Abstract
The variability of time series of the integrated water vapor of the atmosphere and the surface partial pressure of water vapor for the territory of Europe over a long period have been studied. The main contribution to the variance of both integrated and surface water vapor is made by seasonal variations of 60–70%; mesoscale processes, 7–17%; and synoptic processes, 17–27%. The linear trend contributes less than 1% to the overall variance of the variability of the atmospheric water vapor in Europe. It has been shown that the interannual variability of the atmospheric water vapor manifests itself both in quasi-periodic variations in the annual average values and in variations in the intensity of synoptic processes. The irregular coherence of variations in the circulation indices and surface partial water vapor pressure in Europe with periods of 2–3, 5–6, 8–11, and 10–13 years has been established.
Similar content being viewed by others
References
M. Bevis, S. Businger, T. A. Herring, C. Rocken, and A. Anthes, “GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System,” J. Geophys. Res., D 97 (14), 15787–15801 (1992).
J. Glowacki, N. T. Penna, and W. P. Bourke, “Validation of GPS-based estimates of integrated water vapor for the Australian region and identification of diurnal variability,” Aust. Met. Mag. 55, 131–148 (2006).
T. Ning, R. Haas, G. Elgered, and U. Willen, “Multitechnique comparisons of 10 years of wet delay estimates on the west coast of Sweden,” J. Geodesy. 86 (7), 565–575 (2012).
R. Pacione, E. Fionda, and R. Ferrara, “Comparison of atmospheric parameters derived from GPS, VLBI and a ground-based microwave radiometer in Italy,” Phys. Chem. Earth. 27, 309–316 (2002).
J. A. Roman, R. O. Knuteson, S. A. Ackerman, D. C. Tobin, and H. E. Revercomb, “Assessment of regional global climate model water vapor bias and trends using precipitable water vapor observations from a Network of Global Positioning Satellite Receivers in the U.S. Great Plains and Midwest,” Climate. 25, 5471–5493 (2012).
L. Guoping, H. Dingfa, and L. Biquan, “Experiment on driving precipitable water vapor from ground-based GPS Network in Chengdu Plain,” Geo-Spat. Inf. Sci. 10, 181–185 (2007).
J. Shuanggen, Z. Li, and J. Choa, “Integrated water vapor field and multiscale variations over China from GPS measurements,” J. Appl. Meteorol. Climatol. 47, 3008–3015 (2000).
S. Raju, K. Saha, and V. T. Bijoy, “Measurement of integrated water vapor over Bangalore using ground based GPS data,” Proc. URSI General Assembly. New Delphi, 20–24 (2005).
L. Sapucci, L. Machado, and J. Monico, “Intercomparison of integrated water vapor estimates from multisensors in the Amazonian region,” J. Atmos. Ocean. Technol. 24, 1880–1894 (2007).
E. Jakobson, H. Ohvril, and G. Elgered, “Diurnal variability of precipitable water in the Baltic region, impact on the transmittance of the direct solar radiation,” Boreal Environ. Res. 14, 45–55 (2009).
R. Haas, T. Ning, and G. Elgered, “Long-term trends in the amount of atmospheric water vapour derived from space geodetic and remote sensing techniques,” in ESA Proc. WPP 326 (Copenhagen, 2011).
J. Morland Coen M. Collaud, and K. Hocke, “Tropospheric water vapor above Switzerland over the 12 years,” Atmos. Chem. Phys. 9, 5975–5988 (2009).
G. P. Kurbatkin and V. D. Smirnov, “Tropospheric temperature interannual variations associated with decadal changes in the North Atlantic Oscillation,” Izv., Atmos. Ocean. Phys. 46 (4), 435–447 (2010).
Yu. P. Perevedentsev, K. M. Shantalinskii, T. R. Aukhadeev, N. V. Ismagilov, and R. Zandi, “Effect of microcirculation systems on the thermobaric regime of Volga Federal District,” Uchen. Zapiski Kazanskogo Univ. 156 (2), 156–169 (2014).
A. Yu. Kanukhina, L. A. Nechaeva, A. I. Pogorel’tsev, and E. V. Suvorova, “Climatic trends in temperature, zonal flow, and stationary planetary waves from NCEP/NCAR reanalysis data,” Izv., Atmos. Ocean. Phys. 43 (6), 754–763 (2007).
K. Yu. Sukovatov and N. N. Bezuglova, “Coherent oscillations of cold-season precipitation on the territory of the Ishim plain and atmospheric circulation indices,” Rus. Meteorol. Hydrol. 40 (1), 18–26 (2015).
O. G. Khutorova, V. V. Kalinnikov, and T. R. Kurbangaliev, “Variations in the atmospheric integrated water vapor from phase measurements made with receivers of satellite navigation systems,” Atmos. Ocean. Opt. 25 (6), 429–433 (2012).
http//igscb.jpl.nasa.gov (Cited June 13, 2017).
G. Jenkins and D. Watts, Spectral Analysis and Its Applications (Holden-Day, San Francisco, 1968).
T. B. Zhuravleva and K. M. Firsov, “On variability of the radiative characteristics in the 940-nm band at variations of water vapor: Numerically simulated results,” Atmos. Ocean. Opt. 18 (9), 696–702 (2005).
T. Yu. Chesnokova, T. B. Zhuravleva, Yu. V, Voronina, T. K. Sklyadneva, N. Ya. Lomakina, and A. V. Chentsov, “Simulation of solar radiative fluxes using altitude profiles of water vapor concentration, characteristic for conditions of Western Siberian,” Atmos. Ocean. Opt. 25 (2), 147–153 (2012).
O. G. Khutorova and G. M. Teptin, “An investigation of mesoscale wave processes in the surface layer using synchronous measurements of atmospheric parameters and admixtures,” Izv., Atmos. Ocean. Phys. 45 (5), 549–556 (2009).
O. N. Bulygina, V. M. Veselov, V. N. Razuvaev, and T. M. Aleksandrova, Description of the array of current data on key meteorological parameters at Russian stations. http://meteo.ru/data/163-basic-parameters (Cited June 15, 2017).
E. Ruprecht, S. S. Schroder, and S. Ubl, “On the relation between NAO and water vapour transport toward Europe,” Meteorol. Z. 11 (6), 395–401 (2002).
M. Yu. Bardin and A. B. Polonskii, “North Atlantic Oscillation and synoptic variability in the European-Atlantic region in winter,” Izv., Atmos. Ocean. Phys. 41 (2), 127–136 (2005)
I. I. Mokhov, V. A. Semenov, V. Ch. Khon, M. Latif, and E. Rekner, “Connection between Eurasian and North Atlantic climate anomalies and natural variations in the Atlantic thermohaline circulation based on long-term model calculations,” Dokl. Earth Sci. 419 (2), 502–505 (2008).
C. Franzke and S. B. Feldstein, “The continuum and dynamics of Northern hemisphere teleconnection patterns,” J. Atmos. Sci. 62 (9), 3250–3267 (2005).
D. W. J. Thompson and J. M. Wallace, “The Arctic oscillation signature in the wintertime geopotential height and temperature fields,” Geophys. Res. Lett. 25 (9), 1297–1300 (1998).
A. G. Barnston and R. E. Livezey, “Classification, seasonality and persistence of low-frequency atmospheric circulation patterns,” Mon. Weather Rev. 115, 1083–1126 (1987).
P. Terray, “Southern hemisphere extra-tropical forcing: A new paradigm for El Nino-Southern Oscillation,” Clim. Dyn. 36 (11–12), 2171–2199 (2011).
M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39 (2), 179–229 (2001).
V. A. Bezverkhnii and A. N. Gruzdev, “Relation between quasi-decadal and quasi-biennial oscillations of solar activity and the equatorial stratospheric wind,” Dokl. Earth Sci. 415 (2), 970–974 (2007).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © O.G. Khutorova, V.E. Khutorov, G.M. Teptin, 2018, published in Optika Atmosfery i Okeana.
Rights and permissions
About this article
Cite this article
Khutorova, O.G., Khutorov, V.E. & Teptin, G.M. Interannual Variability of Surface and Integrated Water Vapor and Atmospheric Circulation in Europe. Atmos Ocean Opt 31, 486–491 (2018). https://doi.org/10.1134/S1024856018050081
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856018050081