Gradient Boosting and Linear Regression for Estimating Coastal Bathymetry Based on Sentinel-2 Images
"> Figure 1
<p>Bathymetry field samples and the geo-boundaries investigated in this study around (<b>a</b>) Sir Bani Yas and (<b>b</b>) Abu Dhabi Islands. The red lines show the airborne echo-sounding path lines to measure bathymetry.</p> "> Figure 2
<p>RGB images of Abu Dhabi regions (<b>a</b>) before sunglint correction and (<b>b</b>) after sunglint correction.</p> "> Figure 3
<p>Brief flowchart of the methodology implemented in this work. The linear regression method is presented in red color.</p> "> Figure 4
<p>Histograms of in situ bathymetry data collected by the multibeam echo-sounder around (<b>a</b>) the Sir Bani Yas and (<b>b</b>) Abu Dhabi Islands.</p> "> Figure 5
<p>Statistical values of (<b>a</b>) R<sup>2</sup> and (<b>b</b>) RMSE for the three different ratios using both linear and gradient boosting.</p> "> Figure 6
<p>Comparison between the in situ water depth (bathymetry) and estimated bathymetry values based on the gradient boosting applied using the FVBR approach for Sir Bani Yas Island. The red line is the 1:1 agreement line and the blue line is the model best fit.</p> "> Figure 7
<p>Comparison between the in situ water depth (bathymetry) and estimated bathymetry values based on the gradient boosting applied using the FVBR approach for Abu Dhabi Island. The red line is the 1:1 agreement line and the blue line is the model best fit.</p> "> Figure 8
<p>Monthly time series of maximum R<sup>2</sup> obtained for the three different ratios using (<b>a</b>) linear and (<b>b</b>) gradient boosting for estimating the bathymetry in both regions, Abu Dhabi and Sir Bani Yas Islands. The bar charts show the corresponding monthly AOT.</p> "> Figure 9
<p>Snapshots of the surface Chl-<span class="html-italic">a</span> over Sir Bani Yas Island, with a scale ranging from 0 to 2.5 mg m<sup>−3</sup>. The Chl-<span class="html-italic">a</span> is derived based on the OC3 algorithm using Sentinel-2 visible bands.</p> "> Figure 10
<p>Snapshots of the surface K<sub>d</sub>_480 over Sir Bani Yas Island, with a scale ranging from 0 to 0.6 m<sup>−1</sup>. The K<sub>d</sub>_480 is derived based on the algorithm of Lee et al., 2005 [<a href="#B25-remotesensing-14-05037" class="html-bibr">25</a>], using Sentinel-2 visible bands.</p> "> Figure 11
<p>Maps of satellite-derived bathymetry of the Sir Bani Yas Island based on the FVBR gradient boosting approach.</p> "> Figure 12
<p>Snapshots of the surface Chl-<span class="html-italic">a</span> over Abu Dhabi Island, with a scale ranging from 0 to 3.5 mg m<sup>−3</sup>. The Chl-<span class="html-italic">a</span> is derived based on the OC3 algorithm using Sentinel-2 visible bands.</p> "> Figure 13
<p>Snapshots of the surface K<sub>d</sub>_480 over Abu Dhabi Island, with a scale ranging from 0 to 1.4 m<sup>−1</sup>. The K<sub>d</sub>_480 is derived based on the algorithm of Lee et al., 2005 [<a href="#B25-remotesensing-14-05037" class="html-bibr">25</a>], using Sentinel-2 visible bands.</p> "> Figure 14
<p>Maps of satellite-derived bathymetry of Abu Dhabi Island based on the FVBR gradient boosting approach.</p> "> Figure 15
<p>Tidal elevation (height m) in Abu Dhabi for the twelve months. Some months shows two high and two low tides, whereas other months show either one high or low tide and two high/low tides. The gray shading indicates the overpass time window of Sentinel-2 over Abu Dhabi.</p> ">
Abstract
:1. Introduction
2. Literature Review
3. Data Collection and Research Methods
3.1. Study Area and Multibeam Echo-Sounder Data
3.2. Satellite Data Processing
3.3. Satellite-Derived Bathymetry Methods
3.3.1. Linear and Log-Ratio Model
3.3.2. Four-Visible-Band Ratio (FVBR) Model
4. Results
4.1. In situ Bathymetry Analysis
4.2. Comparison of Satellite-Derived and In Situ Bathymetries
5. Discussion
5.1. Temporal Variation in Bathymetry Estimates
5.2. Satellite-Derived Bathymetry Maps
5.3. Recommendations for Future Studies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dissanayake, P.; Yates, M.L.; Suanez, S.; Floc’h, F.; Krämer, K. Climate Change Impacts on Coastal Wave Dynamics at Vougot Beach, France. J. Mar. Sci. Eng. 2021, 9, 1009. [Google Scholar] [CrossRef]
- Kirezci, E.; Young, I.R.; Ranasinghe, R.; Muis, S.; Nicholls, R.J.; Lincke, D.; Hinkel, J. Projections of Global-Scale Extreme Sea Levels and Resulting Episodic Coastal Flooding over the 21st Century. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ding, S.; Nitivattananon, V.; Tang, J. Long-Term Dynamic of Land Reclamation and Its Impact on Coastal Flooding: A Case Study in Xiamen, China. Land 2021, 10, 866. [Google Scholar] [CrossRef]
- Ibrahim, H.D.; Xue, P.; Eltahir, E.A.B. Multiple Salinity Equilibria and Resilience of Persian/Arabian Gulf Basin Salinity to Brine Discharge. Front. Mar. Sci. 2020, 7, 573. [Google Scholar] [CrossRef]
- Yagoub, M.M.; Kolan, G.R. Monitoring Coastal Zone Land Use and Land Cover Changes of Abu Dhabi Using Remote Sensing. J. Indian Soc. Remote Sens. 2006, 34, 57–68. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of Water Depth with High-resolution Satellite Imagery over Variable Bottom Types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Casal, G.; Monteys, X.; Hedley, J.; Harris, P.; Cahalane, C.; McCarthy, T. Assessment of Empirical Algorithms for Bathymetry Extraction Using Sentinel-2 Data. Int. J. Remote Sens. 2019, 40, 2855–2879. [Google Scholar] [CrossRef]
- Poursanidis, D.; Traganos, D.; Reinartz, P.; Chrysoulakis, N. On the Use of Sentinel-2 for Coastal Habitat Mapping and Satellite-Derived Bathymetry Estimation Using Downscaled Coastal Aerosol Band. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 58–70. [Google Scholar] [CrossRef]
- Hamylton, S.M.; Hedley, J.D.; Beaman, R.J. Derivation of High-Resolution Bathymetry from Multispectral Satellite Imagery: A Comparison of Empirical and Optimisation Methods through Geographical Error Analysis. Remote Sens. 2015, 7, 16257–16273. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-K.; Philpot, W.D. Using Airborne Bathymetric Lidar to Detect Bottom Type Variation in Shallow Waters. Remote Sens. Environ. 2007, 106, 123–135. [Google Scholar] [CrossRef]
- Sagawa, T.; Yamashita, Y.; Okumura, T.; Yamanokuchi, T. Satellite Derived Bathymetry Using Machine Learning and Multi-Temporal Satellite Images. Remote Sens. 2019, 11, 1155. [Google Scholar] [CrossRef] [Green Version]
- Najar, M.A.; Benshila, R.; Bennioui, Y.E.; Thoumyre, G.; Almar, R.; Bergsma, E.W.J.; Delvit, J.-M.; Wilson, D.G. Coastal Bathymetry Estimation from Sentinel-2 Satellite Imagery: Comparing Deep Learning and Physics-Based Approaches. Remote Sens. 2022, 14, 1196. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. SMART-SDB: Sample-Specific Multiple Band Ratio Technique for Satellite-Derived Bathymetry. Remote Sens. Environ. 2020, 251, 112091. [Google Scholar] [CrossRef]
- Pereira, P.; Baptista, P.; Cunha, T.; Silva, P.A.; Romão, S.; Lafon, V. Estimation of the Nearshore Bathymetry from High Temporal Resolution Sentinel-1A C-Band SAR Data—A Case Study. Remote Sens. Environ. 2019, 223, 166–178. [Google Scholar] [CrossRef]
- Bergsma, E.W.J.; Almar, R.; Rolland, A.; Binet, R.; Brodie, K.L.; Bak, A.S. Coastal Morphology from Space: A Showcase of Monitoring the Topography-Bathymetry Continuum. Remote Sens. Environ. 2021, 261, 112469. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Su, H.; Wang, J. Bathymetry Retrieval from Optical Images with Spatially Distributed Support Vector Machines. GIScience Remote Sens. 2019, 56, 323–337. [Google Scholar] [CrossRef]
- Misra, A.; Vojinovic, Z.; Ramakrishnan, B.; Luijendijk, A.; Ranasinghe, R. Shallow Water Bathymetry Mapping Using Support Vector Machine (SVM) Technique and Multispectral Imagery. Int. J. Remote Sens. 2018, 39, 4431–4450. [Google Scholar] [CrossRef]
- Mateo-Pérez, V.; Corral-Bobadilla, M.; Ortega-Fernández, F.; Vergara-González, E.P. Port Bathymetry Mapping Using Support Vector Machine Technique and Sentinel-2 Satellite Imagery. Remote Sens. 2020, 12, 2069. [Google Scholar] [CrossRef]
- Dredging Today Unique System Installs Kongsberg EM 2040 Multibeam Echo Sounder on Bayanat Vessels. Available online: https://www.dredgingtoday.com/2014/07/02/unique-system-installs-kongsberg-em-2040-multibeam-echo-sounder-on-bayanat-vessels/ (accessed on 20 August 2022).
- Ody, A.; Doxaran, D.; Vanhellemont, Q.; Nechad, B.; Novoa, S.; Many, G.; Bourrin, F.; Verney, R.; Pairaud, I.; Gentili, B. Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-Tidal River Plume. Remote Sens. 2016, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Hedley, J.D.; Harborne, A.R.; Mumby, P.J. Simple and Robust Removal of Sun Glint for Mapping Shallow-Water Benthos. Int. J. Remote Sens. 2005, 26, 2107–2112. [Google Scholar] [CrossRef]
- Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 Relation between Training and Testing Sets: A Pedagogical Explanation. In Departmental Technical Reports (CS); University of Texas at El Paso: El Paso, TX, USA, 2018. [Google Scholar]
- NASA Chlorophyll a (Chlor_a). Available online: https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/ (accessed on 20 August 2022).
- NASA Diffuse Attenuation Coefficient for Downwelling Irradiance at 490 Nm (Kd_490). Available online: https://oceancolor.gsfc.nasa.gov/atbd/kd_490/ (accessed on 20 August 2022).
- Lee, Z.; Du, K.; Arnone, R. A Model for the Diffuse Attenuation Coefficient of Downwelling Irradiance. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef]
- Escoto, J.E.; Blanco, A.C.; Argamosa, R.J.; Medina, J.M. Pasig River Water Quality Estimation Using an Empirical Ordinary Least Squares Regression Model of Sentinel-2 Satellite Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 46, 161–168. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient Boosting Machines, a Tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- XGBoost XGBoost Documentation. Available online: https://xgboost.readthedocs.io/en/latest/index.html%0Ahttps://xgboost.readthedocs.io/en/latest/#%0Ahttps://xgboost.readthedocs.io/en/latest/ (accessed on 20 August 2022).
- Al-Shehhi, M.R.; Nelson, D.; Farzanah, R.; Alshihi, R.; Salehi-Ashtiani, K. Characterizing Algal Blooms in a Shallow & a Deep Channel. Ocean Coast. Manag. 2021, 213, 105840. [Google Scholar]
- Al Kaabi, M.R.; Zhao, J.; Ghedira, H. MODIS-Based Mapping of Secchi Disk Depth Using a Qualitative Algorithm in the Shallow Arabian Gulf. Remote Sens. 2016, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Al-Salem, K.; Neelamani, S.; Al-Nassar, W. Wind Energy Map of Arabian Gulf. Nat. Resour. 2018, 9, 212–228. [Google Scholar] [CrossRef]
- Al-Ghadban, A.N.; Massoud, M.S.; Abdali, F. Bottom Sediments of the Arabian Gulf: I. Sedimentological Characteristics. Kuwait J. Sci. Eng. 1996, 23, 71–88. [Google Scholar]
- Tides4fishing. Available online: https://tides4fishing.com/ae/united-arab-emirates/abu-dhabi (accessed on 10 August 2022).
Gradient Boosting | Linear | |||||||
---|---|---|---|---|---|---|---|---|
Month | Sir Bani Yas | Abu Dhabi | Sir Bani Yas | Abu Dhabi | ||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
January | 0.83 | 5.6 | 0.4 | 9.6 | 0.68 | 10.27 | 0.12 | 14.01 |
February | 0.9 | 3.28 | 0.69 | 5.02 | 0.79 | 6.66 | 0.64 | 5.71 |
March | 0.85 | 4.9 | 0.71 | 4.61 | 0.72 | 9.04 | 0.65 | 5.67 |
April | 0.84 | 5.1 | 0.6 | 6.37 | 0.76 | 7.86 | 0.57 | 6.94 |
May | 0.91 | 2.98 | 0.46 | 8.64 | 0.84 | 5.14 | 0.41 | 9.38 |
June | 0.87 | 4.11 | 0.52 | 7.72 | 0.79 | 6.87 | 0.49 | 8.14 |
July | 0.88 | 3.87 | 0.62 | 6.12 | 0.80 | 6.53 | 0.44 | 8.87 |
August | 0.83 | 5.5 | 0.65 | 5.67 | 0.73 | 8.79 | 0.47 | 8.42 |
September | 0.87 | 4.2 | 0.71 | 4.56 | 0.79 | 6.74 | 0.56 | 7.09 |
October | 0.89 | 3.41 | 0.64 | 5.67 | 0.76 | 7.75 | 0.48 | 8.24 |
November | 0.76 | 7.73 | 0.66 | 5.39 | 0.67 | 10.76 | 0.43 | 9.17 |
December | 0.7 | 9.66 | 0.61 | 6.25 | 0.62 | 12.36 | 0.40 | 9.59 |
Gradient Boosting | Linear | |||||||
---|---|---|---|---|---|---|---|---|
Month | Sir Bani Yas | Abu Dhabi | Sir Bani Yas | Abu Dhabi | ||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
January | 0.24 | 24.55 | 0.16 | 13.48 | 0.49 | 16.53 | 0.04 | 15.35 |
February | 0.68 | 10.35 | 0.57 | 6.81 | 0.69 | 9.86 | 0.68 | 5.18 |
March | 0.45 | 17.69 | 0.55 | 7.22 | 0.59 | 13.27 | 0.61 | 6.23 |
April | 0.56 | 14.26 | 0.44 | 8.87 | 0.62 | 12.15 | 0.52 | 7.69 |
May | 0.79 | 6.90 | 0.24 | 12.12 | 0.77 | 7.57 | 0.34 | 10.58 |
June | 0.45 | 17.82 | 0.43 | 9.05 | 0.59 | 13.07 | 0.48 | 8.23 |
July | 0.68 | 10.27 | 0.44 | 9.00 | 0.69 | 9.88 | 0.45 | 8.71 |
August | 0.53 | 15.02 | 0.52 | 7.73 | 0.61 | 12.69 | 0.46 | 8.70 |
September | 0.69 | 9.89 | 0.54 | 7.41 | 0.73 | 8.74 | 0.62 | 6.11 |
October | 0.53 | 15.08 | 0.23 | 12.29 | 0.64 | 11.75 | 0.31 | 11.08 |
November | 0.38 | 20.07 | 0.42 | 9.30 | 0.54 | 14.74 | 0.43 | 9.12 |
December | 0.33 | 21.65 | 0.45 | 8.71 | 0.49 | 16.43 | 0.41 | 9.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Gafoor, F.; Al-Shehhi, M.R.; Cho, C.-S.; Ghedira, H. Gradient Boosting and Linear Regression for Estimating Coastal Bathymetry Based on Sentinel-2 Images. Remote Sens. 2022, 14, 5037. https://doi.org/10.3390/rs14195037
Abdul Gafoor F, Al-Shehhi MR, Cho C-S, Ghedira H. Gradient Boosting and Linear Regression for Estimating Coastal Bathymetry Based on Sentinel-2 Images. Remote Sensing. 2022; 14(19):5037. https://doi.org/10.3390/rs14195037
Chicago/Turabian StyleAbdul Gafoor, Fahim, Maryam R. Al-Shehhi, Chung-Suk Cho, and Hosni Ghedira. 2022. "Gradient Boosting and Linear Regression for Estimating Coastal Bathymetry Based on Sentinel-2 Images" Remote Sensing 14, no. 19: 5037. https://doi.org/10.3390/rs14195037
APA StyleAbdul Gafoor, F., Al-Shehhi, M. R., Cho, C.-S., & Ghedira, H. (2022). Gradient Boosting and Linear Regression for Estimating Coastal Bathymetry Based on Sentinel-2 Images. Remote Sensing, 14(19), 5037. https://doi.org/10.3390/rs14195037