High-Resolution Sea Surface Temperature Retrieval from Landsat 8 OLI/TIRS Data at Coastal Regions
"> Figure 1
<p>(<b>a</b>) Location of the study area with contours of the water depth (m) in the seas around the Northeast Asia including China, Japan, Korea, and Russia, which red box indicates the study area, (<b>b</b>) a schematic current map with cold (blue) and warm (red) currents [<a href="#B58-remotesensing-11-02687" class="html-bibr">58</a>], and monthly mean of sea surface temperature (SST) climatology (°C) estimated from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) SST database in the study area from 2002 to 2015 in (<b>c</b>) winter (January) and (<b>d</b>) summer (July).</p> "> Figure 2
<p>Distribution (black boxes) of the Landsat 8 OLI/TIRS images including the Korea Meteorological Administration (KMA) marine meteorological buoys from 1 April 2013 to 31 August 2017, where the blue circles and the red text around the circles indicate the location and symbol of the KMA marine meteorological buoys, respectively.</p> "> Figure 3
<p>Flow chart of the pixel classification algorithm into the cloud-free pixels, including snow, ice, and water bodies, and cloud pixels, including cloudy and cloud-contaminated (max(<span class="html-italic">a</span>, <span class="html-italic">b</span>): the maximum value of <span class="html-italic">a</span> and <span class="html-italic">b</span>).</p> "> Figure 4
<p>Schematic diagram for geographic definition relating the along-scan distance d to the viewing angle <span class="html-italic">α</span>, where C is the center of the Earth, S is the sub-satellite point, T is the location of target pixel, <span class="html-italic">R</span> is the radius of the Earth, and <span class="html-italic">h</span> is the satellite altitude by following [<a href="#B81-remotesensing-11-02687" class="html-bibr">81</a>].</p> "> Figure 5
<p>Examples of time series of in-situ sea temperature (°C) observed by KMA buoys (<b>a</b>,<b>b</b>) before and (<b>c</b>,<b>d</b>) after QC procedure to remove abnormal temperatures and (<b>e</b>,<b>f</b>) the comparison of residual (before QC procedure and after QC procedure).</p> "> Figure 6
<p>(<b>a</b>) The number of matchup data for each KMA marine meteorological buoy in the seas around the Korean Peninsula, (<b>b</b>) the number of Landsat 8 OLI/TIRS image acquisition from 1 April 2013 to 31 August 2017, and the histograms of the matchup data with respect to (<b>c</b>) sea temperature and (<b>d</b>) wind speed.</p> "> Figure 7
<p>Comparison between satellite derived SST and in-situ temperature using (<b>a</b>,<b>e</b>) MCSST and (<b>b</b>,<b>c</b>,<b>d</b>,<b>f</b>,<b>g</b>,<b>h</b>) NLSST algorithms, where the color represents the percentage of the data to the total number of matchup points in a bin of 0.5 °C × 0.5 °C. Bias, root-mean-square error (RMSE), scatter index (SI), and correlation coefficient (R) are given in each plot.</p> "> Figure 8
<p>Distributions of SST derived from (<b>a</b>) OSTIA SST daily composite on 19 April 2016, (<b>b</b>) MURSST daily composite on 19 April 2016, (<b>c</b>) GCOM-W1/AMSR-2 observed at 05 UTC on 19 April 2016, (<b>d</b>) Himawari-8 AHI observed at 02 UTC on 19 April 2016, (<b>e</b>) NOAA-19 AVHRR observed at 05 UTC on 19 April 2016, and (<b>f</b>) Landsat 8 OLI/TIRS observed at 02 UTC on 19 April 2016 using the NLSST5 algorithm, where the black triangles indicate the KMA buoys.</p> "> Figure 9
<p>Comparison of residuals (Landsat 8 OLI/TIRS SST – buoy SST) using (<b>a</b>) MCSST1, (<b>b</b>) NLSST1, (<b>c</b>) NLSST2, (<b>d</b>) NLSST3, (<b>e</b>) MCSST2, (<b>f</b>) NLSST4, (<b>g</b>) NLSST5, and (<b>h</b>) NLSST6 with brightness temperature difference between 11 μm and 12 μm, where the red points and bars represent the mean value and standard deviation of SST errors for each interval, respectively.</p> "> Figure 10
<p>Comparison of enhanced percentage with satellite zenith angle (SZA) (enhanced percentage: (SST with SZA term – SST without SZA term) / SST with SZA term) using (<b>a</b>) MCSST2 and MCSST1, (<b>b</b>) NLSST4 and NLSST1, (<b>c</b>) NLSST5 and NLSST2, and (<b>d</b>) NLSST6 and NLSST3, where the red dashed lines represent the 2nd order polynomial fitted lines.</p> "> Figure 11
<p>Comparison of residuals (Landsat 8 OLI/TIRS SST – buoy SST) using (<b>a</b>) MCSST1, (<b>b</b>) NLSST1, (<b>c</b>) NLSST2, (<b>d</b>) NLSST3, (<b>e</b>) MCSST2, (<b>f</b>) NLSST4, (<b>g</b>) NLSST5, and (<b>h</b>) NLSST6 with wind speed, where the red points and bars represent the mean value and standard deviation of SST errors for each interval, respectively.</p> ">
Abstract
:1. Introduction
2. Data
2.1. Study Area
2.2. Satellite Data
2.3. In-Situ Measurements
2.4. Daily SST Data
3. Methods
3.1. Removal of Cloud-Contaminated Pixels
3.2. SST Retrieval Algorithms
3.3. Calculation of Satellite Zenith Angle
3.4. Quality Control of In-Situ Measurements
4. Results
4.1. Matchup Data
4.2. Derivation of SST Coefficients
4.3. High-Resolution SST
5. Discussion
5.1. Effect of Atmospheric Moisture
5.2. Effect of SZA
5.3. Effect of Wind Speed
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corlett, G.K.; Barton, I.J.; Donlon, C.J.; Edwards, M.C.; Good, S.A.; Horrocks, L.A.; Llewellyn-Jones, D.T.; Merchant, C.J.; Minnett, P.J.; Nightingale, T.J.; et al. The accuracy of SST retrievals from AATSR: An initial assessment through geophysical validation against in situ radiometers, buoys and other SST data sets. Adv. Space Res. 2006, 37, 764–769. [Google Scholar] [CrossRef]
- Dash, P.; Ignatov, A.; Kihai, Y.; Sapper, J. The SST quality monitor (SQUAM). J. Atmos. Ocean. Technol. 2010, 27, 1899–1917. [Google Scholar] [CrossRef]
- Ullman, D.S.; Cornillon, P.C. Evaluation of front detection methods for satellite-derived SST data using in situ observations. J. Atmos. Ocean. Technol. 2000, 17, 1667–1675. [Google Scholar] [CrossRef]
- Park, K.A.; Chung, J.Y.; Kim, K. Sea surface temperature fronts in the East (Japan) Sea and temporal variations. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Park, K.A.; Cornillon, P.; Codiga, D.L. Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- O’Neill, L.W.; Chelton, D.B.; Esbensen, S.K.; Wentz, F.J. High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Clim. 2005, 18, 2706–2723. [Google Scholar] [CrossRef]
- Park, K.-A.; Cornilon, P.C. Stability-induced modification of sea surface winds over Gulf Stream rings. Geophys. Res. Lett. 2002, 29. [Google Scholar] [CrossRef]
- Casey, K.S.; Cornillon, P. Global and regional sea surface temperature trends. J. Clim. 2001, 14, 3801–3818. [Google Scholar] [CrossRef]
- Minnett, P.J.; Corlett, G.K. A pathway to generating Climate Data Records of sea-surface temperature from satellite measurements. Deep Sea Res. II 2012, 77, 44–51. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Rayner, N.A.; Berry, D.I.; Corlett, G.K.; Lean, K.; Veal, K.L.; Kent, E.C.; Llewellyn-Jones, D.T.; Remedios, J.J.; et al. A 20 year independent record of sea surface temperature for climate from Along-Track Scanning Radiometers. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Anding, D.; Kauth, R. Estimation of sea surface temperature from space. Remote Sens. Environ. 1970, 1, 217–220. [Google Scholar] [CrossRef]
- Prabhakara, C.; Dalu, G.; Kunde, V.G. Estimation of sea surface temperature from remote sensing in the 11-to 13-μm window region. J. Geophys. Res. 1974, 79, 5039–5044. [Google Scholar] [CrossRef]
- McMillin, L.M. Estimation of sea surface temperature from two infrared window measurements with different absorptions. J. Geophys. Res. 1975, 80, 5113–5117. [Google Scholar] [CrossRef]
- Bernstein, R.L. Sea surface temperature estimation using the NOAA 6 satellite advanced very high resolution radiometer. J. Geophys. Res. 1982, 87, 9455–9465. [Google Scholar] [CrossRef]
- McMillin, L.M.; Crosby, D.S. Theory and validation of the multiple window sea surface temperature technique. J. Geophys. Res. 1984, 89, 3655–3661. [Google Scholar] [CrossRef]
- McClain, E.P.; Pichel, W.G.; Walton, C.C. Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res. 1985, 90, 11587–11601. [Google Scholar] [CrossRef]
- Walton, C.C. Nonlinear multichannel algorithms for estimating sea surface temperature with AVHRR satellite data. J. Appl. Meteorol. 1988, 27, 115–124. [Google Scholar] [CrossRef]
- Walton, C.C.; Pichel, W.G.; Sapper, J.F.; May, D.A. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. 1998, 103, 27999–28012. [Google Scholar] [CrossRef]
- Kilpatrick, K.A.; Podesta, G.P.; Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. 2001, 106, 9179–9197. [Google Scholar] [CrossRef]
- Li, X.; Pichel, W.; Maturi, E.; Clemente-Colon, P.; Sapper, J. Deriving the operational nonlinear multichannel sea surface temperature algorithm coefficients for NOAA-15 AVHRR/3. Int. J. Remote Sens. 2001, 22, 699–704. [Google Scholar] [CrossRef]
- May, D.A.; Osterman, W.O. Satellite-derived sea surface temperatures: Evaluation of GOES-8 and GOES-9 multispectral imager retrieval accuracy. J. Atmos. Ocean. Technol. 1998, 15, 788–797. [Google Scholar] [CrossRef]
- Donlon, C.J.; Castro, S.L.; Kaye, A. Aircraft validation of ERS-1 ATSR and NOAA-14 AVHRR sea surface temperature measurements. Int. J. Remote Sens. 1999, 20, 3503–3513. [Google Scholar] [CrossRef]
- Kumar, A.; Minnett, P.; Podestá, G.; Evans, R.; Kilpatrick, K. Analysis of Pathfinder SST algorithm for global and regional conditions. J. Earth Syst. Sci. 2000, 109, 395–405. [Google Scholar] [CrossRef]
- Minnett, P.J.; Evans, R.H.; Kearns, E.J.; Brown, O.B. Sea-surface temperature measured by the Moderate Resolution Imaging Spectroradiometer (MODIS). In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Park, K.A.; Lee, E.Y.; Li, X.; Chung, S.R.; Sohn, E.H.; Hong, S. NOAA/AVHRR sea surface temperature accuracy in the East/Japan Sea. Int. J. Digit. Earth 2015, 8, 784–804. [Google Scholar] [CrossRef]
- Hao, Y.; Cui, T.; Singh, V.P.; Zhang, J.; Yu, R.; Zhang, Z. Validation of MODIS Sea Surface Temperature Product in the Coastal Waters of the Yellow Sea. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1667–1680. [Google Scholar] [CrossRef]
- Merchant, C.J.; Le Borgne, P.; Marsouin, A.; Roquet, H. Optimal estimation of sea surface temperature from split-window observations. Remote Sens. Environ. 2008, 112, 2469–2484. [Google Scholar] [CrossRef]
- Merchant, C.J.; Harris, A.R.; Roquet, H.; Le Borgne, P. Retrieval characteristics of non-linear sea surface temperature from the Advanced Very High Resolution Radiometer. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Petrenko, B.; Ignatov, A.; Kihai, Y.; Stroup, J.; Dash, P. Evaluation and selection of SST regression algorithms for JPSS VIIRS. J. Geophys. Res. 2014, 119, 4580–4599. [Google Scholar] [CrossRef]
- Cracknell, A.P. Remote sensing techniques in estuaries and coastal zones an update. Int. J. Remote Sens. 1999, 20, 485–496. [Google Scholar] [CrossRef]
- Thomas, A.; Byrne, D.; Weatherbee, R. Coastal sea surface temperature variability from Landsat infrared data. Remote Sens. Environ. 2002, 81, 262–272. [Google Scholar] [CrossRef]
- Lira, C.; Taborda, R. Advances in applied remote sensing to coastal environments using free satellite imagery. In Remote Sensing and Modeling; Springer: Berlin/Heidelberg, Germany, 2014; pp. 77–102. [Google Scholar]
- Thomas, L.N.; Tandon, A.; Mahadevan, A. Submesoscale Processes and Dynamics. In Ocean Modeling in an Eddying Regime; American Geophysical Union: Washington, DC, USA, 2008; pp. 17–23. [Google Scholar]
- Castro, S.; Emery, W.; Wick, G.; Tandy, W. Submesoscale sea surface temperature variability from UAV and satellite measurements. Remote Sens. 2017, 9, 1089. [Google Scholar] [CrossRef] [Green Version]
- Gohin, F.; Langlois, G. Using geostatistics to merge in situ measurements and remotely-sensed observations of sea surface temperature. Int. J. Remote Sens. 1993, 14, 9–19. [Google Scholar] [CrossRef]
- Emery, W.J.; Castro, S.; Wick, G.A.; Schluessel, P.; Donlon, C. Estimating sea surface temperature from infrared satellite and in situ temperature data. Bull. Am. Meteorol. Soc. 2001, 82, 2773–2786. [Google Scholar] [CrossRef] [Green Version]
- Guinehut, S.; Le Traon, P.Y.; Larnicol, G.; Philipps, S. Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields A first approach based on simulated observations. J. Mar. Syst. 2004, 46, 85–98. [Google Scholar] [CrossRef]
- Chao, Y.; Li, Z.; Farrara, J.D.; Hung, P. Blending sea surface temperatures from multiple satellites and in situ observations for coastal oceans. J. Atmos. Ocean. Technol. 2009, 26, 1415–1426. [Google Scholar] [CrossRef]
- Banzon, V.; Smith, T.M.; Chin, T.M.; Liu, C.Y.; Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 2016, 8, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Barron, C.N.; Kara, A.B. Satellite-based daily SSTs over the global ocean. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Smit, A.J.; Roberts, M.; Anderson, R.J.; Dufois, F.; Dudley, S.F.; Bornman, T.G.; Olbers, J.; Bolton, J.J. A coastal seawater temperature dataset for biogeographical studies: Large biases between in situ and remotely-sensed data sets around the coast of South Africa. PLoS ONE 2013, 8, e81944. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Cuervo, J.; Torres, H.S.; Menemenlis, D.; Chin, T.; Armstrong, E.M. Relationship between SST gradients and upwelling off Peru and Chile: Model/satellite data analysis. Int. J. Remote Sens. 2017, 38, 6599–6622. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Murayama, Y. An urban heat island study of the Colombo metropolitan area, Sri Lanka, based on Landsat data (1997–2017). ISPRS Int. J. Geo-Inf. 2017, 6, 189. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.M.; Kim, S.H.; Kim, D.J.; Cho, Y.K.; Lee, S.H. Comparison of coastal sea surface temperature derived from ship-, air-, and space-borne thermal infrared systems. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec, QC, Canada, 13–18 July 2014. [Google Scholar]
- Syariz, M.A.; Jaelani, L.M.; Subehi, L.; Pamungkas, A.; Koenhardono, E.S.; Sulisetyono, A. Retrieval of sea surface temperature over poteran island water of indonesia with Landsat 8 tirs image: A preliminary algorithm. Remote Sens. Spat. Inf. Sci. 2015, 40, 87. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J.; Boss, E.; Weatherbee, R.; Thomas, A.C.; Brady, D.; Newell, C. Oyster aquaculture site selection using Landsat 8-Derived Sea surface temperature, turbidity, and chlorophyll a. Front. Mar. Sci. 2017, 4, 190. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skoković, D.; Mattar, C.; Cristóbal, J. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Trans. Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors 2014, 14, 5768–5780. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Aleskerova, A.A.; Kubryakov, A.A.; Stanichny, S.V. A two-channel method for retrieval of the Black Sea surface temperature from Landsat-8 measurements. Izvestiya, Atmos. Ocean. Phys. 2016, 52, 1155–1161. [Google Scholar] [CrossRef]
- Bayat, F.; Hasanlou, M. Feasibility study of Landsat-8 imagery for retrieving sea surface temperature (case study Persian Gulf). Remote Sens. Spat. Inf. Sci. 2016, 41. [Google Scholar] [CrossRef]
- Cahyono, A.B.; Saptarini, D.; Pribadi, C.B.; Armono, H.D. Estimation of sea surface temperature (SST) using split window methods for monitoring industrial activity in coastal area. Appl. Mech. Mater. 2017, 862, 90–95. [Google Scholar] [CrossRef]
- Jaelani, L.M.; Alfatinah, A. Sea surface temperature mapping at medium scale using Landsat 8-TIRS satellite image. IPTEK J. Proc. Ser. 2017, 3, 582–586. [Google Scholar] [CrossRef] [Green Version]
- Xufeng, X.; Yang, L.; Wentong, D.; Zhonglin, W.; Lianlong, Z.; Zhen, S.; Miaofen, H. An algorithm to Inverse Sea Surface Temperatures at Offshore. Available online: http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=2E38FC329B20BDD8666007C82EDA06A3?doi=10.1.1.741.7959&rep=rep1&type=pdf (accessed on 19 September 2019).
- Park, K.A.; Chung, J.Y.; Kim, K.; Cornillon, P.C. Wind and bathymetric forcing of the annual sea surface temperature signal in the East (Japan) Sea. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Park, K.A.; Lee, E.Y.; Chang, E.; Hong, S. Spatial and temporal variability of sea surface temperature and warming trends in the Yellow Sea. J. Mar. Syst. 2015, 143, 24–38. [Google Scholar] [CrossRef]
- Park, K.A.; Park, J.J.; Park, J.E.; Choi, B.J.; Lee, S.H.; Byun, D.S.; Lee, E.I.; Kang, B.S.; Shin, H.R.; Lee, S.R. Interdisciplinary Mathematics and Sciences in Schematic Ocean Current Maps in the Seas Around Korea. Handbook of the Mathematics of the Arts and Sciences; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Hosoda, K.; Murakami, H.; Sakaida, F.; Kawamura, H. Algorithm and validation of sea surface temperature observation using MODIS sensors aboard Terra and Aqua in the western North Pacific. J. Oceanogr. 2007, 63, 267–280. [Google Scholar] [CrossRef]
- Stark, J.D.; Donlon, C.J.; Martin, M.J.; McCulloch, M.E. OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. In Proceedings of the IEEE Oceans, Aberdeen, UK, 18–21 June 2007. [Google Scholar]
- Donlon, C.; Robinson, I.; Casey, K.S.; Vazquez-Cuervo, J.; Armstrong, E.; Arino, O.; Gentemann, C.; May, D.; LeBorgne, P.; Piollé, J.; et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc. 2007, 88, 1197–1213. [Google Scholar] [CrossRef]
- Martin, M.J.; Hines, A.; Bell, M.J. Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact. Q. J. R. Meteorol. Soc. 2007, 133, 981–995. [Google Scholar] [CrossRef]
- Irish, R.R.; Barker, J.L.; Goward, S.N.; Arvidson, T. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogramm. Eng. Remote Sens. 2006, 72, 1179–1188. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Loveland, T.R.; Vermote, E.; Zhang, C. Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Oreopoulos, L.; Wilson, M.J.; Várnai, T. Implementation on Landsat data of a simple cloud-mask algorithm developed for MODIS land bands. IEEE Trans. Geosci. Remote Sens. Lett. 2011, 8, 597–601. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.J.; Oreopoulos, L. Enhancing a simple MODIS CLOUD mask algorithm for the Landsat data continuity mission. IEEE Trans. Geosci. Remote Sens. 2013, 51, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Luo, Y.; Trishchenko, A.P.; Khlopenkov, K.V. Developing clearsky, cloud, and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America. Remote Sens. Environ. 2008, 112, 4167–4185. [Google Scholar] [CrossRef]
- Inoue, T. A cloud type classification with NOAA 7 split-window measurements. J. Geophys. Res. 1987, 92, 3991–4000. [Google Scholar] [CrossRef]
- Gao, B.C.; Kaufman, Y.J. Selection of the 1.375-um MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space. J. Atmos. Sci. 1995, 52, 4231–4237. [Google Scholar] [CrossRef]
- Petrenko, B.; Ignatov, A.; Kihai, Y.; Heidinger, A. Clear-sky mask for the advanced clear-sky processor for oceans. J. Atmos. Ocean. Technol. 2010, 27, 1609–1623. [Google Scholar] [CrossRef]
- Cayula, J.F.P.; May, D.A.; McKenzie, B.D.; Willis, K.D. VIIRS-derived SST at the Naval Oceanographic Office: From evaluation to operation. In Proceedings of the SPIE, Baltimore, MD, USA, 29 April–3 May 2013; Volume 8724. [Google Scholar]
- McBride, W.; Arnone, R.; Cayula, J.F. Improvements of satellite SST retrievals at full swath. In Proceedings of the SPIE, Baltimore, MD, USA, 29 April–3 May 2013; Volume 8724. [Google Scholar]
- Marsouin, A.; Le Borgne, P.; Legendre, G.; Péré, S.; Roquet, H. Six years of OSI-SAF METOP-A AVHRR sea surface temperature. Remote Sens. Environ. 2015, 159, 288–306. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.L.; Reddy, S.; Lymburner, L.; Mueller, N.; Tan, P.; Islam, A. An evaluation of the use of atmospheric and BRDF correction to standardize Landsat data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 257–270. [Google Scholar] [CrossRef]
- Trezza, R.; Allen, R.; Tasumi, M. Estimation of actual evapotranspiration along the Middle Rio Grande of New Mexico using MODIS and landsat imagery with the METRIC model. Remote Sens. 2013, 5, 5397–5423. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Hilker, T.; Zhu, X.; Anderson, M.; Masek, J.; Wang, P.; Yang, Y. Fusing Landsat and MODIS data for vegetation monitoring. IEEE Geosci. Remote Sens. Mag. 2015, 3, 47–60. [Google Scholar] [CrossRef]
- Roy, D.P.; Zhang, H.K.; Ju, J.; Gomez-Dans, J.L.; Lewis, P.E.; Schaaf, C.B.; Sun, Q.; Li, J.; Huang, H.; Kovalskyy, V. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 2016, 176, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A practical split-window algorithm for estimating land surface temperature from Landsat 8 data. Remote Sens. 2015, 7, 647–665. [Google Scholar] [CrossRef] [Green Version]
- Robinson, I.S. Measuring the Ocean from Space—The Principles and Methods of Satellite Oceanography; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Xu, F.; Ignatov, A. In situ SST Quality Monitor (iQUAM). J. Atmos. Ocean. Technol. 2014, 31, 164–180. [Google Scholar] [CrossRef]
- Woo, H.J.; Park, K.; Li, X.; Lee, E.Y. Sea Surface Temperature Retrieval from the First Korean Geostationary Satellite COMS Data: Validation and Error Assessment. Remote Sens. 2018, 10, 1916. [Google Scholar] [CrossRef] [Green Version]
- Hosoda, K.; Sakaida, F. Global Daily High-Resolution Satellite-Based Foundation Sea Surface Temperature Dataset: Development and Validation against Two Definitions of Foundation SST. Remote Sens. 2016, 8, 962. [Google Scholar] [CrossRef] [Green Version]
- Alsweiss, S.O.; Jelenak, Z.; Chang, P.S. Remote Sensing of Sea Surface Temperature Using AMSR-2 Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3948–3954. [Google Scholar] [CrossRef]
- Kumar, A.; Minnett, P.J.; Podestá, G.; Evans, R.H. Error characteristics of the atmospheric correction algorithms used in retrieval of sea surface temperatures from infrared satellite measurements: Global and regional aspects. J. Atmos. Sci. 2003, 60, 575–585. [Google Scholar] [CrossRef]
- Barton, I.J. Satellite-derived sea surface temperatures-A comparison between operational, theoretical, and experimental algorithms. J. Appl. Meteorol. 1992, 31, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Donlon, C.J.; Robinson, I.S. Observations of the oceanic thermal skin in the Atlantic Ocean. J. Geophys. Res. 1997, 102, 18585–18606. [Google Scholar] [CrossRef]
- Donlon, C.J.; Nightingale, T.J.; Sheasby, T.; Turner, J.; Robinson, I.S.; Emergy, W.J. Implications of the oceanic thermal skin temperature deviation at high wind speed. Geophys. Res. Lett. 1999, 26, 2505–2508. [Google Scholar] [CrossRef]
- Murray, M.J.; Allen, M.R.; Merchant, C.J.; Harris, A.R.; Donlon, C.J. Direct observations of skin-bulk SST variability. Geophys. Res. Lett. 2000, 27, 1171–1174. [Google Scholar] [CrossRef] [Green Version]
- Barton, I.J. Interpretation of satellite-derived sea surface temperatures. Adv. Space Res. 2001, 28, 165–170. [Google Scholar] [CrossRef]
- Minnett, P.J. Radiometric measurements of the sea-surface skin temperature: The competing roles of the diurnal thermocline and the cool skin. Int. J. Remote Sens. 2003, 24, 5033–5047. [Google Scholar] [CrossRef]
- Oesch, D.C.; Jaquet, J.M.; Hauser, A.; Wunderle, S. Lake surface water temperature retrieval using advanced very high resolution radiometer and Moderate Resolution Imaging Spectroradiometer data: Validation and feasibility study. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Kawai, Y.; Wada, A. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr. 2007, 63, 721–744. [Google Scholar] [CrossRef]
- Donlon, C.J.; Eifler, W.; Nightingale, T.J. The thermal skin temperature of the ocean at high wind speed. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Hamburg, Germany, 28 June–2 July 1999. [Google Scholar]
- Qiu, C.; Wang, D.; Kawamura, H.; Guan, L.; Qin, H. Validation of AVHRR and TMI-derived sea surface temperature in the northern South China Sea. Cont. Shelf Res. 2009, 29, 2358–2366. [Google Scholar] [CrossRef]
Sea | Station | Location | Observation Height (m) | Date of Installation | |||
---|---|---|---|---|---|---|---|
Symbol | Name | Longitude | Latitude | Wind Speed | Sea Temp. | ||
Yellow Sea | Y1 | Deokjeokdo | 126.0189°E | 37.2361°N | 3.6 | 0.2 | Jul. 1996 |
Y2 | Incheon | 125.4289°E | 37.0917°N | 3.6 | 0.2 | Dec. 2015 | |
Y3 | Oeyeondo | 125.7500°E | 36.2500°N | 3.6 | 0.2 | Nov. 2009 | |
Y4 | Buan | 125.8139°E | 35.6586°N | 3.6 | 0.2 | Dec. 2015 | |
Y5 | Chilbaldo | 125.7769°E | 34.7933°N | 3.6 | 0.2 | Jul. 1996 | |
Y6 | Shinan | 126.2417°E | 34.7333°N | 3.6 | 0.2 | Jun. 2013 | |
Southern region | S1 | Chujado | 126.1411°E | 33.7936°N | 4.0 | 0.1 | Jan. 2014 |
S2 | Marado | 126.0333°E | 33.0833°N | 3.9 | 0.4 | Nov. 2008 | |
S3 | Seogwipo | 127.0228°E | 33.1281°N | 3.6 | 0.4 | Dec. 2015 | |
S4 | Geomundo | 127.5014°E | 34.0014°N | 3.6 | 0.2 | May 1997 | |
S5 | Tongyeong | 128.2250°E | 34.3917°N | 3.6 | 0.2 | Dec. 2015 | |
S6 | Geojedo | 128.9000°E | 34.7667°N | 3.6 | 0.2 | 1998. 05. | |
East Sea Japan Sea (EJS) | E1 | Ulsan | 129.8414°E | 35.3453°N | 3.6 | 0.4 | Dec. 2015 |
E2 | Pohang | 129.7833°E | 36.3500°N | 3.9 | 0.4 | Nov. 2008 | |
E3 | Uljin | 129.8744°E | 36.9096°N | 3.6 | 0.4 | Dec. 2015 | |
E4 | Donghae | 129.9500°E | 37.4806°N | 3.9 | 0.4 | May 2001 | |
E5 | Ulleungdo | 131.1144°E | 37.4556°N | 3.9 | 0.4 | Dec. 2011 |
Algorithm | Symbol | Equation |
---|---|---|
MCSST | MCSST1 | |
MCSST2 | ||
NLSST | NLSST1 | |
NLSST2 | ||
NLSST3 | ||
NLSST4 | ||
NLSST5 | ||
NLSST6 |
Algorithm | Symbol | Coefficients | RMSE (°C) | Bias (°C) | |||
---|---|---|---|---|---|---|---|
a1 | a2 | a3 | a4 | ||||
MCSST | MCSST1 | 0.9767 | 1.8362 | 0.0699 | 0.72 | −2.04E-15 | |
MCSST2 | 0.9742 | 1.7742 | 32.9868 | 0.0637 | 0.71 | −3.54E-15 | |
NLSST | NLSST1 | 0.9042 | 0.0824 | 1.4408 | 0.66 | 1.28E-15 | |
NLSST2 | 0.8965 | 0.0842 | 1.5122 | 0.61 | 3.77E-16 | ||
NLSST3 | 0.9009 | 0.0817 | 1.4808 | 0.63 | 1.47E-15 | ||
NLSST4 | 0.9026 | 0.0802 | 32.0333 | 1.3990 | 0.65 | 3.39E-15 | |
NLSST5 | 0.8953 | 0.0819 | 32.3713 | 1.4672 | 0.59 | 1.10E-15 | |
NLSST6 | 0.8992 | 0.0793 | 35.3699 | 1.4341 | 0.62 | 1.77E-15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.-C.; Park, K.-A. High-Resolution Sea Surface Temperature Retrieval from Landsat 8 OLI/TIRS Data at Coastal Regions. Remote Sens. 2019, 11, 2687. https://doi.org/10.3390/rs11222687
Jang J-C, Park K-A. High-Resolution Sea Surface Temperature Retrieval from Landsat 8 OLI/TIRS Data at Coastal Regions. Remote Sensing. 2019; 11(22):2687. https://doi.org/10.3390/rs11222687
Chicago/Turabian StyleJang, Jae-Cheol, and Kyung-Ae Park. 2019. "High-Resolution Sea Surface Temperature Retrieval from Landsat 8 OLI/TIRS Data at Coastal Regions" Remote Sensing 11, no. 22: 2687. https://doi.org/10.3390/rs11222687
APA StyleJang, J. -C., & Park, K. -A. (2019). High-Resolution Sea Surface Temperature Retrieval from Landsat 8 OLI/TIRS Data at Coastal Regions. Remote Sensing, 11(22), 2687. https://doi.org/10.3390/rs11222687