Capturing Small-Scale Surface Temperature Variation across Diverse Urban Land Uses with a Small Unmanned Aerial Vehicle
<p>Study Area.</p> "> Figure 2
<p>Orthomosaiced image of PA, IA, RLC, and RHC captured using Zenmuse H20T wide-angle camera (24 September 2022).</p> "> Figure 3
<p>In-situ LST measurement points (yellow triangles) and cold roofs (blue polygons) in IA.</p> "> Figure 4
<p>Temporal variation of mean and range of LST for different land uses at different times of the day.</p> "> Figure 5
<p>Violin plot showing the distribution of LST for each LU from all eight flights.</p> "> Figure 6
<p>Temporal variation of MUHI.</p> "> Figure 7
<p>Temporal variation of mean LST for different land cover in each LU. (<b>a</b>) Residential High Cost (<b>b</b>) Residential Low Cost (<b>c</b>) Industrial Area (<b>d</b>) Park Area.</p> "> Figure 8
<p>Temporal variation of heat island in each LU.</p> "> Figure 9
<p>LST comparison between Zenmuse H20T and Landsat on 2/3 October and 19 October. (<b>a</b>) LST obtained from Zenmuse H20T on 2 October and Landsat on 3 October (<b>b</b>) LST obtained from Zenmuse H20T and Landsat 8-9 on 19 October.</p> "> Figure 10
<p>Spatial variation of LST from Zenmuse H20T and Landsat. (<b>a</b>) LST recorded by Zenmuse H20T on 19 October from 17:00–17:30 (<b>b</b>) LST obtained from Landsat 8-9 on 19 October at 17:05.</p> "> Figure 11
<p>Sectional variation of LST between the Zenmuse H20T and Landsat in IA on 19 October.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Thermal Sensor-Equipped UAV
2.2.2. Landsat 8-9
2.3. Image Classification
2.4. Thermal Image Processing
2.5. Micro-Urban Heat Islands
2.6. LST Comparison between Zenmuse H20T and Landsat 8-9
2.7. In Situ LST Measurement
3. Results
3.1. In-Situ Temperature Measurement
3.2. Image Classification
3.3. LST Variation among LUs and MUHI Estimation
3.4. LST Variation and Heat Island Estimation in Each LU
3.5. LST Comparison between Zenmuse H20T and Landsat 8-9
4. Discussion
5. Conclusions
6. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brenner, N.; Keil, R. From global cities to globalized urbanization. In The City Reader; Routledge: New York, NY, USA, 2011; pp. 667–684. [Google Scholar]
- Smart, A.; Smart, J. Urbanization and the global perspective. Annu. Rev. Anthropol. 2003, 32, 263–285. [Google Scholar] [CrossRef] [Green Version]
- Gerland, P.; Raftery, A.E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N.; et al. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 1–12. [Google Scholar] [CrossRef]
- Peng, J.; Ma, J.; Liu, Q.; Liu, Y.; Li, Y.; Yue, Y. Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective. Sci. Total Environ. 2018, 635, 487–497. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc. Ecol. 2016, 31, 745–760. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Pervaiz, F. Evaluation of Ice Loads on Beitstadsundet bridge by Deterministic and Probabilistic Approaches. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2019. [Google Scholar]
- Elachi, C.; Van Zyl, J.J. Introduction to the Physics and Techniques of Remote Sensing; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Chapman, S.; Watson, J.E.; Salazar, A.; Thatcher, M.; McAlpine, C.A. The impact of urbanization and climate change on urban temperatures: A systematic review. Landsc. Ecol. 2017, 32, 1921–1935. [Google Scholar] [CrossRef]
- Li, X.; Stringer, L.C.; Chapman, S.; Dallimer, M. How urbanisation alters the intensity of the urban heat island in a tropical African city. PLoS ONE 2021, 16, e0254371. [Google Scholar] [CrossRef]
- Lin, L.; Gao, T.; Luo, M.; Ge, E.; Yang, Y.; Liu, Z.; Zhao, Y.; Ning, G. Contribution of urbanization to the changes in extreme climate events in urban agglomerations across China. Sci. Total Environ. 2020, 744, 140264. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Giridharan, R. Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Sol. Energy 2008, 82, 986–998. [Google Scholar] [CrossRef] [Green Version]
- Wong, N.H.; Yu, C. Study of green areas and urban heat island in a tropical city. Habitat Int. 2005, 29, 547–558. [Google Scholar] [CrossRef]
- Chang, Y.; Xiao, J.; Li, X.; Frolking, S.; Zhou, D.; Schneider, A.; Weng, Q.; Yu, P.; Wang, X.; Li, X.; et al. Exploring diurnal cycles of surface urban heat island intensity in Boston with land surface temperature data derived from GOES-R geostationary satellites. Sci. Total Environ. 2021, 763, 144224. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Brunsell, N.A. The impact of temporal aggregation of land surface temperature data for surface urban heat island (SUHI) monitoring. Remote Sens. Environ. 2013, 134, 162–174. [Google Scholar] [CrossRef]
- Aniello, C.; Morgan, K.; Busbey, A.; Newland, L. Mapping micro-urban heat islands using Landsat TM and a GIS. Comput. Geosci. 1995, 21, 965–969. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C.; Keramitsoglou, I. Mapping micro-urban heat islands using NOAA/AVHRR images and CORINE Land Cover: An application to coastal cities of Greece. Int. J. Remote Sens. 2004, 25, 2301–2316. [Google Scholar] [CrossRef]
- Wong, M.S.; Nichol, J.; Ng, E. A study of the “wall effect” caused by proliferation of high-rise buildings using GIS techniques. Landsc. Urban Plan. 2011, 102, 245–253. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Xue, B.; Li, Y.; Xiao, X.; Xia, J.C.; He, B. Contribution of urban ventilation to the thermal environment and urban energy demand: Different climate background perspectives. Sci. Total Environ. 2021, 795, 148791. [Google Scholar] [CrossRef]
- Taha, H. Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy Build. 1997, 25, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Buyantuyev, A.; Wu, J. Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landsc. Ecol. 2010, 25, 17–33. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, Y.; Dou, Y.; Chi, W.; Chen, G.; Gao, C.; Yang, T.; Liu, J.; Zhang, R. What are hot and what are not in an urban landscape: Quantifying and explaining the land surface temperature pattern in Beijing, China. Landsc. Ecol. 2015, 30, 357–373. [Google Scholar] [CrossRef]
- Ahmari, H.; Hummel, M.; Chao, S.H.S.; Kabir, S.M.I.; Pervaiz, F.; Acharya, B.R.; Dean, M.; Mowla, Q.A. Identify and Analyze Inundated Bridge Superstructures in High Velocity Flood Events; Technical Report; University of Texas at Arlington: Arlington, TX, USA, 2021. [Google Scholar]
- Lim, S.; Popov, D.; Raza, N.; Pervaiz, F.; Al-Qadi, M. Feasibility Study of Submerged Floating Crossing; TU Delft Repository: Delft, The Netherlands, 2018; Available online: https://repository.tudelft.nl/islandora/search/?collection=education (accessed on 10 December 2022).
- Kappou, S.; Souliotis, M.; Papaefthimiou, S.; Panaras, G.; Paravantis, J.A.; Michalena, E.; Hills, J.M.; Vouros, A.P.; Ntymenou, A.; Mihalakakou, G. Cool pavements: State of the art and new technologies. Sustainability 2022, 14, 5159. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, F.; Jiang, H.; Hu, H.; Zhong, K.; Jing, W.; Yang, J.; Jia, B. Downscaling ASTER land surface temperature over urban areas with machine learning-based area-to-point regression Kriging. Remote Sens. 2020, 12, 1082. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Pervaiz, F.; Hummel, M. Evaluation of Climate Change and Urbanization Impacts on Bridges in Harris County, Texas. In Proceedings of the World Environmental and Water Resources Congress 2022, Atlanta, GA, USA, 5–8 June 2022; pp. 499–507. [Google Scholar]
- Ahmad, J.; Eisma, J. Exploring the Role of Urbanization and Wind on the Distribution of Extreme Rainfall by Utilizing High Spatiotemporal Radar Rainfall Product: A Dallas Fort-Worth Case Study. In Proceedings of the AGU Fall Meeting 2022, Chicago, IL, USA, 12–16 December 2022; Available online: https://www.authorea.com/doi/full/10.22541/essoar.167276444.45670980 (accessed on 16 February 2023).
- Ezimand, K.; Azadbakht, M.; Aghighi, H. Analyzing the effects of 2D and 3D urban structures on LST changes using remotely sensed data. Sustain. Cities Soc. 2021, 74, 103216. [Google Scholar] [CrossRef]
- Mushore, T.D.; Mutanga, O.; Odindi, J. Estimating urban LST using multiple remotely sensed spectral indices and elevation retrievals. Sustain. Cities Soc. 2022, 78, 103623. [Google Scholar] [CrossRef]
- Trigo, I.F.; Monteiro, I.T.; Olesen, F.; Kabsch, E. An assessment of remotely sensed land surface temperature. J. Geophys. Res. Atmos. 2008, 2, 113. [Google Scholar] [CrossRef]
- Yu, P.; Zhao, T.; Shi, J.; Ran, Y.; Jia, L.; Ji, D.; Xue, H. Global spatiotemporally continuous MODIS land surface temperature dataset. Sci. Data 2022, 9, 143. [Google Scholar] [CrossRef]
- Hulley, G.; Shivers, S.; Wetherley, E.; Cudd, R. New ECOSTRESS and MODIS land surface temperature data reveal fine-scale heat vulnerability in cities: A case study for Los Angeles County, California. Remote Sens. 2019, 11, 2136. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.C.; Park, K.A. High-resolution sea surface temperature retrieval from Landsat 8 OLI/TIRS data at coastal regions. Remote Sens. 2019, 11, 2687. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, J. Merging Satellite Rainfall Estimates in Scarcely Gauged Basin: A Case Study of Indus Basin. Master’s Thesis, UNESCO-IHE Institute for Water Education, Delft, The Netherlands, 2018. [Google Scholar]
- Jiménez-Muñoz, J.; Sobrino, J. Error sources on the land surface temperature retrieved from thermal infrared single channel remote sensing data. Int. J. Remote Sens. 2006, 27, 999–1014. [Google Scholar] [CrossRef]
- Wang, X.; Prigent, C. Comparisons of diurnal variations of land surface temperatures from numerical weather prediction analyses, infrared satellite estimates and in situ measurements. Remote Sens. 2020, 12, 583. [Google Scholar] [CrossRef] [Green Version]
- Maymandi, N.; Hummel, M.A.; Zhang, Y. Compound coastal, fluvial, and pluvial flooding during historical hurricane events in the Sabine-Neches Estuary, Texas. Water Resour. Res. 2022, 58, e2022WR033144. [Google Scholar] [CrossRef]
- Bai, L.; Shi, C.; Li, L.; Yang, Y.; Wu, J. Accuracy of CHIRPS satellite-rainfall products over mainland China. Remote Sens. 2018, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Song, P.; Mu, B.; Tian, G.; Chen, Q.; He, R.; Kim, G. Assessing city-scale green roof development potential using Unmanned Aerial Vehicle (UAV) imagery. Urban For. Urban Green. 2021, 57, 126954. [Google Scholar] [CrossRef]
- Yao, H.; Qin, R.; Chen, X. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Shan, Y.; Lai, Y.; Zhou, S. Method of calculating land surface temperatures based on the low-altitude UAV thermal infrared remote sensing data and the near-ground meteorological data. Sustain. Cities Soc. 2022, 78, 103615. [Google Scholar] [CrossRef]
- Sachindra, D.; Ullah, S.; Zaborski, P.; Nowosad, M.; Dobek, M. Temperature and urban heat island effect in Lublin city in Poland under changing climate. Theor. Appl. Climatol. 2023, 151, 667–690. [Google Scholar] [CrossRef]
- May, D.; Petrov, O.; Saczuk, E. The Urban Heat Island Effect in Densely Populated Urban Areas and Its Implications on Eco-City Planning: Investigation of Vertical Temperature Profiles in Downtown Vancouver. Ph.D. Thesis, British Columbia Institute of Technology, Burnaby, BC, USA, 2021. [Google Scholar]
- Lee, K.; Lee, W.H. Temperature Accuracy Analysis by Land Cover According to the Angle of the Thermal Infrared Imaging Camera for Unmanned Aerial Vehicles. ISPRS Int. J.-Geo-Inf. 2022, 11, 204. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Muradyan, V.; Hovsepyan, A.; Pinigin, G.; Medvedev, A.; Asmaryan, S. Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan, Armenia. Build. Environ. 2021, 187, 107390. [Google Scholar] [CrossRef]
- Song, B.; Park, K. Verification of accuracy of unmanned aerial vehicle (UAV) land surface temperature images using in-situ data. Remote Sens. 2020, 12, 288. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Yu, J.; Yoon, J.; Jeon, S.; Son, S. Comparison of accuracy of surface temperature images from unmanned aerial vehicle and satellite for precise thermal environment monitoring of urban parks using in situ data. Remote Sens. 2021, 13, 1977. [Google Scholar] [CrossRef]
- Desai, A.R.; Khan, A.M.; Zheng, T.; Paleri, S.; Butterworth, B.; Lee, T.R.; Fisher, J.B.; Hulley, G.; Kleynhans, T.; Gerace, A.; et al. Multi-sensor approach for high space and time resolution land surface temperature. Earth Space Sci. 2021, 8, e2021EA001842. [Google Scholar] [CrossRef]
- Yi, K.; Smith, J.W.; Jablonski, A.D.; Tatham, E.A.; Scanlon, T.M.; Lerdau, M.T.; Novick, K.A.; Yang, X. High heterogeneity in canopy temperature among co-occurring tree species in a temperate forest. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005892. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Cash, B.A.; Kinter III, J.L.; Stan, C.; Jung, T.; Marx, L.; Towers, P.; Wedi, N.; Adams, J.M.; Altshuler, E.L.; et al. Evidence for enhanced land–atmosphere feedback in a warming climate. J. Hydrometeorol. 2012, 13, 981–995. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.M.; de Jeu, R.A.; Guichard, F.; Harris, P.P.; Dorigo, W.A. Afternoon rain more likely over drier soils. Nature 2012, 489, 423–426. [Google Scholar] [CrossRef] [Green Version]
- Guillevic, P.C.; Bork-Unkelbach, A.; Göttsche, F.M.; Hulley, G.; Gastellu-Etchegorry, J.P.; Olesen, F.S.; Privette, J.L. Directional viewing effects on satellite land surface temperature products over sparse vegetation canopies—A multisensor analysis. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1464–1468. [Google Scholar] [CrossRef]
- Metzger, S. Surface-atmosphere exchange in a box: Making the control volume a suitable representation for in-situ observations. Agric. For. Meteorol. 2018, 255, 68–80. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, T.H.; Begley, C.E. Impact of the 2011 heat wave on mortality and emergency department visits in Houston, Texas. Environ. Health 2015, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Foss, A.W.; Ko, Y. Barriers and opportunities for climate change education: The case of Dallas-Fort Worth in Texas. J. Environ. Educ. 2019, 50, 145–159. [Google Scholar] [CrossRef]
- Roth, M.; Oke, T.R.; Emery, W.J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Avdan, U.; Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J. Sensors 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, F.; Singh, D. Assessing land use–land cover change and its impact on land surface temperature using LANDSAT data: A comparison of two urban areas in India. Earth Syst. Environ. 2020, 4, 385–407. [Google Scholar] [CrossRef]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J. Introduction to Remote Sensing, CORINE Land Cover Technical Guide; European Environment Agency: Copenhagen, Denmark, 2002; Available online: https://www.eea.europa.eu/publications/tech40add/download (accessed on 12 December 2022).
- Adhikary, P.P.; Barman, D.; Madhu, M.; Dash, C.J.; Jakhar, P.; Hombegowda, H.; Naik, B.; Sahoo, D.; Beer, K. Land use and land cover dynamics with special emphasis on shifting cultivation in Eastern Ghats Highlands of India using remote sensing data and GIS. Environ. Monit. Assess. 2019, 191, 1–15. [Google Scholar] [CrossRef]
- Ramachandran, V.S.; Paroli, R.M.; Beaudoin, J.J.; Delgado, A.H. Handbook of Thermal Analysis of Construction Materials; William Andrew: Norwich, NY, USA, 2002. [Google Scholar]
- Deshmukh, G.; Birwal, P.; Datir, R.; Patel, S. Thermal insulation materials: A tool for energy conservation. J. Food Process. Technol 2017, 8, 8–11. [Google Scholar] [CrossRef]
- Bernard, V.; Staffa, E.; Mornstein, V.; Bourek, A. Infrared camera assessment of skin surface temperature–effect of emissivity. Phys. Medica 2013, 29, 583–591. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, E.S.; Raven, P.N. Infrared and visible cooperative vehicle identification markings. In Proceedings of the Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense V; SPIE: Orlando, FL, USA, 2006; Volume 6201, pp. 633–643. [Google Scholar]
- Li, S.; Qiao, L.; Zhang, Y.; Yan, J. An Early Forest Fire Detection System Based on DJI M300 Drone and H20T Camera. In Proceedings of the 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 21–24 June 2022; pp. 932–937. [Google Scholar]
- Chudnovsky, A.; Ben-Dor, E.; Saaroni, H. Diurnal thermal behavior of selected urban objects using remote sensing measurements. Energy Build. 2004, 36, 1063–1074. [Google Scholar] [CrossRef]
- Naughton, J.; McDonald, W. Evaluating the variability of urban land surface temperatures using drone observations. Remote Sens. 2019, 11, 1722. [Google Scholar] [CrossRef] [Green Version]
- Mathew, A.; Khandelwal, S.; Kaul, N.; Chauhan, S. Analyzing the diurnal variations of land surface temperatures for surface urban heat island studies: Is time of observation of remote sensing data important? Sustain. Cities Soc. 2018, 40, 194–213. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [Google Scholar] [CrossRef]
- Wong, K.V.; Chaudhry, S. Use of satellite images for observational and quantitative analysis of urban heat islands around the world. J. Energy Resour. Technol. 2012, 134, 042101. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Sci. Total Environ. 2021, 751, 142334. [Google Scholar] [CrossRef]
- Bahi, H.; Mastouri, H.; Radoine, H. Review of methods for retrieving urban heat islands. Mater. Today Proc. 2020, 27, 3004–3009. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Schneider, A. The footprint of urban climates on vegetation phenology. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2018, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Shishegar, N. Street design and urban microclimate: Analyzing the effects of street geometryand orientation on airflow and solar access in urban canyons. J. Clean Energy Technol. 2013, 1, 52. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Kaloush, K.E.; Carlson, J.D.; Golden, J.S.; Phelan, P.E. The Thermal and Radiative Characteristics of Concrete Pavements in Mitigating Urban Heat Island Effects; Technical Report; Portland Cement Association: Skokie, IL, USA, 2008. [Google Scholar]
- Prado, R.T.A.; Ferreira, F.L. Measurement of albedo and analysis of its influence the surface temperature of building roof materials. Energy Build. 2005, 37, 295–300. [Google Scholar] [CrossRef]
- Zhao, Q.; Myint, S.W.; Wentz, E.A.; Fan, C. Rooftop surface temperature analysis in an urban residential environment. Remote Sens. 2015, 7, 12135–12159. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy 2019, 174, 407–419. [Google Scholar] [CrossRef]
- Elgendawy, A.; Davies, P. The urban heat island in Australian city planning. In Proceedings of the 9th State of Australian Cities National Conference, Perth, Australia, 30 November–5 December 2019. [Google Scholar]
- Kang, D.I.; Moon, H.G.; Sung, S.Y.; Cha, J.G. Applicability of UAV in urban thermal environment analysis. J. Korean Inst. Landsc. Archit. 2018, 46, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Callahan, P.S. Intermediate and far infrared sensing of nocturnal insects. Part I. Evidences for a far infrared (FIR) electromagnetic theory of cummunication and sensing in moths and its relationship to the limiting biosphere of the corn earworm. Ann. Entomol. Soc. Am. 1965, 58, 727–745. [Google Scholar] [CrossRef]
Item | Description |
---|---|
DJI Matrice 300 RTK | |
Transmission Range | 15 Km |
Maximum Flight Time | 55 min |
Temperature Operating Range | −20 °C to 55 °C |
Wind resistance | 15 m/s |
Maximum Speed | 23 m/s |
No of payloads | 3 |
Night flight capability | Yes |
Zenmuse H20T camera | |
Wide camera resolution | 12 Mega Pixel (MP) |
Zoom camera resolution | 20 Mega Pixel (MP) |
Radiometric thermal camera resolution | 640 × 512 pixels |
Night scene mode | Yes |
Temperature operating range | −20 °C to 55 °C |
Lens | DFOV: 40.6° |
Spectral band | 8–14 m |
Hygrometer | |
Relative Humidity Range | 0.0–100.0 |
Relative Humidity accuracy | ±3 |
Temperature range | 0 °C to 50 °C |
Temperature accuracy | ±1 °C |
Infrared thermometer | |
Emissivity | 0.1 to 1 in 0.01 step |
Maximum Temperature | 500 °C |
Minimum Temperature | −60 °C |
Temperature accuracy | ±1 °C |
Resolution | 0.1 °C |
Date | Start Time | Wind Speed (m/s) | Air Temp (°C) | Purpose |
---|---|---|---|---|
9/24/2022 | 18:00 | 4.0 | 34.4 | LST Analysis |
10/1/2022 | 12:00 | 2.7 | 22.8 | LST Analysis |
10/2/2022 | 15:30 | 3.2 | 28.3 | LST Analysis |
10/5/2022 | 09:30 | 1.1 | 17.8 | LST Analysis |
10/6/2022 | 10:00 | 2.7 | 20.0 | LST Analysis |
10/15/2022 | 17:00 | 7.4 | 33.4 | LST Analysis |
10/17/2022 | 17:30 | 7.8 | 22.2 | LST Analysis |
10/19/2022 | 16:20 | 3.8 | 27.1 | LST Analysis |
2/19/2023 | 15:30 | 3.6 | 26.0 | Ground validation |
2/19/2023 | 16:45 | 4.0 | 25.1 | Ground validation |
2/21/2023 | 09:30 | 3.7 | 25.5 | Ground validation |
2/21/2023 | 11:45 | 4.5 | 32.9 | Ground validation |
LU | Area | Emissivity | Albedo | |||
---|---|---|---|---|---|---|
Green | Roof | Pavement | Water | |||
IA | 14.60 | 41.60 | 43.80 | 0.00 | 0.93 | 0.46 |
RHC | 45.20 | 34.70 | 20.10 | 0.00 | 0.94 | 0.34 |
RLC | 44.40 | 34.10 | 21.50 | 0.00 | 0.94 | 0.38 |
PA | 77.60 | 0.00 | 0.00 | 22.40 | 0.96 | 0.36 |
Time | Mean | Standard Deviation | RMSE | PBIAS | ||
---|---|---|---|---|---|---|
H20T | In-Situ | H20T | In-Situ | |||
09:30 | 20.0 | 18.7 | 3.4 | 3.1 | 1.7 | 6.7 |
11:45 | 31.1 | 29.4 | 4.1 | 3.6 | 3.2 | 5.5 |
15:30 | 22.1 | 21.9 | 2.3 | 1.6 | 1.5 | 0.9 |
16:45 | 23.5 | 22.0 | 1.7 | 1.3 | 1.9 | 7.2 |
Residential High Cost | ||||||
---|---|---|---|---|---|---|
Class | Roof | Green | Pavement | Total | U-A | |
Roof | 30 | 1 | 1 | 32 | 0.94 | |
Green | 4 | 46 | 1 | 51 | 0.90 | |
Pavement | 1 | 0 | 16 | 17 | 0.94 | |
Total | 35 | 47 | 18 | 100 | 0 | |
P-A | 0.86 | 0.98 | 0.89 | 0 | 0.92 | |
Residential Low Cost | ||||||
Class | Green | Pavement | Roof | Total | U-A | |
Green | 46 | 0 | 1 | 47 | 0.98 | |
Pavement | 0 | 17 | 2 | 19 | 0.89 | |
Roof | 2 | 2 | 30 | 34 | 0.88 | |
Total | 48 | 19 | 33 | 100 | 0 | |
P-A | 0.96 | 0.89 | 0.91 | 0 | 0.93 | |
Industrial Area | ||||||
Class | Roof (Cold) | Roof | Green | Pavement | Total | U-A |
Roof (Cold) | 26 | 1 | 0 | 2 | 29 | 0.90 |
Roof | 2 | 9 | 0 | 1 | 12 | 0.75 |
Green | 0 | 0 | 10 | 0 | 10 | 1.00 |
Pavement | 1 | 0 | 1 | 47 | 49 | 0.96 |
Total | 29 | 10 | 11 | 50 | 100 | 0.00 |
P-A | 0.90 | 0.9 | 0.91 | 0.94 | 0 | 0.92 |
Park Area | ||||||
Class | Green | Water | Total | U-A | ||
Green | 73 | 1 | 74 | 0.99 | ||
Water | 4 | 22 | 26 | 0.85 | ||
Total | 77 | 23 | 100 | 0.00 | ||
P-A | 0.95 | 0.96 | 0 | 0.95 |
Time | IA | PA | RLC | RHC | IA without Cold Roof |
---|---|---|---|---|---|
09:30 | 23.8 | 19.2 | 22.3 | 18.9 | 25.4 |
10:00 | 27.3 | 22.9 | 26.2 | 23.9 | 28.1 |
12:00 | 32.5 | 24.9 | 39.3 | 40.6 | 36.3 |
15:30 | 35.1 | 30.3 | 44.0 | 45.3 | 39.4 |
16:20 | 15.3 | 20.5 | 30.0 | 31.2 | 25.0 |
17:00 | 34.9 | 37.6 | 45.6 | 49.1 | 35.1 |
17:30 | 8.0 | 16.9 | 23.4 | 22.2 | 18.5 |
18:00 | 35.4 | 33.4 | 43.5 | 48.1 | 36.1 |
Land Use | Mean | Min | Max | Std | Range |
---|---|---|---|---|---|
Industrial Area | 31.4 | −12.3 | 58.8 | 13.7 | 71.1 |
Park Area | 25.4 | 12.1 | 43.0 | 7.2 | 30.9 |
Residential (High-Cost) | 34.7 | 2.4 | 64.5 | 15.4 | 62.1 |
Residential (Low-Cost) | 34.1 | 4.3 | 61.1 | 13.2 | 60.8 |
Type | Industrial Area | Residential (Low-Cost) | ||
---|---|---|---|---|
Landsat | Zenmuse H20T | Landsat | Zenmuse H20T | |
Cold roof | 17.3 | 0.6 | ||
Roof | 18.5 | 12.2 | 20.7 | 30.7 |
Pavement | 17.9 | 21.7 | 20.2 | 34.5 |
Green | 19.3 | 23.1 | 20.6 | 27.3 |
Type | Residential (High-Cost) | Park Area | ||
Landsat | Zenmuse H20T | Landsat | Zenmuse H20T | |
Roof | 21.0 | 38.0 | ||
Pavement | 20.4 | 32.2 | ||
Green | 20.5 | 25.5 | 14.0 | 20.6 |
Water | 14.2 | 20.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, J.; Eisma, J.A. Capturing Small-Scale Surface Temperature Variation across Diverse Urban Land Uses with a Small Unmanned Aerial Vehicle. Remote Sens. 2023, 15, 2042. https://doi.org/10.3390/rs15082042
Ahmad J, Eisma JA. Capturing Small-Scale Surface Temperature Variation across Diverse Urban Land Uses with a Small Unmanned Aerial Vehicle. Remote Sensing. 2023; 15(8):2042. https://doi.org/10.3390/rs15082042
Chicago/Turabian StyleAhmad, Junaid, and Jessica A. Eisma. 2023. "Capturing Small-Scale Surface Temperature Variation across Diverse Urban Land Uses with a Small Unmanned Aerial Vehicle" Remote Sensing 15, no. 8: 2042. https://doi.org/10.3390/rs15082042
APA StyleAhmad, J., & Eisma, J. A. (2023). Capturing Small-Scale Surface Temperature Variation across Diverse Urban Land Uses with a Small Unmanned Aerial Vehicle. Remote Sensing, 15(8), 2042. https://doi.org/10.3390/rs15082042