Precipitable Water Vapor and Fractional Clear Sky Statistics within the Big Telescope Alt-Azimuthal Region
<p>Diffuse light at astronomical observatories and sites suitable for observations.</p> "> Figure 2
<p>Flowchart of the method for correcting <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>W</mi> <mi>V</mi> </mrow> </semantics></math>. The values of PWV are computed using the radiosonde sounding at the nearest reference station. Additional radiosonde stations provide correction of PWV distribution within the region.</p> "> Figure 3
<p>PWV variations for a period of five days in the Chajnantor area for the period 18 December 2011–23 December 2011. The blue line corresponds to the calculated Era-5 PWV variations. The red line and round markers correspond to the PWV variations at the Cerro Chajnantor summit. The orange line corresponds to the PWV variations at the Chajnantor Plateau.</p> "> Figure 4
<p>Changes in mean monthly PWV values estimated from Era-5 reanalysis data and changes in mean monthly measured PWV values within the Chajnantor area.</p> "> Figure 5
<p>Spatial distributions of <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>W</mi> <msub> <mi>V</mi> <mn>0</mn> </msub> </mrow> </semantics></math> obtained from Era-5 reanalysis data for the period 2010–2020: (<b>a</b>) winter; (<b>b</b>) spring; (<b>c</b>) summer; (<b>d</b>) autumn.</p> "> Figure 6
<p>Era-5 PWV spatial distributions obtained for the period 2010–2020, adapted for mountain peaks: (<b>a</b>) winter; (<b>b</b>) spring; (<b>c</b>) summer; (<b>d</b>) autumn.</p> "> Figure 7
<p>Spatial distributions of total cloud cover within the BTA region obtained for the period 2010–2020: (<b>a</b>) winter; (<b>b</b>) spring; (<b>c</b>) summer; (<b>d</b>) autumn.</p> "> Figure 8
<p>Spatial distributions of cloud base height for different seasons for the period 2010–2020: (<b>a</b>) winter; (<b>b</b>) spring; (<b>c</b>) summer; (<b>d</b>) autumn.</p> "> Figure 9
<p>Box and whisker plots for photometric nights during 2010–2021 at the BTA site. The central horizontal lines inside the boxes are medians; bottoms and tops of the boxes are standard deviations; and ends of the whiskers are the minimum and maximum values.</p> "> Figure 10
<p>Box and whisker plots for spectroscopic nights during 2010–2021 at the BTA site. The central horizontal lines inside the boxes are medians; bottoms and tops of the boxes are <span class="html-italic">±</span> standard deviation; and ends of the whiskers are the minimum and maximum values.</p> "> Figure 11
<p>Annual changes in amount of hours from visual observations at the BTA with the hours estimated from Era-5 reanalysis data. The amount of observation time at the BTA according to the operation service is shown by the black line. The amount of observation time at the telescope according to astronomical observations is shown by the red line. The value in 2022 is the forecast variable (regression analysis).</p> "> Figure 12
<p>Seasonal changes in corrected median PWV values estimated from Era-5 reanalysis data at the sites of Ali, Muztag-Ata, Suffa, Bta and Peak Terskol.</p> "> Figure 13
<p>Dependencies of PWV medians on site elevation above sea level.</p> ">
Abstract
:1. Introduction
2. Data Method to Correct Precipitable Water Vapor Values
3. Precipitable Water Vapor Statistics within the Chajnantor Area
4. Atmospheric Parameter Statistics Relevant for the Millimeter/Submillimeter Observations within the BTA Region
4.1. Spatial Distributions of Precipitable Water Vapor within the BTA Region
4.2. Spatial Distributions of Total Cloud Cover within the BTA Region
4.3. Spatial Distributions of Cloud Base Height within the BTA Region
- (i)
- In all seasons, an area with low values of cloud base heights is observed over the Caucasus. The “depth” of this area in terms of CBH horizontal gradients varies throughout the year.
- (ii)
- Excluding winter, an extended area with large CBH values is formed in the eastern part of the BTA region. In this region, maximum CBH occurs in summer. Cloud base heights range from ∼3600 to ∼5300 m. In winter, cloud base heights range from ∼900 m to ∼1500 m.
4.4. Nighttime Cloud Fraction Fraction
- (i)
- Clear nights and partly clear nights: we supposed that cloud cover values range from 0 to 20% for the entire night. Clouds may be observed at night, but the total cloud cover ranges from 0 to 20% for 4 or more hours continuously.
- (ii)
- Partly cloudy night: cloud coverage is less than or equal to 40% for 4 or more h.
- (iii)
- Photometric night: a night is termed photometric if it satisfies (i).
- (iv)
- Spectroscopic nights: a night is termed spectroscopic if it satisfies (i) and (ii).
5. Seasonal Variations of PWV at the Ali, Muztag-Ata, Suffa, Bta and Peak Terskol
- (i)
- The choice of area boundaries within which we should estimate the mean relative altitude difference. In particular, at the BTA, we used a limited area, which includes 4 × 5 grid nodes.
- (ii)
- To calculate the relative altitude difference for an adjacent grid node, we shifted the selected area. Shifts are shown by the red box. The size of this area is fixed for each mesh node.
- (iii)
- Knowing the relative altitude difference at a given site, we calculated the average ratios between precipitable water vapor at the mountain summit and the values corresponding to the “surrounding terrain”.
6. Discussion
7. Conclusions
- (i)
- In this article, we make use of the Era-5 reanalysis from 2010 to 2020 over the BTA region to summarize the empirical relation between the total amount of in the atmospheric column and . Our results confirm that in the surface layer of the atmosphere and the water vapor scale height affect the total amount of . The functional relation between the total amount of and are similar among the discussed sites.
- (ii)
- We proposed a method for correcting the PWV values which takes into account the water vapor scale height calculated for the nearest radiosounding station and underlying surface. The method is based on the calculation of the average elevation of the grid nodes around the site of interest. Within the BTA region, we calculated using 20 grid nodes for every site. We believe that taking into account the local orography makes it possible to more accurately parameterize the . Based on the proposed method, the distributions of precipitable water vapor within the BTA region in different seasons were obtained. The analysis of PWV spatial distributions showed that the BTA is located in the belt with low water vapor content, extending southeastward. One of the main conclusions in this paper is that potential sites with low PWV are located east and southeast of BTA in the region (40.5N–42.0N; 46.2E–48.7E). In addition, using the method we estimated seasonal changes in corrected median PWV values at the sites of Ali, Muztag-Ata, Suffa, Bta and Peak Terskol. The statistics obtained are close to the measured PWV at these sites.
- (iii)
- The Era-5 reanalysis passably describes the hourly fluctuations in PWV. The root mean square deviation between measured and calculated values of PVW within the Chajnantor area is 1.06 mm. The correlation coefficient is 0.57. For longer averaging periods, consistency of PWV variations estimated from the Era-5 data and radiometric measurements improves. The correlation coefficient increases to 0.97 for monthly PWV values.
- (iv)
- We found that there are 68–71% spectroscopic nights per year at the BTA. These estimations are in a good agreement with the visual observations. At the BTA, the number of photometric nights derived from the Era-5 data is underestimated by 20% in comparison to that from the visual observations and equal to 25 per year. Using the reanalysis, we estimate that the observing time at the telescope is 1453 hours. At one of the best sites that we found, namely Mt. Kurapdag, the mean number of hours for the period from 2010 to 2021 was 1971 h.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wootten, A. The Atacama Large Millimeter Array (ALMA). Proc. SPIE 2002, 4837, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Tremblin, P.; Schneider, N.; Minier, V.; Durand, G.A.; Urban, J. Worldwide site comparison for submillimetre astronomy. Astron. Astrophys. 2012, 548, A65. [Google Scholar] [CrossRef] [Green Version]
- Cortes, F.; Cortes, K.; Reeves, R.; Bustos, R.; Radford, S. Twenty years of PWV measurements in the Chajnantor Area. Astron. Astrophys. 2020, 640, A126. [Google Scholar] [CrossRef]
- Otarola, A.; Breuck, C.D.; Travouillon, T.; Matsushita, S.; Nyman, L.A.; Wootten, A.; Radford, S.J.E.; Sarazin, M.; Kerber, F.; Perez-Beaupuits, J.P. Precipitable Water Vapor, Temperature, and Wind Statistics At Sites Suitable for mm and Submm Wavelength Astronomy in Northern Chile. Publ. Astron. Soc. Pac. 2019, 131, 045001. [Google Scholar] [CrossRef]
- Xu, J.; Li, M.; Esamdin, A.; Wang, N.; Pu, G.; Wang, L.; Feng, G.; Zhang, X.; Ma, S.; Lv, J.; et al. Site-testing at Muztag-Ata site. IV. Precipitable Water Vapor. PASP 2022, 134, 015006. [Google Scholar] [CrossRef]
- Ozdemir, S.; Yesilyaprak, C.; Aktug, B.; Ozturk, D.; Coker, D.; Balbay, R. Precipitable water vapor (PWV) estimations from the site of the Eastern Anatolia Observatory (DAG), a new astronomical observatory in Turkey. Exp. Astron. 2018, 46, 323–336. [Google Scholar] [CrossRef]
- Valenziano, L.; Dall’Oglio, G. Millimetre Astronomy from the High Antarctic Plateau: Site Testing at Dome C. Publ. Astron. Soc. Aust. 1999, 16, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-L. Assessments of Ali, Dome A, and Summit Camp for mm-wave Observations Using MERRA-2 Reanalysis. Astrophys. J. 2017, 848, 64. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Yang, F.; Chen, X.; He, F.; Liu, Q.; Zhang, B.; Zhang, C.; Wang, K.; Liu, N.; Ren, A.; et al. Lenghu on the Tibetan Plateau as an astronomical observing site. Nature 2021, 596, 353–356. [Google Scholar] [CrossRef]
- Qian, X.; Yao, Y.; Wang, H.; Zou, L.; Li, Y.; Yin, J. Validation of the WRF Model for Estimating Precipitable Water Vapor at the Ali Observatory on the Tibetan Plateau. Publ. Astron. Soc. Pac. 2020, 132, 125003. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, F.; Chen, X.; Zhang, X.; Ma, J.; Kong, X.; Fu, X.; Li, R.; Wei, Y.; Yao, Z.; et al. Long-term variations in precipitable water vapor and temperature at Lenghu Site. Astron. Astrophys. 2022, 663, A34. [Google Scholar] [CrossRef]
- Ningombam, S.S.; Sethulakshmy, E.S.; Jade, S.; Shrungeshwara, T.S.; Vivek, S.G.; Angchuk, D.; Prabhu, T.P.; Mahay, T.T. Atmospheric opacity using 220 GHz (1.36 mm) radiometer data and water vapor trends over Indian Astronomical Observatory (IAO), Hanle. J. Atmos.-Sol.-Terr. Phys. 2020, 208, 4105404. [Google Scholar] [CrossRef]
- Dumka, U.C.; Kaskaoutis, D.G.; Khatri, P.; Ningombam, S.S.; Sheoran, R.; Jade, S.; Shrungeshwara, T.S.; Rupakheti, M. Water vapour characteristics and radiative effects at high-altitude Himalayan sites. Atmos. Pollut. Res. 2022, 13, 101303. [Google Scholar] [CrossRef]
- Anupama, G.C.; Maheswar, G.; Sriram, S.; Sivarani, T.; Parihar, P.S.; Nagabhushan, S.; Angchuk, D.; Barway, S.; Bhatt, B.C.; Banyal, R.; et al. A 10-m class national large optical-IR telescope. J. Astrophys. Astron. 2022, 43, 32. [Google Scholar] [CrossRef]
- Erasmus, D.A.; Rooyen, R. A satellite survey of cloud cover and water vapor in northwest Africa and southern Spain. Proc. SPIE 2006, 6267, 62671O. [Google Scholar] [CrossRef]
- Li, Z.; Muller, J.-P.; Cross, P. Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements. J. Geophys. Res. Atmos. 2003, 108, 4651. [Google Scholar] [CrossRef]
- Dembelov, M.G.; Bashkuev, Y.B. Estimation of the Tropospheric Moisture Content Derived from GPS Observations, Radio Sounding Data, and Measurements with a Water Vapor Radiometer. Atmos. Ocean. Opt. 2022, 35, 359–365. [Google Scholar] [CrossRef]
- Berezin, I.A.; Timofeyev, Y.M.; Virolainen, Y.A.; Volkova, K.A. Comparison of ground-based microwave measurements of precipitable water vapor with radiosounding data. Atmos. Ocean. Opt. 2016, 29, 274–281. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, Z. Evaluating the Accuracy of Jason-3 Water Vapor Product Using PWV Data from Global Radiosonde and GNSS Stations. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4008–4017. [Google Scholar] [CrossRef]
- Hu, H.; Yang, R.; Lee, W.-C.; Cao, Y.; Mao, J.; Gao, L. Multi-sensor study of precipitable water vapor and atmospheric profiling from microwave radiometer, GNSS/MET, radiosonde, and ECMWF reanalysis in Beijing. J. Appl. Remote Sens. 2020, 14, 044514. [Google Scholar] [CrossRef]
- Gurbuz, G.; Akgul, V.; Gormus, K.S.; Kutoglu, S.H. Assessment of precipitable water vapor over Turkey using GLONASS and GPS. J. Atmos.-Sol.-Terr. Phys. 2021, 222, 105712. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, K.; Yang, L.; Wu, S.; Li, L. Evaluation and calibration of MODIS near-infrared precipitable water vapor over China using GNSS observations and ERA-5 reanalysis dataset. Remote Sens. 2021, 13, 2761. [Google Scholar] [CrossRef]
- Xu, K.; Zhong, L.; Ma, Y.; Zou, M.; Huang, Z. A study on the water vapor transport trend and water vapor source of the Tibetan Plateau. Theor. Appl. Climatol. 2020, 140, 1031–1042. [Google Scholar] [CrossRef]
- Chen, B.; Yu, W.; Wang, W.; Zhang, Z.; Dai, W. A Global Assessment of Precipitable Water Vapor Derived From GNSS Zenith Tropospheric Delays With ERA5, NCEP FNL, and NCEP GFS Products. Earth Space Sci. 2021, 8, e2021EA001796. [Google Scholar] [CrossRef]
- Khutorova, O.G.; Khutorov, V.E.; Teptin, G.M. Interannual Variability of Surface and Integrated Water Vapor and Atmospheric Circulation in Europe. Atmos. Ocean. Opt. 2018, 31, 486–491. [Google Scholar] [CrossRef]
- Slättberg, N.; Lai, H.-W.; Chen, X.; Ma, Y.; Chen, D. Spatial and temporal patterns of planetary boundary layer height during 1979–2018 over the Tibetan Plateau using ERA5. Int. J. Climatol. 2022, 42, 3360–3377. [Google Scholar] [CrossRef]
- Hellemeier, J.A.; Yang, R.; Sarazin, M.; Hickson, P. Weather at selected astronomical sites–an overview of five atmospheric parameters. Mon. Not. R. Astron. Soc. 2019, 482, 4941–4950. [Google Scholar] [CrossRef]
- Han, Y.; Wu, X.; Luo, T.; Qing, C.; Yang, Q.; Jin, X.; Liu, N.; Wu, S.; Su, C. New Cn2 statistical model based on first radiosonde turbulence observation over Lhasa. J. Opt. Soc. Am. 2020, 37, 995–1001. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, S.; Pratap, V.; Singh, A.K. Performance of water vapour retrieval from MODIS and ECMWF and their validation with ground based GPS measurements over Varanasi. J. Earth Syst. Sci. 2021, 130, 41. [Google Scholar] [CrossRef]
- Yuan, P.; Hunegnaw, A.; Alshawaf, F.; Awange, J.; Klos, A.; Teferle, F.N.; Kutterer, H. Feasibility of ERA5 integrated water vapor trends for climate change analysis in continental Europe: An evaluation with GPS (1994–2019) by considering statistical significance. Remote Sens. Environ. 2021, 260, 112416. [Google Scholar] [CrossRef]
- Plahina, I.N.; Pankratova, N.V.; Makhotkina, E.L. Comparison of ground and satellite monitoring of aerosol optical thickness of the atmosphere in Russia. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 2018, 15, 225–234. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Bolbasova, L.A.; Kovadlo, P.G.; Kiselev, A.V. Atmospheric parameters at the 6-m Big Telescope Alt-azimuthal site. Mon. Not. R. Astron. Soc. 2020, 493, 723–729. [Google Scholar] [CrossRef]
- Nosov, V.V.; Lukin, V.P.; Nosov, E.V.; Torgaev, A.V.; Afanas’ev, V.L.; Balega, Y.Y.; Vlasyuk, V.V.; Panchuk, V.E.; Yakopov, G.V. Astroclimate Studies in the Special Astrophysical Observatory of the Russian Academy of Sciences. Atmos. Ocean. Opt. 2019, 32, 8–18. [Google Scholar] [CrossRef]
- Khaikin, V.; Lebedev, M.; Shmagin, V.; Zinchenko, I.; Vdovin, V.; Bubnov, G.; Edelman, V.; Yakopov, G.; Shikhovtsev, A.; Marchiori, G.; et al. On the Eurasian SubMillimeter Telescopes Project (ESMT). In Proceedings of the 7th All-Russian Microwave Conference (RMC), Moscow, Russia, 25–27 November 2020; pp. 47–51. [Google Scholar] [CrossRef]
- Burgan, H.I.; Vaheddoost, B.; Aksoy, H. Frequency Analysis of Monthly Runoff in Intermittent Rivers. In Proceedings of the World Environmental and Water Resources Congress 2017: Hydraulics and Waterways and Water Distribution Systems Analysis—Selected Papers from the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–27 May 2017; pp. 327–334. [Google Scholar] [CrossRef]
- Burgan, H.I.; Aksoy, H. Daily flow duration curve model for ungauged intermittent subbasins of gauged rivers. J. Hydrol. 2022, 604, 127249. [Google Scholar] [CrossRef]
- Eris, E.; Cavus, Y.; Aksoy, H.; Burgan, H.I.; Aksu, H.; Boyacioglu, H. Spatiotemporal analysis of meteorological drought over Kucuk Menderes River Basin in the Aegean Region of Turkey. Theor. Appl. Climatol. 2020, 142, 1515–1530. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Khaikin, V.B.; Mironov, A.P.; Kovadlo, P.G. Statistical Analysis of the Water Vapor Content in North Caucasus and Crimea. Atmos. Ocean. Opt. 2022, 35, 165–175. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kudryavtsev, D.O.; Vlasyuk, V.V. The Largest Russian Optical Telescope BTA: Current Status and Modernization Prospects. In Proceedings of the Ground-Based Astronomy in Russia—21st Century All-Russian Conference, Nizhny Arkhyz, Russia, 21–25 September 2020; pp. 21–31. [Google Scholar] [CrossRef]
- Ningombam, S.S.; Song, H.-J.; Mugil, S.K.; Dumka, U.C.; Larson, E.J.L.; Kumar, B.; Sagar, R. Evaluation of fractional clear sky over potential astronomical sites. Mon. Not. R. Astron. Soc. 2021, 507, 3745–3760. [Google Scholar] [CrossRef]
- Zhang, J.-C.; Ge, L.; Lu, X.-M.; Cao, Z.-H.; Chen, X.; Mao, Y.-N.; Jiang, X.-J. Astronomical Observing Conditions at Xinglong Observatory from 2007 to 2014. PASP 2015, 127, 1292. [Google Scholar] [CrossRef] [Green Version]
- Ningombam, S.S.; Narendra, A.; Bhatt, B.C.; Prabhu, T.P.; Anupama, G.C.; Angchuk, D.; Jorphail, S. Validation of estimated cloud fraction from MERRA-2 and AIRS data using ground based observation over IAO, Hanle. Adv. Space Res. 2020, 66, 826–843. [Google Scholar] [CrossRef]
- Panchuk, A.V. Astronomical climate of the telescope installation site and observation time loss. INASAN Sci. Rep. 2020, 5, 344–350. [Google Scholar]
- Bubnov, G.M.; Abashin, E.B.; Balega, Y.Y.; Bolshakov, O.S.; Dryagin, S.Y.; Dubrovich, V.K.; Marukhno, A.S.; Nosov, V.I.; Vdovin, V.F.; Zinchenko, I.I. Searching for New Sites for THz Observations in Eurasia. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 64–72. [Google Scholar] [CrossRef]
- Bubnov, G.; Vdovin, V.; Khaikin, V.; Tremblin, P.; Baron, P. Analysis of variations in factors of specific absorption of sub-terahertz waves in the Earth’s atmosphere. In Proceedings of the 7th All-Russian Microwave Conference (RMC), Russia, Moscow, 25–27 November 2020; Volume 5, pp. 229–232. [Google Scholar] [CrossRef]
- Balega, Y.; Bataev, D.K.-S.; Bubnov, G.M.; Vdovin, V.F.; Zemlyanukha, P.M.; Lolaev, A.B.; Lesnov, I.V.; Marukhno, A.S.; Marukhno, N.A.; Murtazaev, A.K.; et al. Direct Measurements of Atmospheric Absorption of Subterahertz Waves in the Northern Caucasus. Dokl. Phys. 2022, 61, 1–4. [Google Scholar] [CrossRef]
- Khaikin, V.B.; Shikhovtsev, A.Y.; Mironov, A.P.; Qian, X. A study of the astroclimate in the Dagestan mountains Agul region and at the Ali Observatory in Tibet as possible locations for the Eurasian SubMM Telescopes (ESMT). Proc. Sci. 2002, 425, 72–79. [Google Scholar] [CrossRef]
- | mm | ||
---|---|---|---|
Chajnantor Plateau | 0.72 (August) | 2.56 (January) | 1.05 |
Cerro Chajnantor summit | 0.54 (August) | 1.08 (January) | 0.67 |
Dome A | - | - | 0.21 |
Dome C | - | - | 0.28 |
South Pole | - | - | 0.30 |
Cerro Macon | - | - | 1.02 |
Mauna Kea | - | - | 1.44 |
Mauna Loa | - | - | 2.00 |
Karakaya Hills, Erzurum | 2.7 (October–June) | 4.0 (January–September) | 2.7 |
Muztag -Ata | ∼1.0 (December–January) | ∼7.0 (July) | 2.3 |
Hanle | ∼1.0 (December–January) | - | 2.23 |
Merak | - | - | 2.16 |
Ali | - | - | 2.22 |
Salt | - | - | 1.31 |
Yang | - | - | 1.37 |
Averaging | STD, mm | MAE, mm | K |
---|---|---|---|
Mean hourly | 1.06 | 0.94 | 0.57 |
Mean monthly | 0.28 | 0.23 | 0.97 |
Site | Season | TCC |
---|---|---|
BTA | Winter | 0.62 |
Spring | 0.65 | |
Summer | 0.47 | |
Autumn | 0.46 | |
Terskol | Winter | 0.63 |
Spring | 0.64 | |
Summer | 0.49 | |
Autumn | 0.47 | |
Horai | Winter | 0.44 |
Spring | 0.55 | |
Summer | 0.33 | |
Autumn | 0.41 | |
Kislovodsk | Winter | 0.57 |
Spring | 0.62 | |
Summer | 0.47 | |
Autumn | 0.46 | |
Kurapdag | Winter | 0.45 |
Spring | 0.57 | |
Summer | 0.45 | |
Autumn | 0.42 |
Site | Season | CBH, m |
---|---|---|
BTA | Winter | 1500 |
Spring | 1200 | |
Summer | 800 | |
Autumn | 1400 | |
Terskol | Winter | 1100 |
Spring | 950 | |
Summer | 750 | |
Autumn | 1200 | |
Horai | Winter | 1400 |
Spring | 1200 | |
Summer | 1600 | |
Autumn | 1200 | |
Kislovodsk | Winter | 1700 |
Spring | 1200 | |
Summer | 900 | |
Autumn | 1350 | |
Kurupdag | Winter | 1400 |
Spring | 1200 | |
Summer | 1050 | |
Autumn | 1100 |
Month | Nights with Cloud Cover ≤ 0.5 | Spectroscopic Nights | Photometric Nights |
---|---|---|---|
January | 4.2 | 4.1 | 1.3 |
February | 4.2 | 4.1 | 0.9 |
March | 7.0 | 6.2 | 1.3 |
April | 6.9 | 6.2 | 1.7 |
May | 8.2 | 8.0 | 3.7 |
June | 8.1 | 8.0 | 4.0 |
July | 7.8 | 7.1 | 4.0 |
August | 7.1 | 7.0 | 3.0 |
September | 5.7 | 5.1 | 2.1 |
October | 4.0 | 4.0 | 1.1 |
November | 4.0 | 4.0 | 1.1 |
December | 4.0 | 4.0 | 1.1 |
Year | 71.2 | 67.8 | 25.3 |
BTA | Kurapdag | |||
---|---|---|---|---|
Month | Hours | Hours | Hours | Hours |
2022 | 2010–2021 | 2022 | 2010–2021 | |
January | 66 | 108 | 189 | 214 |
February | 109 | 97 | 200 | 173 |
March | 63 | 91 | 170 | 139 |
April | 102 | 88 | 127 | 104 |
May | 96 | 62 | 123 | 84 |
June | 50 | 72 | 142 | 101 |
July | 105 | 106 | 87 | 116 |
August | 180 | 154 | 185 | 163 |
September | 139 | 155 | 193 | 180 |
October | 200 | 178 | 233 | 209 |
November | 148 | 188 | 250 | 231 |
December | 142 | 154 | 305 | 257 |
Year | 1400 | 1453 | 2204 | 1971 |
Site | Elevation, m | |
---|---|---|
Ali | 5050 | 0.72 |
Muztag -Ata | 4536 | 0.75 |
BTA | 2100 | 0.81 |
Terskol | 3100 | 0.56 |
Suffa | 2500 | 0.73 |
Site | Season | PWV, mm |
---|---|---|
Ali | Winter | 0.7 |
Spring | 1.7 | |
Summer | 7.0 | |
Autumn | 2.3 | |
Year | 2.9 | |
Muztag-Ata | Winter | 1.0 |
Spring | 2.1 | |
Summer | 5.7 | |
Autumn | 2.6 | |
Year | 2.9 | |
Suffa | Winter | 3.1 |
Spring | 5.2 | |
Summer | 8.0 | |
Autumn | 5.2 | |
Year | 5.4 | |
BTA | Winter | 4.9 |
Spring | 6.5 | |
Summer | 17.4 | |
Autumn | 13.5 | |
Year | 10.3 | |
Terskol | Winter | 2.9 |
Spring | 4.9 | |
Summer | 11.1 | |
Autumn | 6.5 | |
Year | 6.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikhovtsev, A.Y.; Kovadlo, P.G.; Khaikin, V.B.; Kiselev, A.V. Precipitable Water Vapor and Fractional Clear Sky Statistics within the Big Telescope Alt-Azimuthal Region. Remote Sens. 2022, 14, 6221. https://doi.org/10.3390/rs14246221
Shikhovtsev AY, Kovadlo PG, Khaikin VB, Kiselev AV. Precipitable Water Vapor and Fractional Clear Sky Statistics within the Big Telescope Alt-Azimuthal Region. Remote Sensing. 2022; 14(24):6221. https://doi.org/10.3390/rs14246221
Chicago/Turabian StyleShikhovtsev, Artem Yu., Pavel G. Kovadlo, Vladimir B. Khaikin, and Alexander V. Kiselev. 2022. "Precipitable Water Vapor and Fractional Clear Sky Statistics within the Big Telescope Alt-Azimuthal Region" Remote Sensing 14, no. 24: 6221. https://doi.org/10.3390/rs14246221
APA StyleShikhovtsev, A. Y., Kovadlo, P. G., Khaikin, V. B., & Kiselev, A. V. (2022). Precipitable Water Vapor and Fractional Clear Sky Statistics within the Big Telescope Alt-Azimuthal Region. Remote Sensing, 14(24), 6221. https://doi.org/10.3390/rs14246221