[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Rate of Ionospheric Total Electron Content Index (ROTI) as a Proxy for Nighttime Ionospheric Irregularity Using Ethiopian Low-Latitude GPS Data

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The correlation between the rate of TEC index (ROTI) and amplitude scintillation index S4 for low-latitude region is analyzed using data collected from a Global Positioning System (GPS) scintillation monitoring receiver installed at Bahir Dar Ethiopia for the periods of 2012 and 2013. The analysis was done for selected quiet and disturbed days based on Kp and Dst values. Generally speaking, the ROTI and S4 are nicely correlated almost in all cases we considered. It is also found that there is a good consistency between the temporal variations of ROTI with scintillation activity under different ionospheric conditions. ROTI has a high correlation with scintillation index on geomagnetically disturbed days. These results demonstrated the feasibility of using ROTI derived from GPS observations recorded by common non-scintillation GPS receivers to characterize ionospheric scintillation. Based on the correlation results, we have mapped the spatial variations of ionospheric scintillation over Ethiopia from a chain of ten non-scintillation GPS receivers. The mapped ROT index has clearly illustrated the spatial propagation of ionospheric scintillation over the considered area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Afraimovich, E., Astafyeva, E., and Zhivetiev, I., Solar activity and global electron content, Dokl. Earth Sci., 2006, vol. 409A, no. 6, pp. 921–924.

    Article  Google Scholar 

  2. Aggarwal, M., Joshi, H.P., Lyer, K.N., Kwak, Y.-S., Lee, J.J., Chandra, H., and Cho, K.S., Day-to-day variability of equatorial anomaly in GPS-TEC during low solar activity period, Adv. Space Res., 2012, vol. 49, pp. 1709–1720. http://dx.doi/10.1016/j.asr.2012.03.005.

    Article  Google Scholar 

  3. Akala, A., Somoye, E., Adewale, A., Ojutalayo, E., Karia, S., Idolor, R., Okoh, D., and Doherty, P., Comparison of GPS-TEC observations over Addis Ababa with IRI2012 model predictions during 2010–2013, Adv. Space Res., 2013, vol. 56, pp. 1686–1698.

    Article  Google Scholar 

  4. Araujo-Pradere, E., Fuller-Rowell, T., Codrescu, M., and Bilitza, D., Characteristics of ionospheric variability as a function of season, latitude, local time, and geomagnetic activity, Radio Sci., 2005, vol. 40, RS5009.

    Article  Google Scholar 

  5. Aarons, J., Mullen, J.P., Koster, J.P., DaSilva, R.F., Medeiros, J.R., Medeiros, R.T., and Paulson, M.R., Seasonal and geomagnetic control of equatorial scintillations in two longitudinal sectors, J. Atmos. Terr. Phys., 1980, vol. 42, nos. 9–10, pp. 861–866.

    Article  Google Scholar 

  6. Balan, N., Bailey, J., Jenkins, B., Rao, B., and Moett, J., Variations of ionospheric ionization and related solar fluxes during an intense solar cycle, J. Geophys. Res., 1993, vol. 99, no. A2, pp. 2243–2253. https://doi.org/10.1029/93JA020995

    Article  Google Scholar 

  7. Bagiya, M.S., Joshi, H., Lyer, K., Aggarwal, M., Ravindran, S., and Pathan, B., TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India, Ann. Geophys., 2009, vol. 27, pp. 1047–1057.

    Article  Google Scholar 

  8. Basu, S., Groves, K.M., Quinn, J.M., and Doherty, P., A comparison of TEC fluctuations and scintillations at Ascension Island, J. Atmos. Sol.-Terr. Phys., 1999, vol. 61, no. 16, pp. 1219–1226.

    Article  Google Scholar 

  9. Bilitza, D., The importance of EUV indices for the International Reference Ionosphere, Phys. Chem. Earth, 2000, vol. 25, nos. 5–6, pp. 515–521.

    Article  Google Scholar 

  10. Carrano, C.S., Groves, K.M., and Rino, C.L., On the relationship between the rate of change of total electron content index (ROTI), irregularity strength (CkL), and the scintillation index (S4), J. Geophys. Res.: Space Phys., 2019, vol. 124, no. 3, pp. 2099–2112.

    Article  Google Scholar 

  11. Chen, Y., Liu, L., and Le, H., Solar activity variations of nighttime ionospheric peak electron density, J. Geophys. Res., 2008, vol. 113, A11306. https://doi.org/10.1029/2008JA013114

    Article  Google Scholar 

  12. Chen, Y., Liu, L., Le, H., and Zhang, H., Discrepant responses of the global electron content to the solar cycle and solar rotation variations of EUV irradiance, Earth Planets Space, 2015, vol. 67, id 80. https://doi.org/10.1186/s40623-015-0251-x

  13. Ferbes, J.M., Palo, S.E., and Zhang, X., Variability of ionosphere, J. Atmos. Sol. Terr. Phys., 2000, vol. 62, pp. 685–693.

    Article  Google Scholar 

  14. Gao, Y. and Liu, Z. Precise ionospheric modeling using regional GPS network data, J. Global Positioning Syst., 2002, vol. 1, no. 1, id 18.

  15. Gorney, D., Solar cycle effects on the near-Earth space environment, Rev. Geophys., 1990, pp. 315–336. https://doi.org/10.1029/RG028i003p00315

  16. Guo, Y., Wan, W., Forbes, M., Sutton, E., Nerem, S., Woods, N., Bruinsma, S., and Liu, L., Effects of solar variability on thermosphere density from CHAMP accelerometer data, J. Geophys. Res., 2007, vol. 112, A10308. https://doi.org/10.1029/2007JA012409

    Article  Google Scholar 

  17. Hedin, A., Correlations between thermospheric density and temperature, solar EUV flux, and 10.7-cm flux variations, J. Geophys. Res., 1984, pp. 9828–9834. https://doi.org/10.1029/JA089iA11p09828

  18. Huang, Y. and K. Cheng, Solar cycle variation of the total electron content around equatorial anomaly crest region in East Asia, J. Atmos. Terr. Phys., 1995, vol. 57, no. 12, pp. 1503–1511. https://doi.org/10.1016/0021-9169(94)00147-G

    Article  Google Scholar 

  19. Humphreys, T.E., Psiaki, M.L., and Kintner, P.M., Modeling the effects of ionospheric scintillation on GPS carrier phase tracking, IEEE Trans. Aerospace Electron. Syst., 2010, vol. 46, no. 4, pp. 1624–1637.

    Article  Google Scholar 

  20. Judge, D., McMullin, D.R., Ogawa, H.S., et al., First solar EUV irradiances obtained from SOHO by the SEM, Sol. Phys., 1998, vol. 177, pp. 161–173. https://doi.org/10.1023/A:1004929011427

    Article  Google Scholar 

  21. Kassa, T. and Damtie, B., Ionospheric irregularities over Bahir Dar, Ethiopia, during selected geomagnetic storms, Adv. Space Res., 2017, vol. 60, no. 1, pp. 121–129. https://doi.org/10.1016/j.asr.2017.03.036

    Article  Google Scholar 

  22. Kassa, T., Damtie, B., Bires, A., Yizengaw, E., and Cilliers, P., Storm-time characteristics of the equatorial ionization anomaly in the East African sector, Adv. Space Res., 2015, vol. 56, pp. 57–70. https://doi.org/10.1016/j.asr.2015.04.002

    Article  Google Scholar 

  23. Kelly, M.C., The Earth’s Ionosphere: Plasma Physics and Electrodynamics, San Diego, Calif.: Academic, 2009.

    Google Scholar 

  24. Klobuchar, J.A., Parkinson, B.W., and Spilker, J.J., Ionospheric effects on GPS, in Global Positioning System: Theory and Applications, Washington, DC: American Institute of Aeronautics and Astronautics, 1996.

    Google Scholar 

  25. Kumar, S., Priyadarshi, S., Krishna, S.G., and Singh, A., GPS-TEC variations during low solar activity period (2007–2009) at Indian low latitude stations, Astrophys. Space Sci., 2012, vol. 339, pp. 165–178.

    Article  Google Scholar 

  26. Lean, J., Meier, R., and Emmert, J., Ionospheric TEC: Global and hemispheric climatology, J. Geophys. Res.: Space Phys., 2012, vol. 116, A10318.

    Google Scholar 

  27. Li, S., Peng, J., Xu, W., and Qin, K., Time series modeling and analysis of trends of daily averaged ionospheric total electron content, Adv. Space Res., 2013, vol. 52, pp. 801–809.

    Article  Google Scholar 

  28. Liu, Z., Yang, Z., Xu, D., and Morton, Y.J., On inconsistent ROTI derived from multiconstellation GNSS measurements of globally distributed GNSS receivers for ionospheric irregularities characterization, Radio Sci., 2019, vol. 54, no. 3, pp. 215–232.

    Article  Google Scholar 

  29. Okoh, D., McKinnell, L., Cillers, P., Okere, P., Okonkwo, C., and Rabiu, B., IRI-vTEC versus GPS-vTEC for Nigerian SCINDA GPS stations, Adv. Space Res., 2014, vol. 55, no. 8, pp. 1941–1947.

    Article  Google Scholar 

  30. Pi, X., Mannucci, A.J., Lindqwister, U.J., and Ho, C.M., Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett., 1997, vol. 24, no. 18, pp. 2283–2286.

    Article  Google Scholar 

  31. Rishbeth, H., Day-to-day ionospheric variations in a period of high solar activity, J. Atmos. Terr. Phys., 1993, vol. 55, no. 2, pp. 165–171. https://doi.org/10.1016/0021-9169(93)90121-E

    Article  Google Scholar 

  32. Sharma, K., Dabas, R., and Ravindran, S., Study of total electron content variations over equatorial and low latitude ionosphere during extreme solar minimum, Astrophys. Space Sci., 2012, vol. 341, pp. 277–286.

    Article  Google Scholar 

  33. She, C., Wan, W., and Xu, G., Climatological analysis and modeling of the ionospheric global electron content, Chin. Sci. Bull., 2008, vol. 53, pp. 282–288.

    Article  Google Scholar 

  34. Tariku, Y., Patterns of GPS-TEC variation over low latitude regions (African sector) during the deep solar minimum (2008–2009) and solar maximum (2012–2013) phases, Earth Planets Space, 2015, vol. 67, no. 35, pp. 1–9.

    Article  Google Scholar 

  35. Yang, Z. and Liu, Z., Correlation between ROTI and ionospheric scintillation indices using Hong Kong low-latitude GPS data, GPS Solutions, 2016, vol. 20, no. 4, pp. 815–824.

    Article  Google Scholar 

  36. Yu, Y., Wan, W., and Liu, L., A global ionospheric TEC perturbation index, Chin. J. Geophys., 2009, vol. 52, pp. 907–912.

    Article  Google Scholar 

  37. Zhao, B., Wan, W., Liu, L., and Venkatraman, S., Statistical characteristics of the total ion density in the topside ionosphere during the period 1996–2004 using empirical orthogonal function (EOF) analysis, Ann. Geophys., 2005, vol. 23, no. 12, pp. 3615–3631.

    Article  Google Scholar 

  38. Zhe, Y. and Zhizhao, L., Correlation between ROTI and ionospheric scintillation indices using Hong Kong low-latitude GPS data, GPS Solutions, 2015. https://doi.org/10.1007/s10291-015-0492-y

Download references

ACKNOWLEDGMENTS

We are grateful to Bahir Dar University, Ethiopia for partly supported the current work. We also appreciate all data providers for realizing the current work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Gogie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogie, T.K. The Rate of Ionospheric Total Electron Content Index (ROTI) as a Proxy for Nighttime Ionospheric Irregularity Using Ethiopian Low-Latitude GPS Data. Geomagn. Aeron. 61, 464–475 (2021). https://doi.org/10.1134/S0016793221030051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793221030051

Navigation