70, 199–208. [Google Scholar] [CrossRef]
- Fridgen, J.J.; Fraisse, C.W.; Kitchen, N.R.; Sudduth, K.A. Delineation and analysis of site-specific management zones. In Proceedings of the International Conference on Geospatial Information in Agriculture and Forestry, Lake Buena Vista, FL, USA, 10–12 January 2000; Volume 2, pp. 402–411. [Google Scholar]
- Wang, X.-Z.; Liu, G.-S.; Hu, H.-C.; Wang, Z.-H.; Liu, Q.-H.; Liu, X.-F.; Hao, W.-H.; Li, Y.-T. Determination of Management Zones for a Tobacco Field Based on Soil Fertility. Comput. Electron. Agric. 2009, 65, 168–175. [Google Scholar]
- Rokhafrouz, M.; Latifi, H.; Abkar, A.A.; Wojciechowski, T.; Czechlowski, M.; Naieni, A.S.; Maghsoudi, Y.; Niedbała, G. Simplified and Hybrid Remote Sensing-Based Delineation of Management Zones for Nitrogen Variable Rate Application in Wheat. Agriculture 2021, 11, 1104. [Google Scholar] [CrossRef]
- Alarcón-Jiménez, M.F.; Camacho-Tamayo, J.H.; Bernal, J.H. Management Zones Based on Corn Yield and Soil Physical Attributes. Agron. Colomb. 2015, 33, 373–382. [Google Scholar] [CrossRef]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar]
- Gabriel, J.L.; Martín-Lammerding, D.; Allende-Montalbán, R.; Mar Delgado, M.; Rodríguez-Martín, J.A. Análisis de La Producción de Maíz En España. ACI Av. Cienc. Ing. 2022, 14, 1–16. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- The European Space Agency. Cloud Masks-Sentinel-2 MSI Level-1C—Sentinel Online. Available online: https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks (accessed on 22 May 2023).
- Hess, M.; Barralis, G.; Bleiholder, H.; Buhr, L.; Eggers, T.H.; Hack, H.; Stauss, R. Use of the extended BBCH scale—General for the descriptions of the growth Stages of mono; and Dicotyledonous Weed Species. Weed Res. 1997, 37, 433–441. [Google Scholar] [CrossRef]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; van den Boom, T.; et al. The BBCH System to Coding the Phenological Growth Stages of Plants–History and Publications. J. Kult. 2009, 61, 41–52. [Google Scholar]
- Kaufman, Y.J.; Tanré, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.V.; Van Leeuwen, W.J.D.A. A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Daughtry, C.S.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E., III. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement of Retrogradation (Green Wave Effect) of Natural Vegetation. NASA/GSFC. 1974. Available online: https://ntrs.nasa.gov/citations/19750020419 (accessed on 27 April 2023).
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I. Semi-Empirical Indices to Assess Carotenoids/Chlorophyll-a Ratio from Leaf Spectral Reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Perilla, G.A.; Mas, J.F. Google Earth Engine—GEE: A Powerful Tool Linking the Potential of Massive Data and the Efficiency of Cloud Processing. Investig. Geogr. 2020, 101, e59929. [Google Scholar]
- Lemon, S.C.; Roy, J.; Clark, M.A.; Friedmann, P.D.; Rakowski, W. Classification and Regression Tree Analysis in Public Health: Methodological Review and Comparison with Logistic Regression. Ann. Behav. Med. 2003, 26, 172–181. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Padovese, B.T.; Padovese, L.R. A Machine Learning Approach to the Recognition of Brazilian Atlantic Forest Parrot Species. bioRxiv 2019. [Google Scholar] [CrossRef]
- Martínez Fernández, T.C. Comparación de Modelos Machine Learning Aplicados al Riesgo de Crédito; Universidad de Concepción: Concepción, Chile, 2022. [Google Scholar]
- Deng, H.; Zhou, Y.; Wang, L.; Zhang, C. Ensemble Learning for the Early Prediction of Neonatal Jaundice with Genetic Features. BMC Med. Inform. Decis. Mak. 2021, 21, 338. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Kumar, N.; Kumar, J.; Sinha, N.K. Machine Learning for Soil Moisture Assessment. In Deep Learning for Sustainable Agriculture; Academic Press: Cambridge, MA, USA, 2022; pp. 143–168. [Google Scholar]
- Likas, A.; Vlassis, N.; Verbeek, J.J. The Global K-Means Clustering Algorithm. Pattern Recognit. 2003, 36, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Suresh, H.; Guttag, J. A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle. In Equity and Access in Algorithms, Mechanisms, and Optimization; ACM: New York, NY, USA, 2019; pp. 1–9. [Google Scholar]
- Ferri, C.; Hernández-Orallo, J.; Modroiu, R. An Experimental Comparison of Performance Measures for Classification. Pattern Recognit. Lett. 2009, 30, 27–38. [Google Scholar] [CrossRef]
- Kubben, P.; Dumontier, M.; Dekker, A. Fundamentals of Clinical Data Science; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Vieira, S.M.; Kaymak, U.; Sousa, J.M.C. Cohen’s Kappa Coefficient as a Performance Measure for Feature Selection. In Proceedings of the International Conference on Fuzzy Systems, Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar]
- Heydarian, M.; Doyle, T.E.; Samavi, R. MLCM: Multi-Label Confusion Matrix. IEEE Access 2022, 10, 19083–19095. [Google Scholar] [CrossRef]
- Chen, C.; He, W.; Zhou, H.; Xue, Y.; Zhu, M. A Comparative Study among Machine Learning and Numerical Models for Simulating Groundwater Dynamics in the Heihe River Basin, Northwestern China. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Iticha, B.; Takele, C. Digital Soil Mapping for Site-Specific Management of Soils. Geoderma 2019, 351, 85–91. [Google Scholar] [CrossRef]
- Zhang, J.; Pu, R.; Yuan, L.; Wang, J.; Huang, W.; Yang, G. Monitoring Powdery Mildew of Winter Wheat by Using Moderate Resolution Multi-Temporal Satellite Imagery. PLoS ONE 2014, 9, e93107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Yang, Z. Impact of Extreme Heat on Corn Yield in Main Summer Corn Cultivating Area of China at Present and Under Future Climate Change. Int. J. Plant Prod. 2019, 13, 267–274. [Google Scholar] [CrossRef]
- Bennett, J.M.; Mutti, L.S.M.; Rao, P.S.C.; Jones, J.W. Interactive Effects of Nitrogen and Water Stresses on Biomass Accumulation, Nitrogen Uptake, and Seed Yield of Maize. Field Crop. Res. 1989, 19, 297–311. [Google Scholar] [CrossRef]
- Ortega, R.A.; Santibanez, O.A. Determination of Management Zones in Corn (Zea Mays L.) Based on Soil Fertility. Comput. Electron. Agric. 2007, 58, 49–59. [Google Scholar] [CrossRef]
- Shashikumar, B.N.; Kumar, S.; George, K.J.; Singh, A.K. Soil Variability Mapping and Delineation of Site-Specific Management Zones Using Fuzzy Clustering Analysis in a Mid-Himalayan Watershed, India. Environ. Dev. Sustain. 2022, 1–21. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Vasudeva, V.; Nandy, S.; Padalia, H.; Srinet, R.; Chauhan, P. Mapping Spatial Variability of Foliar Nitrogen and Carbon in Indian Tropical Moist Deciduous Sal (Shorea Robusta) Forest Using Machine Learning Algorithms and Sentinel-2 Data. Int. J. Remote Sens. 2021, 42, 1139–1159. [Google Scholar] [CrossRef]
- Albornoz, E.M.; Kemerer, A.C.; Galarza, R.; Mastaglia, N.; Melchiori, R.; Martínez, C.E. Development and Evaluation of an Automatic Software for Management Zone Delineation. Precis. Agric. 2018, 19, 463–476. [Google Scholar] [CrossRef]
- Damian, J.M.; Pias, O.H.D.C.; Cherubin, M.R.; Da Fonseca, A.Z.D.; Fornari, E.Z.; Santi, A.L. Applying the NDVI from Satellite Images in Delimiting Management Zones for Annual Crops. Sci. Agric. 2020, 77, 55. [Google Scholar] [CrossRef]
- Suszek, G.; De Souza, E.G.D.; Uribe-Opazo, M.A.; Nobrega, L.H. Determination of Management Zones from Normalized and Standardized Equivalent Productivity Maps in the Soybean Culture. Eng. Agríc. 2011, 31, 895–905. [Google Scholar] [CrossRef] [Green Version]
- Breunig, F.M.; Galvão, L.S.; Dalagnol, R.; Santi, A.L.; Della Flora, D.P.; Chen, S. Assessing the Effect of Spatial Resolution on the Delineation of Management Zones for Smallholder Farming in Southern Brazil. Remote Sens. Appl. Soc. Environ. 2020, 19, 100325. [Google Scholar] [CrossRef]
Location | Coordinates: EPSG 4326 (Longitude, Latitude) | Area (Ha) | Use Zoning Model |
---|---|---|---|
Monzón, Huesca | 0.144, 41.930 | 28.29 | Train-validation |
Estiche de Cinca, Huesca | 0.045, 41.804 | 13.16 | Train-validation |
Santalecina, Huesca | 0.078, 41.805 | 8.08 | Train-validation |
Babilafuente, Salamanca | −5.439, 40.993 | 1.95 | Train-validation |
Santalecina, Huesca | 0.109, 41.763 | 6.17 | Train-validation |
Belver de Cinca, Huesca | 0.183, 41.697 | 4.36 | Train-validation |
Osso de Cinca, Huesca | 0.212, 41.688 | 4.32 | Train-validation |
Castejón del Puente, Huesca | 0.133, 41.979 | 8.16 | Train-validation |
Cabreros del Río, León | −5.523, 42.401 | 24.70 | Test |
Coreses, Zamora | −5.643, 41.518 | 3.36 | Test |
Location | Hybrid of Corn | Type of Soil | Slope (%) | Altitude (m) | Irrigation Techniques | Average Rainfall (mm) * |
---|---|---|---|---|---|---|
Monzón, Huesca | DKC5032YG | Loam | 0.50 | 293 | Sprinkler | 234.1 |
Estiche de Cinca, Huesca | P0937 | Clay-loam | 3.00 | 271 | Sprinkler | 234.1 |
Santalecina, Huesca | P0937 | Loam | 0.25 | 241 | Sprinkler | 234.1 |
Babilafuente, Salamanca | P0937 | Sandy-loam | 3.00 | 814 | Sprinkler | 232.9 |
Santalecina, Huesca | DKC6980 | Loam | 0.25 | 222 | Sprinkler | 234.1 |
Belver de Cinca, Huesca | DKC6980 | Clay- loam | 3.00 | 206 | Sprinkler | 178.6 |
Osso de Cinca, Huesca | P0937 | Loam | 1.00 | 240 | Sprinkler | 178.6 |
Castejón del Puente, Huesca | DKC6980 | Sandy-loam | 2.00 | 392 | Sprinkler | 234.1 |
Cabreros del Río, León | P0710 | Loam | 0.50 | 764 | Sprinkler | 265.6 |
Coreses, Zamora | P0937 | Loam | 0.00 | 630 | Sprinkler | 224.4 |
Index | Description | Formula |
---|---|---|
ARVI [45] | Atmosphere Resistant Vegetation Index | (nir − (2 × red) + blue)/(nir + (2 × red) + blue) |
EVI [46] | Soil-adjusted vegetation index | 2.5 × (nir − red)/(nir + 6.0 × red − 7.5 × blue + 1.0) |
GCI [47] | Chlorophyll Green Index | (nir)/(green) − 1 |
GNDVI [48] | Normalized Difference Vegetation Green | (nir − green)/(nir + green) |
MCARI [49] | Modified Chlorophyll absorption ratio Index | ((red edge − red) − ((0.2 × (red edge − green)) × (red edge/red))) |
MSAVI2 [50] | Modified Soil Adjusted Vegetation Index | ((2 × nir + 1) − (((2 × nir + 1)2) − (8 × (nir − red)))0.5)/2 |
NDRE [51] | Normalized Difference Red Edge Index | ((nir − red edge)/(nir + red edge)) |
NDVI [52] | Normalized Difference Vegetation Index | (nir − red)/(nir + red) |
SAVI [53] | Normalized green difference vegetation index | 1.5 × [(nir − red)/(nir + red + 0.5)] |
SIPI [54] | Structure Insensitive Pigmentation Index | ((nir − blue)/(nir + blue)) |
Name | Sentinel-2 Band | Spatial Resolution (m) | Bandwidth (nm) |
---|---|---|---|
Blue | Band 2 | 10 | 65 |
green | Band 3 | 10 | 35 |
red | Band 4 | 10 | 30 |
red edge * | Band 5 | 20 | 15 |
nir | Band 8 | 10 | 115 |
Plot | Model | R2 | RMSE |
---|---|---|---|
Monzón, Huesca | Linear to Still | 0.994 | 0.097 |
Estiche de Cinca, Huesca | Exponential | 0.994 | 0.025 |
Santalecina, Huesca | Spherical | 0.985 | 0.38 |
Babilafuente, Salamanca | Linear to Still | 0.984 | 1.96 |
Santalecina, Huesca | Spherical | 0.987 | 0.274 |
Belver de Cinca, Huesca | Spherical | 0.992 | 0.089 |
Osso de Cinca, Huesca | Spherical | 0.978 | 2.007 |
Castejón del Puente, Huesca | Exponential | 0.991 | 0.208 |
Cabreros del Río, León | Linear to Still | 0.981 | 0.220 |
Coreses, Zamora | Linear | 0.785 | 8.957 |
Accuracy | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Plots | Model | ARVI | EVI | GCI | GNDVI | MCARI | MSAVI2 | NDRE | NDVI | SAVI | SIPI |
Training-validation | RF | 0.9501 | 0.9538 | 0.9520 | 0.9492 | 0.9547 | 0.9507 | 0.9493 | 0.9502 | 0.9510 | 0.9505 |
GBT | 0.7848 | 0.7848 | 0.7747 | 0.7811 | 0.7254 | 0.7807 | 0.7772 | 0.7628 | 0.7794 | 0.7807 | |
CART | 0.9931 | 0.9935 | 0.9937 | 0.9937 | 0.9936 | 0.9933 | 0.9935 | 0.9929 | 0.9929 | 0.9930 | |
SVM | 0.6779 | 0.6675 | 0.6831 | 0.6926 | 0.4638 | 0.6662 | 0.7771 | 0.6556 | 0.6628 | 0.6897 |
Kappa Coefficient | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Plots | Model | ARVI | EVI | GCI | GNDVI | MCARI | MSAVI2 | NDRE | NDVI | SAVI | SIPI |
Training-validation | RF | 0.9227 | 0.9169 | 0.9189 | 0.9232 | 0.9229 | 0.9149 | 0.9162 | 0.9242 | 0.9206 | 0.9194 |
GBT | 0.6330 | 0.6280 | 0.6270 | 0.5360 | 0.6361 | 0.6352 | 0.5789 | 0.6369 | 0.6314 | 0.6331 | |
CART | 0.9891 | 0.9882 | 0.9889 | 0.9884 | 0.9891 | 0.9882 | 0.9887 | 0.9880 | 0.9891 | 0.9894 | |
SVM | 0.4144 | 0.4445 | 0.4319 | 0.1894 | 0.4452 | 0.4608 | 0.3960 | 0.4361 | 0.4281 | 0.4466 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo-Romero, D.J.; Apolo-Apolo, O.E.; Martínez-Guanter, J.; Pérez-Ruiz, M. Multilayer Data and Artificial Intelligence for the Delineation of Homogeneous Management Zones in Maize Cultivation. Remote Sens. 2023, 15, 3131. https://doi.org/10.3390/rs15123131
Gallardo-Romero DJ, Apolo-Apolo OE, Martínez-Guanter J, Pérez-Ruiz M. Multilayer Data and Artificial Intelligence for the Delineation of Homogeneous Management Zones in Maize Cultivation. Remote Sensing. 2023; 15(12):3131. https://doi.org/10.3390/rs15123131
Chicago/Turabian StyleGallardo-Romero, Diego José, Orly Enrique Apolo-Apolo, Jorge Martínez-Guanter, and Manuel Pérez-Ruiz. 2023. "Multilayer Data and Artificial Intelligence for the Delineation of Homogeneous Management Zones in Maize Cultivation" Remote Sensing 15, no. 12: 3131. https://doi.org/10.3390/rs15123131
APA StyleGallardo-Romero, D. J., Apolo-Apolo, O. E., Martínez-Guanter, J., & Pérez-Ruiz, M. (2023). Multilayer Data and Artificial Intelligence for the Delineation of Homogeneous Management Zones in Maize Cultivation. Remote Sensing, 15(12), 3131. https://doi.org/10.3390/rs15123131