[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Interannual Variability of Surface and Integrated Water Vapor and Atmospheric Circulation in Europe

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The variability of time series of the integrated water vapor of the atmosphere and the surface partial pressure of water vapor for the territory of Europe over a long period have been studied. The main contribution to the variance of both integrated and surface water vapor is made by seasonal variations of 60–70%; mesoscale processes, 7–17%; and synoptic processes, 17–27%. The linear trend contributes less than 1% to the overall variance of the variability of the atmospheric water vapor in Europe. It has been shown that the interannual variability of the atmospheric water vapor manifests itself both in quasi-periodic variations in the annual average values and in variations in the intensity of synoptic processes. The irregular coherence of variations in the circulation indices and surface partial water vapor pressure in Europe with periods of 2–3, 5–6, 8–11, and 10–13 years has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bevis, S. Businger, T. A. Herring, C. Rocken, and A. Anthes, “GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System,” J. Geophys. Res., D 97 (14), 15787–15801 (1992).

    Article  ADS  Google Scholar 

  2. J. Glowacki, N. T. Penna, and W. P. Bourke, “Validation of GPS-based estimates of integrated water vapor for the Australian region and identification of diurnal variability,” Aust. Met. Mag. 55, 131–148 (2006).

    Google Scholar 

  3. T. Ning, R. Haas, G. Elgered, and U. Willen, “Multitechnique comparisons of 10 years of wet delay estimates on the west coast of Sweden,” J. Geodesy. 86 (7), 565–575 (2012).

    Article  ADS  Google Scholar 

  4. R. Pacione, E. Fionda, and R. Ferrara, “Comparison of atmospheric parameters derived from GPS, VLBI and a ground-based microwave radiometer in Italy,” Phys. Chem. Earth. 27, 309–316 (2002).

    Article  Google Scholar 

  5. J. A. Roman, R. O. Knuteson, S. A. Ackerman, D. C. Tobin, and H. E. Revercomb, “Assessment of regional global climate model water vapor bias and trends using precipitable water vapor observations from a Network of Global Positioning Satellite Receivers in the U.S. Great Plains and Midwest,” Climate. 25, 5471–5493 (2012).

    Article  ADS  Google Scholar 

  6. L. Guoping, H. Dingfa, and L. Biquan, “Experiment on driving precipitable water vapor from ground-based GPS Network in Chengdu Plain,” Geo-Spat. Inf. Sci. 10, 181–185 (2007).

    Article  Google Scholar 

  7. J. Shuanggen, Z. Li, and J. Choa, “Integrated water vapor field and multiscale variations over China from GPS measurements,” J. Appl. Meteorol. Climatol. 47, 3008–3015 (2000).

    Google Scholar 

  8. S. Raju, K. Saha, and V. T. Bijoy, “Measurement of integrated water vapor over Bangalore using ground based GPS data,” Proc. URSI General Assembly. New Delphi, 20–24 (2005).

  9. L. Sapucci, L. Machado, and J. Monico, “Intercomparison of integrated water vapor estimates from multisensors in the Amazonian region,” J. Atmos. Ocean. Technol. 24, 1880–1894 (2007).

    Article  ADS  Google Scholar 

  10. E. Jakobson, H. Ohvril, and G. Elgered, “Diurnal variability of precipitable water in the Baltic region, impact on the transmittance of the direct solar radiation,” Boreal Environ. Res. 14, 45–55 (2009).

    Google Scholar 

  11. R. Haas, T. Ning, and G. Elgered, “Long-term trends in the amount of atmospheric water vapour derived from space geodetic and remote sensing techniques,” in ESA Proc. WPP 326 (Copenhagen, 2011).

    Google Scholar 

  12. J. Morland Coen M. Collaud, and K. Hocke, “Tropospheric water vapor above Switzerland over the 12 years,” Atmos. Chem. Phys. 9, 5975–5988 (2009).

    Article  ADS  Google Scholar 

  13. G. P. Kurbatkin and V. D. Smirnov, “Tropospheric temperature interannual variations associated with decadal changes in the North Atlantic Oscillation,” Izv., Atmos. Ocean. Phys. 46 (4), 435–447 (2010).

    Article  Google Scholar 

  14. Yu. P. Perevedentsev, K. M. Shantalinskii, T. R. Aukhadeev, N. V. Ismagilov, and R. Zandi, “Effect of microcirculation systems on the thermobaric regime of Volga Federal District,” Uchen. Zapiski Kazanskogo Univ. 156 (2), 156–169 (2014).

    Google Scholar 

  15. A. Yu. Kanukhina, L. A. Nechaeva, A. I. Pogorel’tsev, and E. V. Suvorova, “Climatic trends in temperature, zonal flow, and stationary planetary waves from NCEP/NCAR reanalysis data,” Izv., Atmos. Ocean. Phys. 43 (6), 754–763 (2007).

    Article  Google Scholar 

  16. K. Yu. Sukovatov and N. N. Bezuglova, “Coherent oscillations of cold-season precipitation on the territory of the Ishim plain and atmospheric circulation indices,” Rus. Meteorol. Hydrol. 40 (1), 18–26 (2015).

    Google Scholar 

  17. O. G. Khutorova, V. V. Kalinnikov, and T. R. Kurbangaliev, “Variations in the atmospheric integrated water vapor from phase measurements made with receivers of satellite navigation systems,” Atmos. Ocean. Opt. 25 (6), 429–433 (2012).

    Article  Google Scholar 

  18. http//igscb.jpl.nasa.gov (Cited June 13, 2017).

  19. G. Jenkins and D. Watts, Spectral Analysis and Its Applications (Holden-Day, San Francisco, 1968).

    MATH  Google Scholar 

  20. T. B. Zhuravleva and K. M. Firsov, “On variability of the radiative characteristics in the 940-nm band at variations of water vapor: Numerically simulated results,” Atmos. Ocean. Opt. 18 (9), 696–702 (2005).

    Google Scholar 

  21. T. Yu. Chesnokova, T. B. Zhuravleva, Yu. V, Voronina, T. K. Sklyadneva, N. Ya. Lomakina, and A. V. Chentsov, “Simulation of solar radiative fluxes using altitude profiles of water vapor concentration, characteristic for conditions of Western Siberian,” Atmos. Ocean. Opt. 25 (2), 147–153 (2012).

    Article  Google Scholar 

  22. O. G. Khutorova and G. M. Teptin, “An investigation of mesoscale wave processes in the surface layer using synchronous measurements of atmospheric parameters and admixtures,” Izv., Atmos. Ocean. Phys. 45 (5), 549–556 (2009).

    Article  Google Scholar 

  23. O. N. Bulygina, V. M. Veselov, V. N. Razuvaev, and T. M. Aleksandrova, Description of the array of current data on key meteorological parameters at Russian stations. http://meteo.ru/data/163-basic-parameters (Cited June 15, 2017).

    Google Scholar 

  24. E. Ruprecht, S. S. Schroder, and S. Ubl, “On the relation between NAO and water vapour transport toward Europe,” Meteorol. Z. 11 (6), 395–401 (2002).

    Article  Google Scholar 

  25. M. Yu. Bardin and A. B. Polonskii, “North Atlantic Oscillation and synoptic variability in the European-Atlantic region in winter,” Izv., Atmos. Ocean. Phys. 41 (2), 127–136 (2005)

    Google Scholar 

  26. I. I. Mokhov, V. A. Semenov, V. Ch. Khon, M. Latif, and E. Rekner, “Connection between Eurasian and North Atlantic climate anomalies and natural variations in the Atlantic thermohaline circulation based on long-term model calculations,” Dokl. Earth Sci. 419 (2), 502–505 (2008).

    Article  ADS  Google Scholar 

  27. C. Franzke and S. B. Feldstein, “The continuum and dynamics of Northern hemisphere teleconnection patterns,” J. Atmos. Sci. 62 (9), 3250–3267 (2005).

    Article  ADS  Google Scholar 

  28. D. W. J. Thompson and J. M. Wallace, “The Arctic oscillation signature in the wintertime geopotential height and temperature fields,” Geophys. Res. Lett. 25 (9), 1297–1300 (1998).

    Article  ADS  Google Scholar 

  29. A. G. Barnston and R. E. Livezey, “Classification, seasonality and persistence of low-frequency atmospheric circulation patterns,” Mon. Weather Rev. 115, 1083–1126 (1987).

    Article  ADS  Google Scholar 

  30. P. Terray, “Southern hemisphere extra-tropical forcing: A new paradigm for El Nino-Southern Oscillation,” Clim. Dyn. 36 (11–12), 2171–2199 (2011).

    Article  Google Scholar 

  31. M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39 (2), 179–229 (2001).

    Article  ADS  Google Scholar 

  32. V. A. Bezverkhnii and A. N. Gruzdev, “Relation between quasi-decadal and quasi-biennial oscillations of solar activity and the equatorial stratospheric wind,” Dokl. Earth Sci. 415 (2), 970–974 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Khutorova.

Additional information

Original Russian Text © O.G. Khutorova, V.E. Khutorov, G.M. Teptin, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khutorova, O.G., Khutorov, V.E. & Teptin, G.M. Interannual Variability of Surface and Integrated Water Vapor and Atmospheric Circulation in Europe. Atmos Ocean Opt 31, 486–491 (2018). https://doi.org/10.1134/S1024856018050081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018050081

Keywords