Wind-Direction Estimation from Single X-Band Marine Radar Image Improvement by Utilizing the DWT and Azimuth-Scale Expansion Method
<p>Radar installation position.</p> "> Figure 2
<p>Ship’s course.</p> "> Figure 3
<p>Distribution of reference wind direction and wind speed: (<b>a</b>) distribution of reference wind direction; (<b>b</b>) distribution of reference wind speed.</p> "> Figure 4
<p>Radar image: (<b>a</b>) containing co-channel interference; (<b>b</b>) after filtering out the co-channel interference.</p> "> Figure 5
<p>(<b>a</b>) Rain-contaminated radar image; (<b>b</b>) schematic diagram of the occlusion area.</p> "> Figure 6
<p>Schematic diagram of the occlusion area of the radar image: (<b>a</b>) occluded radar image; (<b>b</b>) corresponds to the radar-return intensity of (a).</p> "> Figure 7
<p>Two-dimensional wavelet decomposition: (<b>a</b>) first-level decomposition is shown on the left and second-level decomposition is shown on the right; (<b>b</b>) example of first-level wavelet decomposition of a radar image.</p> "> Figure 8
<p>Wind-direction extraction process.</p> "> Figure 9
<p>Example of the radar data (collected at 19:08, 23 October 2017): (<b>a</b>) backscattering image; (<b>b</b>) range-averaged radar return of non-occlusion region of (<b>a</b>); (<b>c</b>) range-averaged radar-return intensity as a function of antenna look direction after azimuth-scale extension.</p> "> Figure 9 Cont.
<p>Example of the radar data (collected at 19:08, 23 October 2017): (<b>a</b>) backscattering image; (<b>b</b>) range-averaged radar return of non-occlusion region of (<b>a</b>); (<b>c</b>) range-averaged radar-return intensity as a function of antenna look direction after azimuth-scale extension.</p> "> Figure 10
<p>Third-level low-frequency component of the 2D DWT of <a href="#entropy-24-00747-f009" class="html-fig">Figure 9</a>a.</p> "> Figure 11
<p>Curve fitting results: (<b>a</b>) two-dimensional DWT using the first low-frequency component and azimuth-scale extension-based method; (<b>b</b>) two-dimensional DWT using the second low-frequency component and azimuth-scale extension-based method; (<b>c</b>) two-dimensional DWT using the third low-frequency component and azimuth-scale extension-based method; (<b>d</b>) azimuth-scale extension method only.</p> "> Figure 12
<p>Single-curve fitting method.</p> "> Figure 13
<p>(<b>a</b>) Comparison of the two methods with the reference wind direction; (<b>b</b>) wind speed; (<b>c</b>) position of the wind direction in the radar image; (<b>d</b>) ship speed.</p> "> Figure 13 Cont.
<p>(<b>a</b>) Comparison of the two methods with the reference wind direction; (<b>b</b>) wind speed; (<b>c</b>) position of the wind direction in the radar image; (<b>d</b>) ship speed.</p> "> Figure 14
<p>Scatter plots referring to <a href="#entropy-24-00747-f013" class="html-fig">Figure 13</a>a: (<b>a</b>) method based on the 2D-DWT third-level low-frequency component and azimuth-scale expansion; (<b>b</b>) method based on the single-curve fitting.</p> ">
Abstract
:1. Introduction
2. Data Overview and Data Preprocessing
2.1. Data Overview
2.2. Data Preprocessing
2.2.1. Noise Processing
2.2.2. Rain Recognition
2.2.3. Occlusion Area Processing
3. Wind-direction Retrieval Algorithm
3.1. Two-Dimensional DWT Description
3.2. Wind-Direction Extraction Process
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moat, B.I.; Yelland, M.J.; Pascal, R.W.; Molland, A.F. The effect of ship shape and anemometer location on wind speed measurements obtained from ships. In Proceedings of the 4th International Conference on Marine Computational Fluid Dynamics, Southampton, UK, 29–30 March 2005. [Google Scholar]
- Popinet, S.; Smith, M.; Stevens, C. Experimental and numerical study of the turbulence characteristics of airflow around a research vessel. J. Atmos. Ocean. Technol. 2004, 21, 1575–1589. [Google Scholar] [CrossRef]
- Yelland, M.J.; Moat, B.I.; Pascal, R.W.; Berry, D.I. Cfd model estimates of the airflow distortion over research ships and the impact on momentum flux measurements. J. Atmos. Ocean. Technol. 2002, 19, 1477–1499. [Google Scholar] [CrossRef] [Green Version]
- Horstmann, J.; Borge, J.; Seemann, J.; Carrasco, R.; Lund, B. Wind, wave, and current retrieval utilizing x-band marine radars. Coast. Ocean. Obs. Syst. 2015, 2015, 281–304. [Google Scholar]
- Wright, J.W. Backscattering from capillary waves with application to sea clutter. IEEE Trans. Antennas Propag. 1966, 14, 749–754. [Google Scholar] [CrossRef]
- Al-Habashneh, A.A.; Moloney, C.; Gill, E.W.; Huang, W. The effect of radar ocean surface sampling on wave spectrum estimation using x-band marine radar. IEEE Access 2018, 6, 17570–17585. [Google Scholar] [CrossRef]
- Senet, C.M.; Seemann, J.; Flampouris, S.; Ziemer, F. Determination of bathymetric and current maps by the method disc based on the analysis of nautical x-band radar image sequences of the sea surface. IEEE Trans. Geosci. Remote Sens. 2007, 46, 2267–2279. [Google Scholar] [CrossRef]
- Shen, C.; Huang, W.; Gill, E.W.; Carrasco, R.; Horstmann, J. An algorithm for surface current retrieval from x-band marine radar images. Remote Sens. 2015, 7, 7753–7767. [Google Scholar] [CrossRef] [Green Version]
- Ludeno, G.; Postacchini, M.; Natale, A.; Brocchini, M.; Lugni, C.; Soldovieri, F.; Serafino, F. Normalized scalar product approach for nearshore bathymetric estimation from x-band radar images: An assessment based on simulated and measured data. IEEE J. Ocean. Eng. 2018, 43, 221–237. [Google Scholar] [CrossRef]
- Flampouris, S.; Ziemer, F.; Seemann, J. Accuracy of bathymetric assessment by locally analyzing radar ocean wave imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2906–2913. [Google Scholar] [CrossRef]
- Bell, P.S. Shallow water bathymetry derived from an analysis of x-band marine radar images of waves. Coast. Eng. 1999, 37, 513–527. [Google Scholar] [CrossRef]
- Chen, Z.; He, Y.; Zhang, B. An automatic algorithm to retrieve wave height from x-band marine radar image sequence. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5084–5092. [Google Scholar] [CrossRef]
- Nieto-Borge, J.C.; Hessner, K.; Jarabo-Amores, P.; De, L.M.D. Signal-to-noise ratio analysis to estimate ocean wave heights from x-band marine radar image time series. IET Radar Sonar Navig. 2008, 2, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, W.; Gill, E.W. Wave height estimation from ship-borne x-band nautical radar images. J. Sens. 2016, 2016, 1078053. [Google Scholar] [CrossRef]
- Liu, X.; Huang, W.; Gill, E.W. Estimation of significant wave height from x-band marine radar images based on ensemble empirical mode decomposition. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1740–1744. [Google Scholar] [CrossRef]
- Huang, W.; Liu, X.; Gill, E.W. Ocean wind and wave measurements using x-band marine radar: A comprehensive review. Remote Sens. 2017, 9, 1261. [Google Scholar] [CrossRef] [Green Version]
- Hatten, H.; Seemann, J.; Horstmann, J.; Ziemer, F. Azimuthal dependence of the radar cross section and the spectral background noise of a nautical radar at grazing incidence. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Seattle, WA, USA, 6–10 July 1998. [Google Scholar]
- Lund, B.; Graber, H.C.; Romeiser, R. Wind retrieval from shipborne nautical x-band radar data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3800–3811. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, W.; Gill, E.W.; Peters, D.K.; Vicen-Bueno, R. Comparison of algorithms for wind parameters extraction from shipborne x-band marine radar images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 896–906. [Google Scholar] [CrossRef]
- Lu, Z.; Sun, L.; Zhou, Y. A Method for Rainfall Detection and Rainfall Intensity Level Retrieval from X-Band Marine Radar Images. Appl. Sci. 2021, 11, 1565. [Google Scholar] [CrossRef]
- Liu, X.; Huang, W.; Gill, E.W. Wind direction estimation from rain-contaminated marine radar data using the ensemble empirical mode decomposition method. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1833–1841. [Google Scholar] [CrossRef]
- Chen, X.; Huang, W.; Haller, M.C. A novel scheme for extracting sea surface wind information from rain-contaminated x-band marine radar images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5220–5234. [Google Scholar] [CrossRef]
- Dankert, H.; Horstmann, J.; Koch, W.; Rosenthal, W. Ocean wind fields retrieved from radar-image sequences. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Dankert, H.; Horstmann, J.; Rosenthal, W. Ocean surface winds retrieved from marine radar-image sequences. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- Dankert, H.; Horstmann, J. A marine radar wind sensor. J. Atmos. Ocean. Technol. 2007, 24, 1629–1642. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, H.; Lu, Z.; Wang, L.; Akhtar, R.; Wei, Y.B. An Energy Spectrum Algorithm for Wind Direction Retrieval from X-Band Marine Radar Image Sequences. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4074–4088. [Google Scholar] [CrossRef]
- Chuang, Z.H.; Wu, L.C.; Doong, D.J.; Kao, C.C. Two-dimensional continuous wavelet transform of simulated spatial images of waves on a slowly varying topography. Ocean Eng. 2008, 35, 1039–1051. [Google Scholar] [CrossRef]
- Wu, L.C.; Chuang, Z.H.; Doong, D.J.; Kao, C.C. Ocean remotely sensed image analysis using two-dimensional continuous wavelet transforms. Int. J. Remote Sens. 2011, 32, 8779–8798. [Google Scholar] [CrossRef]
- Chuang, Z.H.; Wu, L.C. Study of wave group velocity estimation from inhomogeneous sea-surface image sequences by spatiotemporal continuous wavelet transform. IEEE J. Ocean. Eng. 2014, 39, 444–457. [Google Scholar] [CrossRef]
- An, J.; Huang, W.; Gill, E.W. A self-adaptive wavelet-based algorithm for wave measurement using nautical radar. IEEE Trans. Geosci. Remote Sens. 2015, 53, 567–577. [Google Scholar]
- Zecchetto, S. Wind Direction Extraction from SAR in Coastal Areas. Remote Sens. 2008, 10, 261. [Google Scholar] [CrossRef] [Green Version]
- Hong, G.; Zhang, Y. Wavelet-based image registration technique for high-resolution remote sensing images. Comput. Geosci. 2008, 34, 1708–1720. [Google Scholar] [CrossRef]
- Prajapati, J.; Shukla, B.P.; Kumar, R. Orientation of marine atmospheric rolls in a SAR imagery using wavelet transform: A case study over Bay of Bengal. J. Earth Syst. Sci. 2021, 130, 2347–4327. [Google Scholar] [CrossRef]
- Mallat, S.G. Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 2091–2110. [Google Scholar] [CrossRef] [Green Version]
- Marrakchi, O.C.; Charfi, C.M.; Hamzaoui, M.; Habaieb, H. Improvement of Sentinel-1 Remote Sensing Data Classification by DWT and PCA. J. Sens. 2021, 2021, 8897303. [Google Scholar] [CrossRef]
- Chai, L.; Sun, J. Voltage Flicker Extraction Based on Wavelet Analysis. Appl. Mech. Mater. 2013, 385, 1389–1393. [Google Scholar] [CrossRef]
- Jin, H.; Xu, C.; Zhang, J.; Chen, J. The Improved Method of FGS and Simulation Based on DCT and Wavelet Transform. In Proceedings of the First International Workshop on Education Technology & Computer Science, Wuhan, China, 7–8 March 2009. [Google Scholar]
Measured Parameters | Measuring Range | Accuracy of Measurement | Resolution |
---|---|---|---|
Wind speed | 0~60 m/s | 0.3 m/s | 0.1 m/s |
Wind direction | 0~360° | 3° | 1° |
Algorithm | DWT Low-Frequency Component | Correlation Coefficient | RMS Error (°) |
---|---|---|---|
Single-curve fitting | 0.96 | 21.32 | |
Azimuth-scale extension only | 0.97 | 15.23 | |
2D-DWT and azimuth-scale extension | 1 | 0.97 | 14.12 |
2 | 0.95 | 15.43 | |
3 | 0.98 | 13.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Wang, H.; Lu, Z. Wind-Direction Estimation from Single X-Band Marine Radar Image Improvement by Utilizing the DWT and Azimuth-Scale Expansion Method. Entropy 2022, 24, 747. https://doi.org/10.3390/e24060747
Yu H, Wang H, Lu Z. Wind-Direction Estimation from Single X-Band Marine Radar Image Improvement by Utilizing the DWT and Azimuth-Scale Expansion Method. Entropy. 2022; 24(6):747. https://doi.org/10.3390/e24060747
Chicago/Turabian StyleYu, Huanyu, Hui Wang, and Zhizhong Lu. 2022. "Wind-Direction Estimation from Single X-Band Marine Radar Image Improvement by Utilizing the DWT and Azimuth-Scale Expansion Method" Entropy 24, no. 6: 747. https://doi.org/10.3390/e24060747
APA StyleYu, H., Wang, H., & Lu, Z. (2022). Wind-Direction Estimation from Single X-Band Marine Radar Image Improvement by Utilizing the DWT and Azimuth-Scale Expansion Method. Entropy, 24(6), 747. https://doi.org/10.3390/e24060747