Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017
<p>Geographic locations of the magnetometer observatories (black triangle) and the IGS GNSS stations (red star) in the Indian longitude sector considered in the study. The dashed horizontal contour lines represent the approximate positions of the magnetic equator and northern EIA crest. The ionospheric piercing point (IPP) locations for the GPS PRNs, 14 and 32, during the storm on 8 September 2017 are indicated by the green (+) and blue (+) curves, respectively.</p> "> Figure 2
<p>Variation of the Kp, ASYH, SYMH, Bz, Ey, and AE indices during the geomagnetic storm period from 6–10 September 2017, arranged from the bottom to the top panel. The arrow-headed, vertical, red, dashed lines indicate the SSCs due to the shocks of the coronal mass ejections (CMEs). The storm main phase stage-I and stage-II as well as the recovery phase are indicated in the Figure.</p> "> Figure 3
<p>Variation of the horizontal magnetic field component H (in black), superimposed with the regular Sq variation (in blue) and Diono component (in red) that corresponds to the disturbances due to ionospheric currents registered at all four magnetometer observatories (top 4-panels) during the storm period from 6–10 September 2017. The bottom panel shows the variation of the EEJ proxy index during the storm period (in black) superimposed with the averaged quiet-time reference level (in red).</p> "> Figure 4
<p>Effects of the prompt penetration electric fields (PPEFs) towards the enhanced duskside PRF calculated from the real-time prompt penetration electric field model (PPEFM; <a href="https://geomag.colorado.edu/real-time-model-of-the-ionospheric-electric-fields" target="_blank">https://geomag.colorado.edu/real-time-model-of-the-ionospheric-electric-fields</a>, accessed on 18 January 2022) [<a href="#B78-remotesensing-14-00652" class="html-bibr">78</a>] over the Indian longitude (78° E) in the main phase of the storm during 6–10 September 2017. The black line shows the background quiet-time electric field, whereas the blue and red lines indicate the prompt penetration electric field and the total electric field (the sum of quiet-time and prompt penetration electric fields), respectively.</p> "> Figure 5
<p>Variation of the VTEC and ROTI parameters at (<b>a</b>) SGOC, Colombo; (<b>b</b>) IISC, Bangalore; (<b>c</b>) HYDE, Hyderabad; and (<b>d</b>) LCK4, Lucknow, during the storm period from 6–10 September 2017 (in black), superimposed with the corresponding quiet-time reference values (in red).</p> "> Figure 6
<p>Classification of the ionospheric irregularities based on the ROTI values at (<b>a</b>) SGOC, Colombo, (<b>b</b>) IISC, Bangalore, (<b>c</b>) HYDE, Hyderabad, and (<b>d</b>) LCK4, Lucknow on the geomagnetic storm day (8 September 2017). The criteria for the classification of the irregularities is chosen as (i) no irregularity (ROTI < 0.25; in green); (ii) weak irregularity (0.25 ≤ ROTI < 0.5; in red); (iii) moderate irregularity (0.5 ≤ ROTI < 1; in blue); and (iv) strong irregularity (ROTI ≥ 1; black). The shaded portion with ROTI < 0.25 is masked out in this study.</p> "> Figure 7
<p>Diurnal maximum absolute error (MAE) and root mean square error (RMSE) of ROTI at (<b>a</b>) SGOC, Colombo, (<b>b</b>) IISC, Bangalore, (<b>c</b>) HYDE, Hyderabad, and (<b>d</b>) LCK4, Lucknow on the geomagnetic storm day (8 September 2017), with respect to the averaged quiet-time reference level.</p> "> Figure 8
<p>Spatiotemporal variation of the plasma irregularities marked from the simultaneous ROTI observations from PRN-14 and PRN-32 GPS satellite signals at (<b>a</b>) SGOC, Colombo, (<b>b</b>) IISC, Bangalore, (<b>c</b>) HYDE, Hyderabad, and (<b>d</b>) LCK4, Lucknow on the geomagnetic storm day (8 September 2017), respectively arranged from bottom to top. The vertical dotted lines indicate the timestamps of corresponding ROTI peaks at all stations. The pink-colored shaded portion at the bottom indicates the masked-out ROTI values (ROTI < 0.25), wherein the TEC fluctuation is assumed to be absent.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Global Geomagnetic Indices and Interplanetary Parameters
2.2. Local Magnetometer Data Processing
2.3. GPS TEC Data Processing
3. Results and Discussion
4. Summary and Conclusions
- The concurrence of ASYH enhancement with the SYMH/local magnetometer H component depressions indicates joule heating at the auroral zone, resulting in the probable DDEF transmission and molecular exchange in conjunction with the PPEF transmission related to magnetospheric convection, making it a complex event in the Indian local time sector.
- The enhanced ASYH signature influenced the local post-midnight to dawn sector, while the large decrease in Diono influenced the daytime ionospheric current during the storm.
- The sharp enhancement in the diurnal TEC variations at the higher low-latitude location (LCK4), almost no visible TEC response at the equator (SGOC), and slight enhancements at the intermediate stations (IISC and HYDE) on 7 September are associated with the disturbed equatorial ionization anomaly (EIA), due to multiple M-class flares and prompt penetration electric fields (PPEFs).
- The significant decrement in the diurnal TEC at the higher low-latitudes and enhancements at the equatorial and nearby sectors on 8 September, confirms the delayed DDEF penetration and reduced EEJ current to suppressed EIA that resulted in the increased ionization over the equator. Additionally, contributions from the storm-time compositional changes (O/N2) in the F-region are also important to characterize the suppressed EIA at low latitudes.
- On 8 September, the cumulative effects of the southward turning of Bz, the negative departure in SYMH, and the flipped EEJ current conceived a pre-reversal enhancement (PRE)-like scenario. This indeed resulted in a more dominant eastward electric field during the combined effects of PPEF and DDEF during the local evening sector, which was complemented by the penetrating electric field calculations through the real-time PPEFM model. Thus, the PRE seeded the development of the equatorial plasma bubbles (EPBs) in the post-sunset period, which was captured in the ROTI variations at all the stations in our study.
- The relatively stronger PRE on 8 September caused the EPB to extend more poleward than the movement observed on 10 September, the nearest geomagnetically quiet day.
- The higher magnitude of ROTI at the equatorial location (SGOC), reaching a level of 2 TECU/min, compared to the other low latitude region, confirms the severity of the scintillations at the equator. This was substantiated from the analysis of the % occurrence rate of the strong, moderate, and weak TEC fluctuations in the ROTI data at the locations.
- Moreover, the largest maximum absolute error (MAE) and root mean square error (RMSE) of ROTI at the equator (SGOC) and its temporal shifts towards higher latitudes suggest the latitudinal movement of irregularities on the day.
- The analysis of ROTI variations from two selected GPS PRNs (PRN-14 and PRN-31) suggests the severity of plasma irregularities at the equator and its temporal poleward expansion with a lag between consecutive stations, corroborating the drifting of EPBs towards farther latitudes
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GNSS | Global Navigation Satellite System |
ASYH | Asymmetric H index component |
SYMH | Symmetric H index component |
Bz | Interplanetary magnetic field component |
Ey | Interplanetary electric field component |
AE | Auroral electrojet index |
GPS | Global Positioning System |
TEC | Total electron content |
EIA | Equatorial ionization anomaly |
PPEF | Prompt penetration electric field |
DDEF | Disturbance dynamo electric field |
EEJ | Equatorial electrojet |
PRE | Pre-reversal enhancement |
EPB | Equatorial plasma bubble |
ROTI | Rate of change of TEC index |
σΦ | Phase scintillation index |
S4 | Amplitude scintillation index |
MAE | Maximum absolute error |
RMSE | Root Mean square error |
SR | Regular magnetic variation associated with the regular ionospheric dynamo |
Sq | Magnetic field variation due to solar quiet ionospheric current |
Diono | Disturbance ionospheric current |
DP2 | Disturbance polar current-2 |
Ddyn | Ionospheric disturbed dynamo currents |
CME | Coronal mass ejection |
References
- Acharya, R.; Majumdar, S. Statistical relation of scintillation index S4 with ionospheric irregularity index ROTI over Indian equatorial region. Adv. Space Res. 2019, 64, 1019–1033. [Google Scholar] [CrossRef]
- Bagiya, M.S.; Thampi, S.V.; Hui, D.; Sunil, A.S.; Chakrabarty, D.; Choudhary, R.K. Signatures of the Solar Transient Disturbances Over the Low Latitude Ionosphere During 6 to 8 September 2017. J. Geophys. Res. Space Phys. 2018, 123, 7598–7608. [Google Scholar] [CrossRef]
- Alfonsi, L.; Cesaroni, C.; Spogli, L.; Regi, M.; Paul, A.; Ray, S.; Lepidi, S.; Di Mauro, D.; Haralambous, H.; Oikonomou, C.; et al. Ionospheric Disturbances Over the Indian Sector During 8 September 2017 Geomagnetic Storm: Plasma Structuring and Propagation. Space Weather 2021, 19, e2020SW002607. [Google Scholar] [CrossRef]
- Horvath, I.; Lovell, B.C. Magnetosphere-Ionosphere-Thermosphere (M-I-T) Coupling Leading to Equatorial Upward and Westward Drifting Supersonic Plasma Bubble Development and Amplified Subauroral Polarization Streams (SAPS) During the January 21, 2005 Moderate Storm. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028548. [Google Scholar] [CrossRef]
- Kelley, M.C.; Fejer, B.G.; Gonzales, C.A. An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett. 1979, 6, 301–304. [Google Scholar] [CrossRef]
- Kikuchi, T.; Hashimoto, K.K.; Kitamura, T.; Tachihara, H.; Fejer, B. Equatorial counterelectrojets during substorms. J. Geophys. Res. Earth Surf. 2003, 108, 1406. [Google Scholar] [CrossRef]
- Huang, C.-S.; Foster, J.C.; Goncharenko, L.; Reeves, G.; Chau, J.; Yumoto, K.; Kitamura, K. Variations of low-latitude geomagnetic fields andDstindex caused by magnetospheric substorms. J. Geophys. Res. Earth Surf. 2004, 109. [Google Scholar] [CrossRef]
- Fejer, B.G.; Navarro, L.A.; Sazykin, S.; Newheart, A.; Milla, M.A.; Condor, P. Prompt Penetration and Substorm Effects Over Jicamarca During the September 2017 Geomagnetic Storm. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029651. [Google Scholar] [CrossRef]
- Vasyliunas, V.M. Mathematical Models of Magnetospheric Convection and its Coupling to the Ionosphere. In Particles and Fields in the Magnetosphere; Springer: Dordrecht, The Netherlands, 1970; pp. 60–71. [Google Scholar]
- Nishida, A. GeomagneticDp2 fluctuations and associated magnetospheric phenomena. J. Geophys. Res. Earth Surf. 1968, 73, 1795–1803. [Google Scholar] [CrossRef]
- Kikuchi, T.; Araki, T.; Maeda, H.; Maekawa, K. Transmission of polar electric fields to the Equator. Nature 1978, 273, 650–651. [Google Scholar] [CrossRef]
- Peymirat, C.; Kobea, A.T.; Richmond, A.D. Electrodynamic coupling of high and low latitudes: Simulations of shielding/overshielding effects. J. Geophys. Res. Earth Surf. 2000, 105, 22991–23003. [Google Scholar] [CrossRef]
- Blanc, M.; Richmond, A. The ionospheric disturbance dynamo. J. Geophys. Res. Earth Surf. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Fejer, B.G.; Larsen, M.F.; Farley, D.T. Equatorial disturbance dynamo electric fields. Geophys. Res. Lett. 1983, 10, 537–540. [Google Scholar] [CrossRef]
- Ram, S.T.; Rao, P.V.S.R.; Prasad, D.S.V.V.D.; Niranjan, K.; Krishna, S.G.; Sridharan, R.; Ravindran, S. Local time dependent response of postsunset ESF during geomagnetic storms. J. Geophys. Res. Earth Surf. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Xiong, C.; Xu, J.; Zhu, Z.; Chang, S. The Low-Latitude Plasma Irregularities after Sunrise from Multiple Observations in Both Hemispheres during the Recovery Phase of a Storm. Remote Sens. 2020, 12, 2897. [Google Scholar] [CrossRef]
- Klobuchar, J.A. Ionospheric Effects on GPS. In Global Positioning System: Theory and Applications; Parkinson, B.W., Spilker, J.J., Eds.; American Institute of Aeronautics & Astronautics: Reston, VA, USA, 1996; Volume 1, pp. 485–515. [Google Scholar]
- Klobuchar, J.A.; Doherty, P.H. A Look Ahead: Expected Ionospheric Effects on GPS in 2000. GPS Solut. 1998, 2, 42–48. [Google Scholar] [CrossRef]
- Smith, J.; Heelis, R.A. Equatorial plasma bubbles: Variations of occurrence and spatial scale in local time, longitude, season, and solar activity. J. Geophys. Res. Space Phys. 2017, 122, 5743–5755. [Google Scholar] [CrossRef]
- Okoh, D.; Rabiu, B.; Shiokawa, K.; Otsuka, Y.; Segun, B.; Falayi, E.; Onwuneme, S.; Kaka, R. First Study on the Occurrence Frequency of Equatorial Plasma Bubbles over West Africa Using an All-Sky Airglow Imager and GNSS Receivers. J. Geophys. Res. Space Phys. 2017, 122, 12–430. [Google Scholar] [CrossRef]
- Gurav, O.; Sripathi, S.; Ghodpage, R. Radio and optical investigations of storm time evolution of post-midnight equatorial plasma bubbles (EPBs) and their drifts over Indian sector. Adv. Space Res. 2021, 67, 87–101. [Google Scholar] [CrossRef]
- Joshi, L.M.; Patra, A.K.; Pant, T.K.; Rao, S.V.B. On the nature of low-latitudeEsinfluencing the genesis of equatorial plasma bubble. J. Geophys. Res. Space Phys. 2013, 118, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Seif, A.; Tsunoda, R.T.; Abdullah, M.; Hasbi, A.M. Daytime gigahertz scintillations near magnetic equator: Relationship to blanketing sporadic E and gradient-drift instability. Earth Planets Space 2015, 67, 177. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, A.; Beach, T.L.; Basu, S.; Kintner, P.M. Nighttime equatorial ionosphere: GPS scintillations and differential carrier phase fluctuations. Radio Sci. 2000, 35, 209–224. [Google Scholar] [CrossRef]
- Luo, X.; Gu, S.; Lou, Y.; Cai, L.; Liu, Z. Amplitude scintillation index derived from C/N0 measurements released by common geodetic GNSS receivers operating at 1 Hz. J. Geodesy 2020, 94, 27. [Google Scholar] [CrossRef]
- Goodman, J.L.; Kramer, L. Scintillation Effects on Space Shuttle GPS Data. In Proceedings of the 2001 National Technical Meeting of The Institute of Navigation, Long Beach, CA, USA, 22–24 January 2001; pp. 742–752. [Google Scholar]
- Bolaji, O.; Adebiyi, S.; Fashae, J. Characterization of ionospheric irregularities at different longitudes during quiet and disturbed geomagnetic conditions. J. Atmos. Sol.-Terr. Phys. 2019, 182, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Pi, X.; Mannucci, A.J.; Lindqwister, U.J.; Ho, C.M. Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophys. Res. Lett. 1997, 24, 2283–2286. [Google Scholar] [CrossRef]
- Olwendo, J.O.; Cilliers, P.; Weimin, Z.; Ming, O.; Yu, X. Validation of ROTI for Ionospheric Amplitude Scintillation Measurements in a Low-Latitude Region Over Africa. Radio Sci. 2018, 53, 876–887. [Google Scholar] [CrossRef]
- Li, C.; Hancock, C.M.; Hamm, N.A.S.; Veettil, S.V.; You, C. Analysis of the Relationship between Scintillation Parameters, Multipath and ROTI. Sensors 2020, 20, 2877. [Google Scholar] [CrossRef]
- Gogie, T.K. The Rate of Ionospheric Total Electron Content Index (ROTI) as a Proxy for Nighttime Ionospheric Irregularity Using Ethiopian Low-Latitude GPS Data. Geomagn. Aeron. 2021, 61, 464–475. [Google Scholar] [CrossRef]
- Kotulak, K.; Zakharenkova, I.; Krankowski, A.; Cherniak, I.; Wang, N.; Fron, A. Climatology Characteristics of Ionospheric Irregularities Described with GNSS ROTI. Remote Sens. 2020, 12, 2634. [Google Scholar] [CrossRef]
- Carmo, C.S.; Denardini, C.M.; Figueiredo, C.A.O.B.; Resende, L.C.A.; Picanço, G.A.S.; Neto, P.F.B.; Nogueira, P.A.B.; Moro, J.; Chen, S.S. Evaluation of Different Methods for Calculating the ROTI Index Over the Brazilian Sector. Radio Sci. 2021, 56, e2020RS007140. [Google Scholar] [CrossRef]
- Cherniak, I.; Krankowski, A.; Zakharenkova, I. ROTI Maps: A new IGS ionospheric product characterizing the ionospheric irregularities occurrence. GPS Solutions 2018, 22, 69. [Google Scholar] [CrossRef]
- Raghunath, S.; Venkata Ratnam, D. Detection of Ionospheric Spatial and Temporal Gradients for Ground Based Augmentation System Applications. Indian J. Radio Space Phys. 2016, 45, 11–19. [Google Scholar]
- Harsha, P.B.S.; Ratnam, D.V.; Nagasri, M.L.; Sridhar, M.; Raju, K.P. Kriging-Based Ionospheric TEC, ROTI and Amplitude Scintillation Index (S 4) Maps for India. IET Radar Sonar Navig. 2020, 14, 1827–1836. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Y.; Fang, K.; Fang, J. Statistical Study of the Seasonal Variations in TEC Depletion and the ROTI during 2013–2019 over Hong Kong. Sensors 2020, 20, 6200. [Google Scholar] [CrossRef] [PubMed]
- Manga, N.A.; Lakshmanna, K.; Sarma, A.D.; Pant, T.K. Analysis of Correlation between Roti and S4 Using Gagan Data. Prog. Electromagn. Res. M 2021, 99, 23–34. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Z. Correlation between ROTI and Ionospheric Scintillation Indices using Hong Kong low-latitude GPS data. GPS Solutions 2016, 20, 815–824. [Google Scholar] [CrossRef]
- Xiong, B.; Wan, W.-X.; Ning, B.-Q.; Yuan, H.; Li, G.-Z. A Comparison and Analysis of theS4Index, C/N and Roti over Sanya. Chin. J. Geophys. 2007, 50, 1414–1424. [Google Scholar] [CrossRef]
- Kumar, S. Morphology of equatorial plasma bubbles during low and high solar activity years over Indian sector. Astrophys. Space Sci. 2017, 362, 93. [Google Scholar] [CrossRef]
- Bagiya, M.S.; Iyer, K.N.; Joshi, H.; Thampi, S.V.; Tsugawa, T.; Ravindran, S.; Sridharan, R.; Pathan, B.M. Low-latitude ionospheric-thermospheric response to storm time electrodynamical coupling between high and low latitudes. J. Geophys. Res. Earth Surf. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Srinivasu, V.; Prasad, D.; Niranjan, K.; Seemala, G.K.; Venkatesh, K. L-Band Scintillation and TEC Variations on St. Patrick’s Day Storm of 17 March 2015 over Indian Longitudes Using GPS and GLONASS Observations. J. Earth Syst. Sci. 2019, 128, 69. [Google Scholar] [CrossRef] [Green Version]
- Aa, E.; Huang, W.; Liu, S.; Ridley, A.; Zou, S.; Shi, L.; Chen, Y.; Shen, H.; Yuan, T.; Li, J.; et al. Midlatitude Plasma Bubbles Over China and Adjacent Areas During a Magnetic Storm on 8 September 2017. Space Weather 2018, 16, 321–331. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, L.; Le, H.; Chen, Y. Equatorial Ionospheric Electrodynamics Over Jicamarca During the 6–11 September 2017 Space Weather Event. J. Geophys. Res. Space Phys. 2019, 124, 1292–1306. [Google Scholar] [CrossRef]
- Lei, J.; Huang, F.; Chen, X.; Zhong, J.; Ren, D.; Wang, W.; Yue, X.; Luan, X.; Jia, M.; Dou, X.; et al. Was Magnetic Storm the Only Driver of the Long-Duration Enhancements of Daytime Total Electron Content in the Asian-Australian Sector Between 7 and 12 September 2017? J. Geophys. Res. Space Phys. 2018, 123, 3217–3232. [Google Scholar] [CrossRef]
- Li, G.; Ning, B.; Wang, C.; Abdu, M.A.; Otsuka, Y.; Yamamoto, M.; Wu, J.; Chen, J. Storm-Enhanced Development of Postsunset Equatorial Plasma Bubbles Around the Meridian 120°E/60°W on 7-8 September 2017. J. Geophys. Res. Space Phys. 2018, 123, 7985–7998. [Google Scholar] [CrossRef]
- Nishimura, Y.; Mrak, S.; Semeter, J.L.; Coster, A.J.; Jayachandran, P.T.; Groves, K.M.; Knudsen, D.J.; Nishitani, N.; Ruohoniemi, J.M. Evolution of Mid-latitude Density Irregularities and Scintillation in North America During the 7–8 September 2017 Storm. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029192. [Google Scholar] [CrossRef]
- Wei, L.; Jiang, C.; Hu, Y.; Aa, E.; Huang, W.; Liu, J.; Yang, G.; Zhao, Z. Ionosonde Observations of Spread F and Spread Es at Low and Middle Latitudes during the Recovery Phase of the 7–9 September 2017 Geomagnetic Storm. Remote Sens. 2021, 13, 1010. [Google Scholar] [CrossRef]
- Jimoh, O.; Lei, J.; Zhong, J.; Owolabi, C.; Luan, X.; Dou, X. Topside Ionospheric Conditions During the 7–8 September 2017 Geomagnetic Storm. J. Geophys. Res. Space Phys. 2019, 124, 9381–9404. [Google Scholar] [CrossRef]
- De Paula, E.R.; de Oliveira, C.M.; Caton, R.G.; Negreti, P.M.; Batista, I.S.; Martinon, A.R.F.; Neto, A.C.; Abdu, M.A.; Monico, J.F.G.; Sousasantos, J.; et al. Ionospheric irregularity behavior during the September 6–10, 2017 magnetic storm over Brazilian equatorial–low latitudes. Earth Planets Space 2019, 71, 42. [Google Scholar] [CrossRef]
- Aa, E.; Zou, S.; Ridley, A.; Zhang, S.; Coster, A.J.; Erickson, P.J.; Liu, S.; Ren, J. Merging of Storm Time Midlatitude Traveling Ionospheric Disturbances and Equatorial Plasma Bubbles. Space Weather 2019, 17, 285–298. [Google Scholar] [CrossRef]
- Nair, K.N.; Rastogi, R.G.; Sarabhai, V.; Nair, R.G.R.K.N. Daily Variation of the Geomagnetic Field at the Dip Equator. Nature 1970, 226, 740–741. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, A.; Vichare, G. Characteristics of penetration electric fields to the equatorial ionosphere during southward and northward IMF turnings. J. Geophys. Res. Space Phys. 2013, 118, 4696–4709. [Google Scholar] [CrossRef]
- Panda, S.; Gedam, S.; Rajaram, G.; Sripathi, S.; Bhaskar, A. Impact of the 15 January 2010 annular solar eclipse on the equatorial and low latitude ionosphere over the Indian region. J. Atmos. Sol.-Terr. Phys. 2015, 135, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Guzdar, P.N.; Milikh, G.M.; Papadopoulos, K.; Goodrich, C.C.; Sharma, A.; Wiltberger, M.J.; Lyon, J.G. Comparing ground magnetic field perturbations from global MHD simulations with magnetometer data for the 10 January 1997 magnetic storm event. J. Geophys. Res. Earth Surf. 2002, 107, SMP11. [Google Scholar] [CrossRef] [Green Version]
- Huy, M.L.; Amory-Mazaudier, C. Magnetic signature of the ionospheric disturbance dynamo at equatorial latitudes: “Ddyn”. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef]
- Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S.; Amory-Mazaudier, C.; Fleury, R. Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J. Geophys. Res. Space Phys. 2016, 121, 3421–3438. [Google Scholar] [CrossRef] [Green Version]
- Kashcheyev, A.; Migoya-Orue, Y.; Amory-Mazaudier, C.; Fleury, R.; Nava, B.; Alazo-Cuartas, K.; Radicella, S.M. Multivariable Comprehensive Analysis of Two Great Geomagnetic Storms of 2015. J. Geophys. Res. Space Phys. 2018, 123, 5000–5018. [Google Scholar] [CrossRef]
- Imtiaz, N.; Younas, W.; Khan, M. Response of the low- to mid-latitude ionosphere to the geomagnetic storm of September 2017. Ann. Geophys. 2020, 38, 359–372. [Google Scholar] [CrossRef] [Green Version]
- Amaechi, P.O.; Oyeyemi, E.O.; Akala, A.O.; Amory-Mazaudier, C. Geomagnetic Activity Control of Irregularities Occurrences Over the Crests of the African EIA. Earth Space Sci. 2020, 7, e2020EA001183. [Google Scholar] [CrossRef]
- Younas, W.; Amory-Mazaudier, C.; Khan, M.; Fleury, R. Ionospheric and Magnetic Signatures of a Space Weather Event on 25–29 August 2018: CME and HSSWs. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027981. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S. Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. Earth Surf. 1994, 99, 3893–3914. [Google Scholar] [CrossRef]
- Reddybattula, K.D.; Panda, S.K.; Sharma, S.K.; Singh, A.K.; Kurnala, K.; Haritha, C.S.; Wuyyuru, S. Anomaly effects of 6–10 September 2017 solar flares on ionospheric total electron content over Saudi Arabian low latitudes. Acta Astronaut. 2020, 177, 332–340. [Google Scholar] [CrossRef]
- Jenan, R.; Dammalage, T.L.; Panda, S.K. Ionospheric total electron content response to September-2017 geomagnetic storm and December-2019 annular solar eclipse over Sri Lankan region. Acta Astronaut. 2021, 180, 575–587. [Google Scholar] [CrossRef]
- Roble, R.G.; Dickinson, R.E.; Ridley, E.C. Seasonal and solar cycle variations of the zonal mean circulation in the thermosphere. J. Geophys. Res. Earth Surf. 1977, 82, 5493–5504. [Google Scholar] [CrossRef]
- Prölss, G.W. Magnetic storm associated perturbations of the upper atmosphere: Recent results obtained by satellite-borne gas analyzers. Rev. Geophys. 1980, 18, 183–202. [Google Scholar] [CrossRef]
- Burns, A.G.; Killeen, T.L.; Roble, R.G. A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm. J. Geophys. Res. Earth Surf. 1991, 96, 14153–14167. [Google Scholar] [CrossRef]
- Liou, K.; Newell, P.T.; Anderson, B.J.; Zanetti, L.; Meng, C. Neutral composition effects on ionospheric storms at middle and low latitudes. J. Geophys. Res. Earth Surf. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Liemohn, M.; Kozyra, J.U.; Thomsen, M.F.; Roeder, J.L.; Lu, G.; Borovsky, J.E.; Cayton, T.E. Dominant role of the asymmetric ring current in producing the stormtimeDst*. J. Geophys. Res. Earth Surf. 2001, 106, 10883–10904. [Google Scholar] [CrossRef] [Green Version]
- Ram, S.T.; Yokoyama, T.; Otsuka, Y.; Shiokawa, K.; Sripathi, S.; Veenadhari, B.; Heelis, R.; Ajith, K.K.; Gowtam, V.S.; Gurubaran, S.; et al. Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrick’s Day storm on 17 March 2015. J. Geophys. Res. Space Phys. 2015, 121, 538–548. [Google Scholar] [CrossRef]
- Abdu, M.A.; Nogueira, P.A.B.; Santos, A.M.; De Souza, J.R.; Batista, I.S.; Sobral, J.H.A. Impact of disturbance electric fields in the evening on prereversal vertical drift and spread F developments in the equatorial ionosphere. Ann. Geophys. 2018, 36, 609–620. [Google Scholar] [CrossRef]
- Rishbeth, H. The F-layer dynamo. Planet. Space Sci. 1971, 19, 263–267. [Google Scholar] [CrossRef]
- Rishbeth, H. Polarization fields produced by winds in the equatorial F-region. Planet. Space Sci. 1971, 19, 357–369. [Google Scholar] [CrossRef]
- Farley, D.T.; Bonelli, E.; Fejer, B.G.; Larsen, M.F. The prereversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res. Earth Surf. 1986, 91, 13723–13728. [Google Scholar] [CrossRef]
- Eccles, J.V.; Maurice, J.P.S.; Schunk, R.W. Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low-latitude ionosphere. J. Geophys. Res. Space Phys. 2015, 120, 4950–4970. [Google Scholar] [CrossRef] [Green Version]
- Abadi, P.; Otsuka, Y.; Liu, H.; Hozumi, K.; Martinigrum, D.R.; Jamjareegulgarn, P.; Thanh, L.T.; Otadoy, R. Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia. Earth Planet. Phys. 2021, 5, 388–397. [Google Scholar] [CrossRef]
- Manoj, C.; Maus, S. A real-time forecast service for the ionospheric equatorial zonal electric field. Space Weather 2012, 10. [Google Scholar] [CrossRef]
- Nayak, C.; Tsai, L.-C.; Su, S.-Y.; Galkin, I.; Caton, R.; Groves, K. Suppression of ionospheric scintillation during St. Patrick’s Day geomagnetic super storm as observed over the anomaly crest region station Pingtung, Taiwan: A case study. Adv. Space Res. 2017, 60, 396–405. [Google Scholar] [CrossRef]
- Dugassa, T.; Habarulema, J.B.; Nigussie, M. Longitudinal variability of occurrence of ionospheric irregularities over the American, African and Indian regions during geomagnetic storms. Adv. Space Res. 2019, 63, 2609–2622. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Katamzi-Joseph, Z.T.; Burešová, D.; Nndanganeni, R.; Matamba, T.; Tshisaphungo, M.; Buchert, S.; Kosch, M.; Lotz, S.; Cilliers, P.; et al. Ionospheric Response at Conjugate Locations During the 7–8 September 2017 Geomagnetic Storm Over the Europe-African Longitude Sector. J. Geophys. Res. Space Phys. 2020, 125. [Google Scholar] [CrossRef]
- Navarro, L.A.; Fejer, B.G.; Scherliess, L. Equatorial Disturbance Dynamo Vertical Plasma Drifts Over Jicamarca: Bimonthly and Solar Cycle Dependence. J. Geophys. Res. Space Phys. 2019, 124, 4833–4841. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, M.; Singh, A.; Rao, S. Solar flares and geomagnetic storms of September 2017: Their impacts on the TEC over 75°E longitude sector. Adv. Space Res. 2021, 68, 1825–1835. [Google Scholar] [CrossRef]
- Valladares, C.E.; Villalobos, J.; Sheehan, R.; Hagan, M.P. Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers. Ann. Geophys. 2004, 22, 3155–3175. [Google Scholar] [CrossRef]
- Abadi, P.; Otsuka, Y.; Tsugawa, T. Effects of pre-reversal enhancement of E × B drift on the latitudinal extension of plasma bubble in Southeast Asia. Earth Planets Space 2015, 67, 74. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yuan, Y.; Tan, B.; Li, M. Observational Analysis of Variation Characteristics of GPS-Based TEC Fluctuation over China. ISPRS Int. J. Geo-Inf. 2016, 5, 237. [Google Scholar] [CrossRef] [Green Version]
- Alfonsi, L.; Spogli, L.; Tong, J.; De Franceschi, G.; Romano, V.; Bourdillon, A.; Le Huy, M.; Mitchell, C. GPS scintillation and TEC gradients at equatorial latitudes in April 2006. Adv. Space Res. 2011, 47, 1750–1757. [Google Scholar] [CrossRef]
- Basu, S.; Groves, K.; Quinn, J.; Doherty, P. A comparison of TEC fluctuations and scintillations at Ascension Island. J. Atmospheric Sol.-Terr. Phys. 1999, 61, 1219–1226. [Google Scholar] [CrossRef]
- Jacobsen, K.S.; Dähnn, M. Statistics of ionospheric disturbances and their correlation with GNSS positioning errors at high latitudes. J. Space Weather Space Clim. 2014, 4, A27. [Google Scholar] [CrossRef] [Green Version]
- Carrano, C.S.; Groves, K.M.; Rino, C.L. On the Relationship Between the Rate of Change of Total Electron Content Index (ROTI), Irregularity Strength (CkL), and the Scintillation Index (S4). J. Geophys. Res. Space Phys. 2019, 124, 2099–2112. [Google Scholar] [CrossRef]
- Aquino, M.; Moore, T.; Dodson, A.; Waugh, S.; Souter, J.; Rodrigues, F.S. Implications of Ionospheric Scintillation for GNSS Users in Northern Europe. J. Navig. 2005, 58, 241–256. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Oluwadare, S.T.; Le, N.T.; Alizadeh, M.; Wickert, J.; Schuh, H. Spatial and Temporal Distributions of Ionospheric Irregularities Derived from Regional and Global ROTI Maps. Remote Sens. 2021, 14, 10. [Google Scholar] [CrossRef]
- Abdu, M.A.; De Medeiros, R.T.; Sobral, J.H.A.; Bittencourt, J.A. Spread F plasma bubble vertical rise velocities determined from spaced ionosonde observations. J. Geophys. Res. Earth Surf. 1983, 88, 9197–9204. [Google Scholar] [CrossRef]
- Dabas, R.S.; Reddy, B.M. Equatorial plasma bubble rise velocities in the Indian sector determined from multistation scintillation observations. Radio Sci. 1990, 25, 125–132. [Google Scholar] [CrossRef]
- Huang, Y.-N. Drift motion of ionospheric bubbles at the equatorial anomaly crest region. J. Geophys. Res. Earth Surf. 1990, 95, 4297. [Google Scholar] [CrossRef]
- Sun, L.; Xu, J.; Zhu, Y.; Yuan, W.; Chen, Z.; Hao, Y.; Hu, L.; Zhang, D.; Guo, B.; Zhao, X. Interaction Between a Southwestward Propagating MSTID and a Poleward Moving WSA-Like Plasma Patch on a Magnetically Quiet Night at Midlatitude China Region. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028085. [Google Scholar] [CrossRef]
Scheme | Station Code | Geog. Latitude | Geog. Longitude | Geomag. Latitude | Geomag. Longitude | Magnetic Dip | Observation Type |
---|---|---|---|---|---|---|---|
Jaipur, India | JAI | 26.91°N | 75.80°E | 18.5°N | 150.47°E | 42.18° | Magnetometer |
Lucknow, India | LCK4 | 26.90°N | 80.95°E | 18.1°N | 155.30°E | 42.09° | GNSS |
Alibag, India | ABG | 18.62°N | 72.87°E | 10.54°N | 146.89°E | 26.81° | Magnetometer |
Hyderabad, India | HYDE | 17.42°N | 78.55°E | 8.87°N | 152.25°E | 23.96° | GNSS |
Hyderabad, India | HYB | 17.41°N | 78.55°E | 8.87°N | 152.25°E | 23.94° | Magnetometer |
Bangalore, India | IISC | 13.03°N | 77.57°E | 4.61°N | 150.87°E | 14.10° | GNSS |
Tirunelveli, India | TIR | 8.70°N | 77.80°E | 0.29°N | 150.81°E | 3.82° | Magnetometer |
Colombo, Sri Lanka. | SGOC | 6.88°N | 79.87°E | 1.66°S | 152.71°E | 4.2° | GNSS |
Scheme | LT–UT | Dip | Main Phase Stage-I | Main Phase Stage-II | ||
---|---|---|---|---|---|---|
(HH:MM) | Diono (Increase) | LT (HH:MM) | Diono (Decrease) | LT (HH:MM) | ||
JAI | 05:03 | 42.18° | 100.03 nT | 04:27 | −141.66 nT | 18:15 |
ABG | 04:51 | 26.81° | 101.66 nT | 04:15 | −145.52 nT | 18:03 |
HYB | 05:14 | 23.82° | 94.65 nT | 04:38 | −135.93 nT | 18:26 |
TIR | 05:11 | 3.82° | 84.35 nT | 04:35 | −121.07 nT | 18:23 |
GNSS Station Code | Magnetic Dip (In Degrees) | Strong Irregularities (% Occurrence Rate) | Moderate Irregularities (% Occurrence Rate) | Weak Irregularities (% Occurrence Rate) |
---|---|---|---|---|
SGOC | 4.2° | 12.16 | 35.62 | 52.22 |
IISC | 14.10° | 7.6 | 31.45 | 60.95 |
HYDE | 23.94° | 4.36 | 32.50 | 63.14 |
LCK4 | 42.09° | 5.12 | 38.70 | 56.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vankadara, R.K.; Panda, S.K.; Amory-Mazaudier, C.; Fleury, R.; Devanaboyina, V.R.; Pant, T.K.; Jamjareegulgarn, P.; Haq, M.A.; Okoh, D.; Seemala, G.K. Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017. Remote Sens. 2022, 14, 652. https://doi.org/10.3390/rs14030652
Vankadara RK, Panda SK, Amory-Mazaudier C, Fleury R, Devanaboyina VR, Pant TK, Jamjareegulgarn P, Haq MA, Okoh D, Seemala GK. Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017. Remote Sensing. 2022; 14(3):652. https://doi.org/10.3390/rs14030652
Chicago/Turabian StyleVankadara, Ram Kumar, Sampad Kumar Panda, Christine Amory-Mazaudier, Rolland Fleury, Venkata Ratnam Devanaboyina, Tarun Kumar Pant, Punyawi Jamjareegulgarn, Mohd Anul Haq, Daniel Okoh, and Gopi Krishna Seemala. 2022. "Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017" Remote Sensing 14, no. 3: 652. https://doi.org/10.3390/rs14030652
APA StyleVankadara, R. K., Panda, S. K., Amory-Mazaudier, C., Fleury, R., Devanaboyina, V. R., Pant, T. K., Jamjareegulgarn, P., Haq, M. A., Okoh, D., & Seemala, G. K. (2022). Signatures of Equatorial Plasma Bubbles and Ionospheric Scintillations from Magnetometer and GNSS Observations in the Indian Longitudes during the Space Weather Events of Early September 2017. Remote Sensing, 14(3), 652. https://doi.org/10.3390/rs14030652