Wind Direction Extraction from X-Band Marine Radar Images Based on the Attenuation Horizontal Component
<p>The flow chart of the wind direction extraction process.</p> "> Figure 2
<p>Three different kinds of radar images: (<b>a</b>) long−pulse image collected under low-wind-speed conditions (obtained on 21 September 2017 at 09:06), with a heading of 87.9°, a wind direction of 88.99°, and a wind speed of 5.9 m/s, as measured by an anemometer; the red line indicates the occlusion area; (<b>b</b>) short-pulse image collected under high-wind-speed conditions (obtained on 24 October 2017 at 03:27), with a heading of 347.3°, a wind direction of 31°, and a wind speed of 9.8 m/s, as measured by an anemometer; the oval indicates the ship; (<b>c</b>) short-pulse image collected under high-wind-speed conditions (obtained on 24 October 2017 at 06:42), with a heading of 1°, a wind direction of 50°, and a wind speed of 11 m/s, as measured by an anemometer; the oval indicates the ship.</p> "> Figure 3
<p>(<b>a</b>) Schemes of shadow modulation; (<b>b</b>) one-dimensional angle data randomly selected from <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>b.</p> "> Figure 4
<p>Extraction process of ideal attenuation data: (<b>a</b>) the histogram statistics of radar return at one range distance <math display="inline"><semantics><mi>r</mi></semantics></math> for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>b (the radar return values have been normalized); (<b>b</b>) the ideal attenuation data for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>b.</p> "> Figure 5
<p>The radar image of (<b>a</b>) <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>b and (<b>b</b>) <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>c after excluding fixed targets based on histogram statistics.</p> "> Figure 6
<p>Ideal range attenuation model.</p> "> Figure 7
<p>The estimation process for a certain azimuth attenuation horizontal component: (<b>a</b>) one-dimensional angle data randomly selected from <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>a; (<b>b</b>) naive estimation, where <math display="inline"><semantics><mrow><mi>C</mi><mo>×</mo><mi>D</mi></mrow></semantics></math> is the updated attenuation function (the value of attenuation horizontal component <math display="inline"><semantics><mi>C</mi></semantics></math> is 0.46); (<b>c</b>) first estimation (the value of attenuation horizontal component <math display="inline"><semantics><mi>C</mi></semantics></math> is 0.45); (<b>d</b>) second estimation (the value of attenuation horizontal component <math display="inline"><semantics><mi>C</mi></semantics></math> is 0.43); (<b>e</b>) one-dimensional angle data of about 290° which is selected in <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>c, where <math display="inline"><semantics><mrow><mi>C</mi><mo>×</mo><mi>D</mi></mrow></semantics></math> is the updated attenuation function; (<b>f</b>) naive estimation (the value of attenuation horizontal component <math display="inline"><semantics><mi>C</mi></semantics></math> is 0.63); (<b>g</b>) first estimation (the value of attenuation horizontal component <math display="inline"><semantics><mi>C</mi></semantics></math> is 0.63); (<b>h</b>) second estimation (the value of attenuation horizontal component <math display="inline"><semantics><mi>C</mi></semantics></math> is 0.63).</p> "> Figure 7 Cont.
<p>The estimation process for a certain azimuth attenuation horizontal component: (<b>a</b>) one-dimensional angle data randomly selected from <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>a; (<b>b</b>) naive estimation, where <math display="inline"><semantics><mrow><mi>C</mi><mo>×</mo><mi>D</mi></mrow></semantics></math> is the updated attenuation function (the value of attenuation horizontal component <math display="inline"><semantics><mi>C</mi></semantics></math> is 0.46); (<b>c</b>) first estimation (the value of attenuation horizontal component <math display="inline"><semantics><mi>C</mi></semantics></math> is 0.45); (<b>d</b>) second estimation (the value of attenuation horizontal component <math display="inline"><semantics><mi>C</mi></semantics></math> is 0.43); (<b>e</b>) one-dimensional angle data of about 290° which is selected in <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>c, where <math display="inline"><semantics><mrow><mi>C</mi><mo>×</mo><mi>D</mi></mrow></semantics></math> is the updated attenuation function; (<b>f</b>) naive estimation (the value of attenuation horizontal component <math display="inline"><semantics><mi>C</mi></semantics></math> is 0.63); (<b>g</b>) first estimation (the value of attenuation horizontal component <math display="inline"><semantics><mi>C</mi></semantics></math> is 0.63); (<b>h</b>) second estimation (the value of attenuation horizontal component <math display="inline"><semantics><mi>C</mi></semantics></math> is 0.63).</p> "> Figure 8
<p>Radar installation position.</p> "> Figure 9
<p>Wind direction (blue) and wind speed (orange) measurements acquired by an anemometer.</p> "> Figure 10
<p>Curve-fitting results: (<b>a</b>) curve-fitting results using single curve fitting for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>a (the retrieved wind direction is 78°); (<b>b</b>) curve-fitting results using the attenuation horizontal component method for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>a (the retrieved wind direction is 84°); (<b>c</b>) curve-fitting results using single curve fitting for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>b (the retrieved wind direction is 4°); (<b>d</b>) curve-fitting results using the attenuation horizontal component method for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>b (the retrieved wind direction is 10°); (<b>e</b>) curve-fitting results using single curve fitting for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>c (the retrieved wind direction is 18.5°); (<b>f</b>) curve-fitting results using the attenuation horizontal component method for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>c (the retrieved wind direction is 47.5°).</p> "> Figure 10 Cont.
<p>Curve-fitting results: (<b>a</b>) curve-fitting results using single curve fitting for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>a (the retrieved wind direction is 78°); (<b>b</b>) curve-fitting results using the attenuation horizontal component method for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>a (the retrieved wind direction is 84°); (<b>c</b>) curve-fitting results using single curve fitting for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>b (the retrieved wind direction is 4°); (<b>d</b>) curve-fitting results using the attenuation horizontal component method for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>b (the retrieved wind direction is 10°); (<b>e</b>) curve-fitting results using single curve fitting for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>c (the retrieved wind direction is 18.5°); (<b>f</b>) curve-fitting results using the attenuation horizontal component method for <a href="#remotesensing-15-03959-f002" class="html-fig">Figure 2</a>c (the retrieved wind direction is 47.5°).</p> "> Figure 11
<p>Comparison of the two methods with the reference wind direction: (<b>a</b>) “Period 1” is medium-wind-speed radar data with only a mast occlusion area; (<b>b</b>) “Period 2” is high-wind-speed radar data with only a mast occlusion area; (<b>c</b>) “Period 3” is low-wind-speed radar data with only an occlusion area; (<b>d</b>) “Period 4” is also high-wind-speed data but, at this time, not only is the occlusion area formed by the mast, but the radar image is also subject to interference by the stationary target; in particular, in the second half of the data there are more fixed targets.</p> ">
Abstract
:1. Introduction
2. Wind Direction Retrieval Methods
2.1. Data Preprocessing
2.2. Radar Return Ideal Range Attenuation Model
2.3. Estimation of Attenuation Horizontal Components and Outlier Treatment
Algorithm 1: Estimation of attenuation horizontal components and outlier treatment |
Input: ideal range attenuation model , Initialize using Equation (7) ← Estimate the attenuation horizontal components preliminarily using Equation (6) |
for N = 1:2 ← ← Update with using Equation (8) ← Estimate the attenuation horizontal components using Equation (6) end for Output: |
2.4. Wind Direction Extraction Method
3. Results
3.1. Data Overview
3.2. Wind Direction Retrieval Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thornhill, E.; Wall, A.; McTavish, S.; Lee, R. Ship anemometer bias management. Ocean Eng. 2020, 21, 107843. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, F.; Lu, Z.; Wei, Y.; Wang, H. Multi-anemometer optimal layout and weighted fusion method for estimation of ship surface steady-state wind parameters. Ocean Eng. 2022, 266, 112793. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, H.; Lu, Z.; Wang, L.; Akhtar, R.; Wei, Y. An Energy Spectrum Algorithm for Wind Direction Retrieval From X-Band Marine Radar Image Sequences. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4074–4088. [Google Scholar] [CrossRef]
- Al-Habashneh, A.A.; Moloney, C.; Gill, E.W.; Huang, W. The effect of radar ocean surface sampling on wave spectrum estimation using x-band marine radar. IEEE Access 2018, 6, 17570–17585. [Google Scholar]
- Senet, C.M.; Seemann, J.; Flampouris, S.; Ziemer, F. Determination of bathymetric and current maps by the method disc based on the analysis of nautical x-band radar image sequences of the sea surface. IEEE Trans. Geosci. Remote Sens. 2007, 46, 2267–2279. [Google Scholar] [CrossRef]
- Shen, C.; Huang, W.; Gill, E.W.; Carrasco, R.; Horstmann, J. An algorithm for surface current retrieval from x-band marine radar images. Remote Sens. 2015, 7, 7753–7767. [Google Scholar] [CrossRef] [Green Version]
- Lund, B.; Graber, H.C.; Campana, J.; Terrill, E. Near-surface current shear measured by marine X-band radar. In Proceedings of the 2015 IEEE/OES Eleveth Current, Waves and Turbulence Measurement (CWTM), St. Petersburg, FL, USA, 2–6 March 2015. [Google Scholar]
- Lund, B.; Graber, H.C.; Hessner, K.; Williams, N.J. On shipboard marine X-band radar near-surface current ‘‘calibration’’. J. Atmos. Ocean. Technol. 2015, 32, 1928–1944. [Google Scholar] [CrossRef] [Green Version]
- Hessner, K.G.; El Naggar, S.; von Appen, W.-J.; Strass, V.H. On the Reliability of Surface Current Measurements by X-Band Marine Radar. Remote Sens. 2019, 11, 1030. [Google Scholar] [CrossRef] [Green Version]
- Ludeno, G.; Postacchini, M.; Natale, A.; Brocchini, M.; Lugni, C.; Soldovieri, F.; Serafino, F. Normalized scalar product approach for nearshore bathymetric estimation from x-band radar images: An assessment based on simulated and measured data. IEEE J. Ocean. Eng. 2018, 43, 221–237. [Google Scholar]
- Flampouris, S.; Ziemer, F.; Seemann, J. Accuracy of bathymetric assessment by locally analyzing radar ocean wave imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2906–2913. [Google Scholar] [CrossRef]
- Bell, P.S. Shallow water bathymetry derived from an analysis of x-band marine radar images of waves. Coast. Eng. 1999, 37, 513–527. [Google Scholar]
- Honegger, D.A.; Haller, M.C.; Holman, R.A. High-resolution bathymetry estimates via X-band marine radar: 1. beaches. Coast. Eng. 2019, 149, 39–48. [Google Scholar]
- Honegger, D.A.; Haller, M.C.; Holman, R.A. High-resolution bathymetry estimates via X-band marine radar: 2. Effects of currents at tidal inlets. Coast. Eng. 2020, 156, 103626. [Google Scholar]
- Atkinson, J.; Esteves, L.; Williams, J.; Bell, P.; McCann, D. Nearshore Monitoring With X-Band Radar: Maximizing Utility in Dynamic and Complex Environments. J. Geophys. Res. Ocean. 2021, 126, e2020JC016841. [Google Scholar]
- Lund, B.; Haus, B.K.; Graber, H.C.; Horstmann, J.; Carrasco, R.; Novelli, G.; Guigand, C.M.; Mehta, S.; Laxague, N.J.M.; Özgökmen, T.M. Marine X-Band Radar Currents and Bathymetry: An Argument for a Wave Number-Dependent Retrieval Method. J. Geophys. Res. Ocean. 2020, 125, e2019JC015618. [Google Scholar]
- Chen, Z.; He, Y.; Zhang, B. An automatic algorithm to retrieve wave height from x-band marine radar image sequence. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5084–5092. [Google Scholar]
- Nieto-Borge, J.C.; Hessner, K.; Jarabo-Amores, P.; De, L.M.D. Signal-to-noise ratio analysis to estimate ocean wave heights from x-band marine radar image time series. IET Radar Sonar Navig. 2008, 2, 35–41. [Google Scholar]
- Liu, X.; Huang, W.; Gill, E.W. Wave height estimation from ship-borne x-band nautical radar images. J. Sens. 2016, 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, W.; Gill, E.W. Estimation of significant wave height from x-band marine radar images based on ensemble empirical mode decomposition. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1740–1744. [Google Scholar]
- An, J.; Huang, W.; Gill, E.W. A self-adaptive wavelet-based algorithm for wave measurement using nautical radar. IEEE Trans. Geosci. Remote Sens. 2015, 53, 567–577. [Google Scholar]
- Navarro, W.; Velez, J.C.; Orfila, A.; Lonin, S. A shadowing mitigation approach for sea state parameters estimation using X-band remotely sensing radar data in coastal areas. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6292–6310. [Google Scholar]
- Streßer, M.; Horstmann, J.; Baschek, B. Surface Wave and Roller Dissipation Observed With Shore-Based Doppler Marine Radar. J. Geophys. Res. Ocean. 2022, 127, e2022JC018437. [Google Scholar] [CrossRef]
- Wu, L.C.; Doong, D.J.; Lai, J.W. Influences of nononshore winds on significant wave height estimations using coastal X-band radar images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4202111. [Google Scholar] [CrossRef]
- Wright, J. Backscattering from capillary waves with application to sea clutter. IEEE Trans. Antennas Propag. 1966, 14, 749–754. [Google Scholar]
- Huang, W.; Liu, X.; Gill, E.W. Ocean wind and wave measurements using x-band marine radar: A comprehensive review. Remote Sens. 2017, 9, 1261. [Google Scholar]
- Lee, P.H.Y.; Barter, J.D.; Caponi, E.; Caponi, M.; Hindman, C.L.; Lake, B.M.; Rungaldier, H. Wind-speed dependence of small-grazing-angle microwave backscatter from sea surfaces. IEEE Trans. Antennas Propag. 1996, 44, 333–340. [Google Scholar]
- Trizna, D.B.; Carlson, D.J. Studies of dual polarized low grazing angle radar sea scatter in nearshore regions. IEEE Trans. Geosci. Remote Sens. 1996, 34, 747–757. [Google Scholar] [CrossRef]
- Vicen-Bueno, R.; Horstmann, J.; Terril, E.; de Paolo, T.; Dannenberg, J. Real-time ocean wind vector retrieval from marine radar image sequences acquired at grazing angle. J. Atmos. Ocean. Technol. 2013, 30, 127–139. [Google Scholar]
- Chen, Z.; He, Y.; Zhang, B.; Qiu, Z. Determination of nearshore sea surface wind vector from marine X-band radar images. Ocean Eng. 2015, 96, 79–85. [Google Scholar] [CrossRef]
- Lund, B.; Graber, H.C.; Romeiser, R. Wind retrieval from shipborne nautical x-band radar data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3800–3811. [Google Scholar]
- Liu, Y.; Huang, W.; Gill, E.W.; Peters, D.K.; Vicen-Bueno, R. Comparison of algorithms for wind parameters extraction from shipborne x-band marine radar images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 896–906. [Google Scholar] [CrossRef]
- Yu, H.; Wang, H.; Lu, Z. Wind-Direction Estimation from Single X-Band Marine Radar Image Improvement by Utilizing the DWT and Azimuth-Scale Expansion Method. Entropy 2022, 24, 747. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liu, Y.; Song, H.; Lu, Z. A Method of Rainfall Detection from X-band Marine Radar Image Based on the Principal Component Feature Extracted. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3501105. [Google Scholar]
- Kim, M.-S.; Kwon, B.H. Rainfall Detection and Rainfall Rate Estimation Using Microwave Attenuation. Atmosphere 2018, 9, 287. [Google Scholar] [CrossRef] [Green Version]
- Christofilakis, V.; Tatsis, G.; Chronopoulos, S.K.; Sakkas, A.; Skrivanos, A.G.; Peppas, K.P.; Nistazakis, H.E.; Baldoumas, G.; Kostarakis, P. Earth-to-Earth Microwave Rain Attenuation Measurements: A Survey On the Recent Literature. Symmetry 2020, 12, 1440. [Google Scholar]
- Wang, Y.; Huang, W. An algorithm for wind direction retrieval from X-band marine radar images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 252–256. [Google Scholar] [CrossRef]
- Liu, X.; Huang, W.; Gill, E.W. Wind direction estimation from rain-contaminated marine radar data using the ensemble empirical mode decomposition method. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1833–1841. [Google Scholar]
- Huang, W.; Liu, Y.; Gill, E.W. Texture-analysis-incorporated wind parameters extraction from rain-contaminated X-band nautical radar images. Remote Sens. 2017, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Huang, W.; Haller, M.C. A novel scheme for extracting sea surface wind information from rain-contaminated x-band marine radar images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5220–5234. [Google Scholar]
- Dankert, H.; Horstmann, J.; Rosenthal, W. Ocean surface winds retrieved from marine radar-image sequences. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- Dankert, H.; Horstmann, J.; Rosenthal, W. Ocean wind fields retrieved from radar-image sequences. J. Geophys. Res. Oceans. 2003, 108, 3353–3362. [Google Scholar] [CrossRef]
- Dankert, H.; Horstmann, J.; Rosenthal, W. Wind-and wave-field measurements using marine X-band radar-image sequences. IEEE J. Ocean. Eng. 2005, 30, 534–542. [Google Scholar] [CrossRef]
- Dankert, H.; Horstmann, J. A marine radar wind sensor. J. Atmos. Ocean. Technol. 2007, 24, 1629–1642. [Google Scholar] [CrossRef]
- Zheng, Y.; Lin, S.; Kang, S.B.; Xiao, R.; Gee, J.C.; Kambhamettu, C. Single-image vignetting correction from gradient distribution symmetries. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 1480–1494. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Lee, H.; Lee, S. Radial bright channel prior for single image vignetting correction. Eur. Conf. Comput. Vis. 2014, 8690, 189–202. [Google Scholar]
Radar Parameters | The Performance |
---|---|
Electromagnetic wave frequency | 9.4 GHz |
Polarization | HH |
Antenna height | 25 m |
Antenna angular speed | 24 rpm |
Range resolution | 7.5 m |
Horizontal beam width | 1.3° |
Pulse width (long-pulse) | |
Pulse width (short-pulse) | |
Grazing angle | <5° |
Period | Average Wind Speed | Single Curve Fitting | Attenuation Horizontal Component Method | ||
---|---|---|---|---|---|
Deviation (°) | RMSE (°) | Deviation (°) | RMSE (°) | ||
1 | 8.1 m/s | 11.4° | 12.5° | 8.8° | 9.5° |
2 | 10.7 m/s | 11.8° | 13.5° | 6.0° | 7.9° |
3 | 6.3 m/s | 16.8° | 17.4° | 5.9° | 8.6° |
The first half of 4 | 9.3 m/s | 12.3° | 13.1° | 4.9° | 7.3° |
The second half of 4 | 9.9 m/s | 24.2° | 25.1° | 7.9° | 8.9° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Lu, Z.; Wang, H. Wind Direction Extraction from X-Band Marine Radar Images Based on the Attenuation Horizontal Component. Remote Sens. 2023, 15, 3959. https://doi.org/10.3390/rs15163959
Yu H, Lu Z, Wang H. Wind Direction Extraction from X-Band Marine Radar Images Based on the Attenuation Horizontal Component. Remote Sensing. 2023; 15(16):3959. https://doi.org/10.3390/rs15163959
Chicago/Turabian StyleYu, Huanyu, Zhizhong Lu, and Hui Wang. 2023. "Wind Direction Extraction from X-Band Marine Radar Images Based on the Attenuation Horizontal Component" Remote Sensing 15, no. 16: 3959. https://doi.org/10.3390/rs15163959
APA StyleYu, H., Lu, Z., & Wang, H. (2023). Wind Direction Extraction from X-Band Marine Radar Images Based on the Attenuation Horizontal Component. Remote Sensing, 15(16), 3959. https://doi.org/10.3390/rs15163959