Exploring the Conversion Model from Aerosol Extinction Coefficient to PM1, PM2.5 and PM10 Concentrations
"> Figure 1
<p>The linear regression relationship (<b>a</b>) between observed PM<sub>1</sub> and EC, (<b>b</b>) between observed PM<sub>2.5</sub> and EC and (<b>c</b>) between observed PM<sub>10</sub> and EC. The black and red lines are the reference line and the regression line, respectively. The color bar represents the RH. The asterisk indicates that the R passed the statistical significance difference test (<span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Schematic diagram of the (<b>a</b>) RF and (<b>b</b>) ANN algorithms used to estimate PM<sub>1</sub>, PM<sub>2.5</sub>, PM<sub>10</sub>.</p> "> Figure 3
<p>The value of RMSE between observed PM<sub>1</sub> and estimated PM<sub>1</sub> (<b>a</b>), observed PM<sub>2.5</sub> and estimated PM<sub>2.5</sub> (<b>b</b>), observed PM<sub>10</sub> and estimated PM<sub>10</sub> (<b>c</b>) based on the RF model changes with estimator num and max depth num. Similar for ANN model changes with epoch num and hidden node num (resp. <b>d</b>–<b>f</b>). The red dotted box indicates the area where the optimal parameters are located.</p> "> Figure 4
<p>The input variable importance for the RF and ANN models of PM<sub>1</sub> (<b>a</b>), PM<sub>2.5</sub> (<b>b</b>) and PM<sub>10,</sub> (<b>c</b>) respectively.</p> "> Figure 5
<p>Difference in observed PM<sub>1</sub> and predicted PM<sub>1</sub>, observed PM<sub>2.5</sub> and predicted PM<sub>2.5</sub> and observed PM<sub>10</sub> and predicted PM<sub>10</sub> as a function of EC based on the (<b>a</b>,<b>d</b>,<b>g</b>) LM, (<b>b</b>,<b>e</b>,<b>h</b>) RF and (<b>c</b>,<b>f</b>,<b>i</b>) ANN models. The gray, green and blue dots represent the difference for LM-observed, RF-observed and ANN-observed PM, respectively. The black line represents the frequency of difference.</p> "> Figure 6
<p>Comparison of predicted PM<sub>1</sub> and observed PM<sub>1</sub>, predicted PM<sub>2.5</sub> and observed PM<sub>2.5</sub> and predicted PM<sub>10</sub> and observed PM<sub>10</sub> based on the (<b>a</b>,<b>d</b>,<b>g</b>) LM, (<b>b</b>,<b>e</b>,<b>h</b>) RF and (<b>c</b>,<b>f</b>,<b>i</b>) ANN models. The gray and black lines are the reference and regression line, respectively. The asterisk indicates that the R passed the statistical significance difference test (<span class="html-italic">p</span> < 0.05).</p> "> Figure 7
<p>Hourly MRE between (<b>a</b>) observed PM<sub>1</sub> and estimated PM<sub>1</sub>, (<b>b</b>) observed PM<sub>2.5</sub> and estimated PM<sub>2.5</sub>, and (<b>c</b>) observed PM<sub>10</sub> and estimated PM<sub>10</sub> based on three models, respectively. The black, blue and red lines represent the MRE between observed PM and estimated PM using LM, RF and ANN models, respectively.</p> "> Figure 8
<p>Change trends of RMSE between estimated PM<sub>1</sub> (<b>a</b>), PM<sub>2.5</sub> (<b>b</b>) and PM<sub>10</sub> (<b>c</b>) by two ML models and their actual values when EC is higher than the threshold. Similar for the case of the change trends of R (resp. <b>d</b>–<b>f</b>). The red dotted box indicates the selected EC threshold.</p> "> Figure 9
<p>Diurnal variations of estimated values of PM<sub>1</sub> (<b>a</b>), PM<sub>2.5</sub> (<b>b</b>) and PM<sub>10</sub> (<b>c</b>) by the different models and their observed values in Wuhan from November 2014 to May 2017. The green and red lines are the hourly average values of PM predicted by LM model and their observed values, respectively. The blue lines in (<b>a</b>–<b>c</b>) are the hourly average values predicted by ANN and RA models.</p> ">
Abstract
:1. Introduction
2. Station and Data
2.1. Observation Station
2.2. Ground Data
3. Methodology
3.1. Traditional Linear Model
3.2. Machine Learning Algorithms
3.2.1. Random Forest Model
3.2.2. Artificial Neural Network
3.2.3. Sensibility Analysis
3.3. Statistical Methods
4. Results and Discussion
4.1. Intercomparison of Prediction Results
4.2. Performance Difference between RF and ANN with Different EC Thresholds
4.3. Diurnal Variations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Xin, J.; An, J.; Wang, Y.; Liu, Z.; Chao, N.; Meng, Z. Observation of aerosol optical properties and particulate pollution at background station in the Pearl River Delta region. Atmos. Res. 2014, 143, 216–227. [Google Scholar] [CrossRef]
- Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.; Kumar, N. Satellite Remote Sensing of Particulate Matter and Air Quality Assessment over Global Cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Wei, J.; Huang, W.; Li, Z.; Xue, W.; Peng, Y.; Sun, L.; Cribb, M. Estimating 1 km-resolution PM2.5 concentrations across China using the space-time random forest approach. Remote Sens. Environ. 2019, 231, 111221. [Google Scholar] [CrossRef]
- Zhang, L.; An, J.; Liu, M.; Li, Z.; Liu, Y.; Tao, L.; Liu, X.; Zhang, F.; Zheng, D.; Gao, Q.; et al. Spatiotemporal variations and influencing factors of PM2.5 concentrations in Beijing, China. Environ. Pollut. 2020, 262, 114276. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Xue, W.; Sun, L.; Fan, T.; Liu, L.; Su, T.; Cribb, M. The China High PM10 dataset: Generation, validation, and spatiotemporal variations from 2015 to 2019 across China. Environ. Int. 2021, 146, 106290. [Google Scholar] [CrossRef]
- Fu, X.; Cheng, Z.; Wang, S.; Hua, Y.; Xing, J.; Hao, J. Local and Regional Contributions to Fine Particle Pollution in Winter of the Yangtze River Delta, China. Aerosol Air Qual. Res. 2016, 16, 1067–1080. [Google Scholar] [CrossRef]
- Fontes, T.; Li, P.; Barros, N.; Zhao, P. Trends of PM2.5 concentrations in China: A long term approach. J. Environ. Manag. 2017, 196, 719–732. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Gong, W.; Liu, B.; Shi, Y.; Chen, Z. Aerosol optical properties and radiative effects: Assessment of urban aerosols in central China using 10-year observations. Atmos. Environ. 2018, 182, 275–285. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, G.; Peng, X.; Kong, L.; Zhao, X.; Ying, R.; Yin, W.; Xu, T.; Cheng, J.; Wang, L. Characteristics of the chemical composition and source apportionment of PM2.5 for a one-year period in Wuhan, China. J. Atmos. Chem. 2022, 79, 101–115. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, X.; Xu, X.; Zhao, X. Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China. Atmos. Res. 2011, 101, 711–718. [Google Scholar] [CrossRef]
- Pui, D.Y.; Chen, S.C.; Zuo, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Zhang, M.; Jin, S.; Ma, Y.; Fan, R.; Wang, L.; Gong, W.; Liu, B. Haze events at different levels in winters: A comprehensive study of meteorological factors, Aerosol characteristics and direct radiative forcing in megacities of north and central China. Atmos. Environ. 2021, 245, 118056. [Google Scholar] [CrossRef]
- Davidson, C.I.; Phalen, R.F.; Solomon, P.A. Airborne particulate matter and human health: A review. Aerosol Sci. Technol. 2005, 39, 737–749. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Lu, J.; Wu, K.; Ma, X.; Wei, J.; Yuan, Z.; Huang, Z.; Fan, W.; Zhong, Q.; Huang, Y.; Wu, X. Short-term effects of ambient particulate matter (PM1, PM2.5 and PM10) on influenza-like illness in Guangzhou, China. Int. J. Hyg. Environ. Health 2023, 247, 114074. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Sun, L.; Xue, W.; Ma, Z.; Liu, L.; Fan, T.; Cribb, M. Extending the EOS Long-Term PM2.5 Data Records since 2013 in China: Application to the VIIRS Deep Blue Aerosol Products. IEEE 2022, 60, 4100412. [Google Scholar] [CrossRef]
- Chen, R.; Kan, H.; Chen, B.; Huang, W.; Bai, Z.; Song, G.; Pan, G. Association of particulate air pollution with daily mortality: The China Air Pollution and Health Effects Study. Am. J. Epidemiol. 2012, 175, 1173–1181. [Google Scholar] [CrossRef]
- Pu, W.; Zhao, X.; Shi, X.; Ma, Z.; Zhang, X.; Yu, B. Impact of long-range transport on aerosol properties at a regional background station in Northern China. Atmos. Res. 2015, 153, 489–499. [Google Scholar] [CrossRef]
- Lee, H.J.; Liu, Y.; Coull, B.A.; Schwartz, J.; Koutrakis, P. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmos. Chem. Phys. 2011, 11, 7991–8002. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Sayer, A.M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004–2013. Environ. Health Perspect. 2016, 124, 184–192. [Google Scholar] [CrossRef]
- Chen, G.; Knibbs, L.D.; Zhang, W.; Li, S.; Cao, W.; Guo, J.; Ren, H.; Wang, B.; Wang, H.; Williams, G.; et al. Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information. Environ. Pollut. 2018, 233, 1086–1094. [Google Scholar] [CrossRef]
- Hu, X.; Waller, L.A.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G., Jr.; Estes, S.M.; Quattrochi, D.A.; Sarnat, J.A.; Liu, Y. Estimating ground-level PM2.5 concentrations in the southeastern U.S. using geographically weighted regression. Environ. Res. 2013, 121, 1–10. [Google Scholar] [CrossRef]
- Meng, X.; Fu, Q.; Ma, Z.; Chen, L.; Zou, B.; Zhang, Y.; Xue, W.; Wang, J.; Wang, D.; Kan, H.; et al. Estimating ground-level PM10 in a Chinese city by combining satellite data, meteorological information and a land use regression model. Environ. Pollut. 2016, 208, 177–184. [Google Scholar] [CrossRef]
- Sun, Y.; Song, T.; Tang, G.; Wang, Y. The vertical distribution of PM2.5 and boundary-layer structure during summer haze in Beijing. Atmos. Environ. 2013, 74, 413–421. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, G.; Zhou, L.; Hu, B.; Liu, B.; Li, Y.; Liu, S.; Wang, Y. Mixing layer transport flux of particulate matter in Beijing, China. Atmos. Chem. Phys. 2019, 19, 9531–9540. [Google Scholar] [CrossRef]
- Liu, C.; Huang, J.; Wang, Y.; Tao, X.; Hu, C.; Deng, L.; Xu, J.; Xiao, H.-W.; Luo, L.; Xiao, H.-Y.; et al. Vertical distribution of PM2.5 and interactions with the atmospheric boundary layer during the development stage of a heavy haze pollution event. Sci. Total Environ. 2020, 704, 135329. [Google Scholar] [CrossRef]
- Yang, L.; He, K.; Zhang, Q.; Wang, Q. Vertical distributive characters of PM2.5 at the ground layer in autumn and winter in Beijing. Res. Environ. Sci. 2005, 18, 23–28. [Google Scholar]
- Liu, Z.; Liu, J.; Wang, B.; Lu, F.; Huang, S.; Wu, D.; Han, D. Aerosol observation in Fengtai area, Beijing. Particuology 2008, 6, 214–217. [Google Scholar] [CrossRef]
- Raut, J.-C.; Chazette, P. Assessment of vertically-resolved PM10 from mobile lidar observations. Atmos. Chem. Phys. 2009, 9, 8617–8638. [Google Scholar] [CrossRef]
- Lv, L.; Liu, W.; Zhang, T.; Chen, Z.; Dong, Y.; Fan, G.; Xiang, Y.; Yao, Y.; Yang, N.; Chu, B.; et al. Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique. Atmos. Environ. 2017, 164, 360–369. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, Y.; Liu, B.; Li, H.; Jin, S.; Zhang, Y.; Fan, R.; Gong, W. Estimation of the vertical distribution of particle matter (PM2.5) concentration and its transport flux from lidar measurements based on machine learning algorithms. Atmos. Chem. Phys. 2021, 21, 17003–17016. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, Y.; Liu, B.; Xu, X.; Jin, S.; Gong, W. Retrieving the Vertical Distribution of PM2.5 Mass Concentration from Lidar via a Random Forest Model. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5701209. [Google Scholar] [CrossRef]
- Yao, L.; Lu, N. Spatiotemporal distribution and short-term trends of particulate matter concentration over China, 2006–2010. Environ. Sci. Pollut. Res. 2014, 21, 9665–9675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, W.; He, J.; Jin, Z.; Wang, N. Spatially continuous mapping of hourly ground ozone levels assisted by Himawari-8 short wave radiation products. GIScience Remote Sens. 2023, 60, 2174280. [Google Scholar] [CrossRef]
- Liu, B.; Ma, Y.; Shi, Y.; Jin, S.; Jin, Y.; Gong, W. The characteristics and sources of the aerosols within the nocturnal residual layer over Wuhan, China. Atmos. Res. 2020, 241, 104959. [Google Scholar] [CrossRef]
- Liu, B.; Ma, Y.; Gong, W.; Zhang, M.; Yang, J. Study of continuous air pollution in winter over Wuhan based on ground-based and satellite observations. Atmos. Pollut. Res. 2018, 9, 156–165. [Google Scholar] [CrossRef]
- Yan, W.; Yang, L.; Chen, J.; Wang, X.; Wen, L.; Zhao, T.; Wang, W. Aerosol optical properties at urban and coastal sites in Shandong Province, Northern China. Atmos. Res. 2017, 188, 39–47. [Google Scholar] [CrossRef]
- Liu, B.; Gong, W.; Ma, Y.; Zhang, M.; Yang, J.; Zhang, M. Surface Aerosol Optical Properties during High and Low Pollution Periods at an Urban Site in Central China. Aerosol Air Qual. Res. 2018, 18, 3035–3046. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, M.; Han, G.; Ma, X.; Zhu, Z. An investigation of aerosol scattering and absorption properties in Wuhan, Central China. Atmosphere 2015, 6, 503–520. [Google Scholar] [CrossRef]
- Xu, J.; Tao, J.; Zhang, R.; Cheng, T.; Leng, C.; Chen, J.; Huang, G.; Li, X.; Zhu, Z. Measurements of surface aerosol optical properties in winter of Shanghai. Atmos. Res. 2012, 109, 25–35. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Sun, J.; Zhang, X.; Che, H.; Li, Y. Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China. Atmos. Chem. Phys. 2015, 15, 13585–13598. [Google Scholar] [CrossRef]
- Zhao, Q.; Su, H.; Yi, M.; Yu, D.; Xu, C. Aerosol Horizontal Distribution Detected by Lidar in Excavation Stage of Construction Site Foundation Pit. Chin. J. Lasers 2021, 48, 2010001. [Google Scholar]
- Tao, Z.; Wang, Z.; Yang, S.; Shan, H.; Ma, X.; Zhang, H.; Zhao, S.; Liu, D.; Xie, C.; Wang, Y. Profiling the PM2.5 mass concentration vertical distribution in the boundary layer. Atmos. Meas. Tech. 2016, 9, 1369–1376. [Google Scholar] [CrossRef]
- Liu, B.; Ma, Y.; Gong, W.; Zhang, M.; Shi, Y. The relationship between black carbon and atmospheric boundary layer height. Atmos. Pollut. Res. 2019, 10, 65–72. [Google Scholar] [CrossRef]
- Li, L.; Yang, J.; Wang, Y. Retrieval of High-Resolution Atmospheric Particulate Matter Concentrations from Satellite-Based Aerosol Optical Thickness over the Pearl River Delta Area, China. Remote Sens. 2015, 7, 7914–7937. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liu, B.; Ma, X.; Guo, J.; Li, H.; Jin, S.; Ma, Y.; Gong, W. Estimating hub-height wind speed based on a machine learning algorithm: Implications for wind energy assessment. Atmos. Chem. Phys. 2023, 23, 3181–3193. [Google Scholar] [CrossRef]
- Yu, S.; Vautard, R. A transfer method to estimate hub-height wind speed from 10 meters wind speed based on machine learning. Renew. Sustain. Energy Rev. 2022, 169, 112897. [Google Scholar] [CrossRef]
- Shi, T.; Han, G.; Ma, X.; Mao, H.; Chen, C.; Han, Z.; Gong, W. Quantifying factory-scale CO2/CH4 emission based on mobile measurements and EMISSION-PARTITION model: Cases in China. Environ. Res. Lett. 2023, 18, 034028. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, H.; Bai, Z.; Han, B.; Xu, J.; Zhao, R.; Zhang, N.; Chen, L.; Lei, X.; Shi, W.; et al. Combined use of principal component analysis and artificial neural network approach to improve estimates of PM2.5 personal exposure: A case study on older adults. Sci. Total Environ. 2020, 726, 138533. [Google Scholar] [CrossRef] [PubMed]
- Zha, Y.; Gao, J.; Jiang, J.; Lu, H.; Huang, J. Monitoring of urban air pollution from MODIS aerosol data: Effect of meteorological parameters. Tellus 2010, 62, 109–116. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Q.; Zhao, H.; Wang, L.; Tao, R. Variations in PM10, PM2.5 and PM1.0 in an Urban Area of the Sichuan Basin and Their Relation to Meteorological Factors. Atmosphere 2015, 6, 150–163. [Google Scholar] [CrossRef]
- Li, T.; Wang, H.; Zhao, T.; Xue, M.; Wang, Y.; Che, H.; Jiang, C. The Impacts of Different PBL Schemes on the Simulation of PM2.5 during Severe Haze Episodes in the Jing-Jin-Ji Region and Its Surroundings in China. Adv. Meteorol. 2016, 2016, 6295878. [Google Scholar] [CrossRef]
- Li, R.; Cui, L.; Fu, H.; Meng, Y.; Li, J.; Guo, J. Estimating high-resolution PM1 concentration from Himawari-8 combining extreme gradient boosting-geographically and temporally weighted regression (XGBoost-GTWR). Atmos. Environ. 2020, 229, 117434. [Google Scholar] [CrossRef]
- Huang, F.; Zhou, J.; Chen, N.; Li, Y.; Li, K.; Wu, S. Chemical characteristics and source apportionment of PM2.5 in Wuhan, China. J. Atmos. Chem. 2019, 76, 245–262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, H.; Li, H.; Jin, S.; Fan, R.; Wang, W.; Liu, B.; Ma, Y.; Wei, R.; Gong, W. Exploring the Conversion Model from Aerosol Extinction Coefficient to PM1, PM2.5 and PM10 Concentrations. Remote Sens. 2023, 15, 2742. https://doi.org/10.3390/rs15112742
Shao H, Li H, Jin S, Fan R, Wang W, Liu B, Ma Y, Wei R, Gong W. Exploring the Conversion Model from Aerosol Extinction Coefficient to PM1, PM2.5 and PM10 Concentrations. Remote Sensing. 2023; 15(11):2742. https://doi.org/10.3390/rs15112742
Chicago/Turabian StyleShao, Huanhuan, Hui Li, Shikuan Jin, Ruonan Fan, Weiyan Wang, Boming Liu, Yingying Ma, Ruyi Wei, and Wei Gong. 2023. "Exploring the Conversion Model from Aerosol Extinction Coefficient to PM1, PM2.5 and PM10 Concentrations" Remote Sensing 15, no. 11: 2742. https://doi.org/10.3390/rs15112742
APA StyleShao, H., Li, H., Jin, S., Fan, R., Wang, W., Liu, B., Ma, Y., Wei, R., & Gong, W. (2023). Exploring the Conversion Model from Aerosol Extinction Coefficient to PM1, PM2.5 and PM10 Concentrations. Remote Sensing, 15(11), 2742. https://doi.org/10.3390/rs15112742