An Approach to Precise Nitrogen Management Using Hand-Held Crop Sensor Measurements and Winter Wheat Yield Mapping in a Mediterranean Environment
<p>Hand-held NDVI sampling system in the experimental field.</p> "> Figure 2
<p>A block diagram of the yield monitoring system components.</p> "> Figure 3
<p>(<b>a</b>) Map of the wheat yield and two NDVI sampling sites; (<b>b</b>) plot 1 and (<b>c</b>) plot 2.</p> "> Figure 4
<p>Relationship between the NDVI measurements and wheat yield (<b>a</b>) for field 1 and (<b>b</b>) for field 2.</p> "> Figure 5
<p>Spatial distribution of NDVI in both fields: (<b>a</b>) field 1 and (<b>b</b>) field 2.</p> "> Figure 6
<p>Relationship between the NDVI measurements and leaf N content (a) for field 1 and (<b>b</b>) for field 2.</p> "> Figure 7
<p>Site-specific precise nitrogen management units for two fields: (<b>b</b>) and (<b>d</b>) conservative application, and (<b>a</b>) and (<b>c</b>) risky application</p> ">
Abstract
:1. Introduction
- To measure the NDVI of a winter wheat field under commercial management using a hand-held active remote sensing device and to determine the real wheat N content in collected leaf samples using laboratory analysis. The yield information (field level) will be obtained using a commercially available grain yield monitor.
- To determine the extent of spatial variability and co-variation between the wheat yield, N content and NDVI in two conventionally managed commercial fields used for wheat production.
2. Materials and Methods
2.1. Hand-Held Optical Sensor and GNSS Control Unit
2.2. Yield Monitoring System
2.3. Leaf N Test and Field Experiments
2.4. AgGIS Software and Data Analysis
- Zo = the estimated value of the variable z at point i,
- zi = the sample value at point i,
- di = the distance from one sample point to an estimated point,
- n = the coefficient that determines the weight based on a distance, and
- N = the total number of predictions for each validation case.
3. Results and Discussion
3.1. Yield Sensor Calibration and Yield Measurement
3.2. Relationship between the Wheat Yield and NDVI
3.3. Relationship between Optical Sensor Measurements and Percentage of leaf N Content
3.4. Potential Value of Variable Rate N Application
- y = Total N (kg ha−1)
- x = NDVI sensor measurements
4. Conclusions
- -
- The average percentage error of yield monitoring for detecting the actual mass flow rate was −3.1% with a standard deviation of 4.2%. This monitoring enabled an assessment of the relationship between the yield data and NDVI measurements (r2 = 0.64 and 0.72) for fields 1 and 2.
- -
- An assessment of the relationship between the wheat leaf N content and NDVI measurements from optical sensor values revealed coefficients of determination of greater than 0.9 when measured with the sensor.
- -
- An appropriate and inexpensive portable hand-held optical sensor (GreenSeeker®, Trimble Navigation Ltd., Sunnyvale, CA, USA) could satisfactorily help operators predict and generate a map of N application recommendations for fields. Wheat canopy greenness may not always be the result of a certain N content (e.g., available water or temperature may also affect the greenness). If the greenness is not related to the N content, then N inputs are based on an erroneous indicator.
- -
- N recommendation maps were developed, and accurate N recommendations for sub-regions of fields were produced. The recommended N maps based on this technique may help operators use accurate and efficient application rates from year to year.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Oksanen, T. Estimating Operational Efficiency of Field Work Based on fields shape. In Proceedings of the 4th IFAC Conference on Modelling and Control in Agriculture, Horticulture and Post Harvest Industry, Aalto University, Espoo, Finland, 28–29 August 2013; pp. 202–206.
- MAGRAMA Magrama. Available online: http://www.magrama.gob.es/es/ (accessed on 18 November 2014).
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 57–351. [Google Scholar] [CrossRef]
- Van der Burgt, G.J.H.M.; Oomen, G.J.M.; Habets, A.S.J.; Rossing, W.A.H. The NDICEA model, a tool to improve nitrogen use efficiency in cropping Systems. Nutr. Cycl. Agroecosyst. 2006, 74, 275–294. [Google Scholar] [CrossRef]
- Janssen, B.H.; Guiking, F.C.T.; van der Eijk, D.; Smaling, E.M.A.; Wolf, J.; van Reuler, H. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma 1990, 46, 299–318. [Google Scholar] [CrossRef]
- Liu, M.; Yu, Z.; Liu, Y.; Konijn, N.T. Fertilizer requirements for wheat and maize in China: The QUEFTS approach. Nutr. Cycl. Agroecosyst. 2006, 74, 245–258. [Google Scholar] [CrossRef]
- Wild, A. Elementos nutritivos en el suelo: Nitrógeno. In Condiciones del Suelo y Desarrollo de las Plantas Según Russell; En Wild, A., Ed.; Mundi-Prensa: Madrid, Spain, 1992. [Google Scholar]
- González-Fernández, P. La fertilidad de los suelos y el abonado en la agricultura de conservación. In Técnicas de Agricultura de Conservación; Gil-Ribes, J., Blanco, G., Rodríguez-Lizana, A., Eds.; Mundi-Prensa: Madrid, Spain, 2004. [Google Scholar]
- Wheeler, T.R.; Batts, G.R.; Ellis, R.H.; Hadley, P.; Morison, J.I.L. Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. J. Agric. Sci 1996, 127, 37–48. [Google Scholar] [CrossRef]
- Evans, E.J.; Shield, R.S.; Mohamed, S.B. Optimisation of Lime Application to Take Account of Within Field Variation in pH and Soil Texture. In Proceedings of the first European Conference on Precision Agriculture, Warwick University Conference Centre, Coventry, UK, 7–10 September 1997; pp. 95–103.
- Yang, C.; Everitt, J.H.; Bradford, J.M. Comparison of QuickBird satellite imagery and airborne imagery for mapping grain sorghum yield patterns. Precisi. Agric. 2006, 7, 33–44. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Hernández, D.; Moreno, M.A. Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of images acquisition and processing. Precis. Agric. 2014, 15, 579–592. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Tsadilas, C.; Schepers, J.S. Ground-based canopy sensing for detecting effects of water stress in cotton. Plant Soil 2010, 331, 277–287. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Johnson, D.M.; Lyon, J.G.; Crotwell, J. Impacts of imagery temporal frequency on land-cover change detection monitoring. Remote Sens. Environ. 2004, 89, 444–454. [Google Scholar] [CrossRef]
- Peña, J.M.; Torres-Sánchez, J.; de Castro, A.I.; Kelly, M.; López-Granados, F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS One 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zia, S.; Owusu-Adu, S.; Gerhards, R.; Müller, J. Early detection of fungal diseases in winter wheat by multi-optical sensor. Procedia APCBEE 2014, 8, 199–203. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N.; Kerr, Y.; Olioso, A.; López-García, M.J.; Belaid, A.; El Kharraz, M.H.; Cuenca, J.; Dempere, L. Teledetección; Sobrino, J.A., Ed.; Universidad de Valencia: Valencia, Spain, 2000. [Google Scholar]
- Thomasson, J.A.; Sui, R. Cotton leaf reflectance changes after removal from the plant. J. Cotton Sci. 2009, 13, 183–188. [Google Scholar]
- Tarpley, L.; Reddy, K.R.; Sassenrath-Cole, G.F. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Sci. 2000, 40, 1814–1819. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Kitchen, N.R.; Raun, W.R.; Schepers, J.S. Responsive in season nitrogen management for cereals. Comput. Electron. Agric. 2008, 61, 51–62. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Whiting, M.; Ustin, S.L. Temporal and Spatial relationship between whithin-field yield variability in cotton and high spatial hyperspectral remote sensing imagery. Agron. J. 2005, 97, 641–653. [Google Scholar] [CrossRef]
- Gutiérez-Soto, M.V.; Cadet-Piedra, E.; Rodríguez-Montero, W.; Araya-Alfaro, J.M. GreenSeeker and the diagnosis of crop health. Agron. Mesoam. 2011, 397–403. [Google Scholar] [CrossRef]
- Mills, H.; Jones, J.B. Plant Analysis Handbook II: A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Micro-Macro Publishing, Inc.: Athens, GA, USA, 1996. [Google Scholar]
- R Core Team. R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 26 October 2014).
- Demmel, M. Yield recording in combines-yield determination for site-specific yield sensing. DLG Merkblatt 303. Hrsg: Deutsche Landwirtschafts-Gesellschaft, Fachbereich Landtechnik, Ausschuss für Arbeitswirtschaft und Prozesstechnik, Deutsche Landwirtschafts-Gesellschaft. 2001; 1–20. (In German) [Google Scholar]
- Demmel, M. Site-Specific Recording of Yields. In Precision in Crop Farming: Site-Specific Concepts and Sensing Methods; Applications and Results; Heege, H.J., Ed.; Springer: Kiel, Germany, 2013; Volume XI, p. 356. [Google Scholar]
- Dancey, C.; Reidy, J. Statistics without Maths for Psychology: Using SPSS for Windows; Prentice Hall: London, UK, 2004. [Google Scholar]
- Burrough, P.A.; McDonnell, R.A. Principles of Geographical Information Systems,, 2nd ed.; Oxford University Press: New York, NY, USA, 1998; p. 333. [Google Scholar]
- Pedroso, M.; Taylor, J.; Tisseyre, B.; Charnomordic, B.; Guillaume, S. A segmentation algorithm for the delineation of agricultural management zones. Comput. Electron. Agric. 2010, 70, 199–208. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quebrajo, L.; Pérez-Ruiz, M.; Rodriguez-Lizana, A.; Agüera, J. An Approach to Precise Nitrogen Management Using Hand-Held Crop Sensor Measurements and Winter Wheat Yield Mapping in a Mediterranean Environment. Sensors 2015, 15, 5504-5517. https://doi.org/10.3390/s150305504
Quebrajo L, Pérez-Ruiz M, Rodriguez-Lizana A, Agüera J. An Approach to Precise Nitrogen Management Using Hand-Held Crop Sensor Measurements and Winter Wheat Yield Mapping in a Mediterranean Environment. Sensors. 2015; 15(3):5504-5517. https://doi.org/10.3390/s150305504
Chicago/Turabian StyleQuebrajo, Lucía, Manuel Pérez-Ruiz, Antonio Rodriguez-Lizana, and Juan Agüera. 2015. "An Approach to Precise Nitrogen Management Using Hand-Held Crop Sensor Measurements and Winter Wheat Yield Mapping in a Mediterranean Environment" Sensors 15, no. 3: 5504-5517. https://doi.org/10.3390/s150305504
APA StyleQuebrajo, L., Pérez-Ruiz, M., Rodriguez-Lizana, A., & Agüera, J. (2015). An Approach to Precise Nitrogen Management Using Hand-Held Crop Sensor Measurements and Winter Wheat Yield Mapping in a Mediterranean Environment. Sensors, 15(3), 5504-5517. https://doi.org/10.3390/s150305504