Abstract
The correlation between the rate of TEC index (ROTI) and amplitude scintillation index S4 for low-latitude region is analyzed using data collected from a Global Positioning System (GPS) scintillation monitoring receiver installed at Bahir Dar Ethiopia for the periods of 2012 and 2013. The analysis was done for selected quiet and disturbed days based on Kp and Dst values. Generally speaking, the ROTI and S4 are nicely correlated almost in all cases we considered. It is also found that there is a good consistency between the temporal variations of ROTI with scintillation activity under different ionospheric conditions. ROTI has a high correlation with scintillation index on geomagnetically disturbed days. These results demonstrated the feasibility of using ROTI derived from GPS observations recorded by common non-scintillation GPS receivers to characterize ionospheric scintillation. Based on the correlation results, we have mapped the spatial variations of ionospheric scintillation over Ethiopia from a chain of ten non-scintillation GPS receivers. The mapped ROT index has clearly illustrated the spatial propagation of ionospheric scintillation over the considered area.
Similar content being viewed by others
REFERENCES
Afraimovich, E., Astafyeva, E., and Zhivetiev, I., Solar activity and global electron content, Dokl. Earth Sci., 2006, vol. 409A, no. 6, pp. 921–924.
Aggarwal, M., Joshi, H.P., Lyer, K.N., Kwak, Y.-S., Lee, J.J., Chandra, H., and Cho, K.S., Day-to-day variability of equatorial anomaly in GPS-TEC during low solar activity period, Adv. Space Res., 2012, vol. 49, pp. 1709–1720. http://dx.doi/10.1016/j.asr.2012.03.005.
Akala, A., Somoye, E., Adewale, A., Ojutalayo, E., Karia, S., Idolor, R., Okoh, D., and Doherty, P., Comparison of GPS-TEC observations over Addis Ababa with IRI2012 model predictions during 2010–2013, Adv. Space Res., 2013, vol. 56, pp. 1686–1698.
Araujo-Pradere, E., Fuller-Rowell, T., Codrescu, M., and Bilitza, D., Characteristics of ionospheric variability as a function of season, latitude, local time, and geomagnetic activity, Radio Sci., 2005, vol. 40, RS5009.
Aarons, J., Mullen, J.P., Koster, J.P., DaSilva, R.F., Medeiros, J.R., Medeiros, R.T., and Paulson, M.R., Seasonal and geomagnetic control of equatorial scintillations in two longitudinal sectors, J. Atmos. Terr. Phys., 1980, vol. 42, nos. 9–10, pp. 861–866.
Balan, N., Bailey, J., Jenkins, B., Rao, B., and Moett, J., Variations of ionospheric ionization and related solar fluxes during an intense solar cycle, J. Geophys. Res., 1993, vol. 99, no. A2, pp. 2243–2253. https://doi.org/10.1029/93JA020995
Bagiya, M.S., Joshi, H., Lyer, K., Aggarwal, M., Ravindran, S., and Pathan, B., TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India, Ann. Geophys., 2009, vol. 27, pp. 1047–1057.
Basu, S., Groves, K.M., Quinn, J.M., and Doherty, P., A comparison of TEC fluctuations and scintillations at Ascension Island, J. Atmos. Sol.-Terr. Phys., 1999, vol. 61, no. 16, pp. 1219–1226.
Bilitza, D., The importance of EUV indices for the International Reference Ionosphere, Phys. Chem. Earth, 2000, vol. 25, nos. 5–6, pp. 515–521.
Carrano, C.S., Groves, K.M., and Rino, C.L., On the relationship between the rate of change of total electron content index (ROTI), irregularity strength (CkL), and the scintillation index (S4), J. Geophys. Res.: Space Phys., 2019, vol. 124, no. 3, pp. 2099–2112.
Chen, Y., Liu, L., and Le, H., Solar activity variations of nighttime ionospheric peak electron density, J. Geophys. Res., 2008, vol. 113, A11306. https://doi.org/10.1029/2008JA013114
Chen, Y., Liu, L., Le, H., and Zhang, H., Discrepant responses of the global electron content to the solar cycle and solar rotation variations of EUV irradiance, Earth Planets Space, 2015, vol. 67, id 80. https://doi.org/10.1186/s40623-015-0251-x
Ferbes, J.M., Palo, S.E., and Zhang, X., Variability of ionosphere, J. Atmos. Sol. Terr. Phys., 2000, vol. 62, pp. 685–693.
Gao, Y. and Liu, Z. Precise ionospheric modeling using regional GPS network data, J. Global Positioning Syst., 2002, vol. 1, no. 1, id 18.
Gorney, D., Solar cycle effects on the near-Earth space environment, Rev. Geophys., 1990, pp. 315–336. https://doi.org/10.1029/RG028i003p00315
Guo, Y., Wan, W., Forbes, M., Sutton, E., Nerem, S., Woods, N., Bruinsma, S., and Liu, L., Effects of solar variability on thermosphere density from CHAMP accelerometer data, J. Geophys. Res., 2007, vol. 112, A10308. https://doi.org/10.1029/2007JA012409
Hedin, A., Correlations between thermospheric density and temperature, solar EUV flux, and 10.7-cm flux variations, J. Geophys. Res., 1984, pp. 9828–9834. https://doi.org/10.1029/JA089iA11p09828
Huang, Y. and K. Cheng, Solar cycle variation of the total electron content around equatorial anomaly crest region in East Asia, J. Atmos. Terr. Phys., 1995, vol. 57, no. 12, pp. 1503–1511. https://doi.org/10.1016/0021-9169(94)00147-G
Humphreys, T.E., Psiaki, M.L., and Kintner, P.M., Modeling the effects of ionospheric scintillation on GPS carrier phase tracking, IEEE Trans. Aerospace Electron. Syst., 2010, vol. 46, no. 4, pp. 1624–1637.
Judge, D., McMullin, D.R., Ogawa, H.S., et al., First solar EUV irradiances obtained from SOHO by the SEM, Sol. Phys., 1998, vol. 177, pp. 161–173. https://doi.org/10.1023/A:1004929011427
Kassa, T. and Damtie, B., Ionospheric irregularities over Bahir Dar, Ethiopia, during selected geomagnetic storms, Adv. Space Res., 2017, vol. 60, no. 1, pp. 121–129. https://doi.org/10.1016/j.asr.2017.03.036
Kassa, T., Damtie, B., Bires, A., Yizengaw, E., and Cilliers, P., Storm-time characteristics of the equatorial ionization anomaly in the East African sector, Adv. Space Res., 2015, vol. 56, pp. 57–70. https://doi.org/10.1016/j.asr.2015.04.002
Kelly, M.C., The Earth’s Ionosphere: Plasma Physics and Electrodynamics, San Diego, Calif.: Academic, 2009.
Klobuchar, J.A., Parkinson, B.W., and Spilker, J.J., Ionospheric effects on GPS, in Global Positioning System: Theory and Applications, Washington, DC: American Institute of Aeronautics and Astronautics, 1996.
Kumar, S., Priyadarshi, S., Krishna, S.G., and Singh, A., GPS-TEC variations during low solar activity period (2007–2009) at Indian low latitude stations, Astrophys. Space Sci., 2012, vol. 339, pp. 165–178.
Lean, J., Meier, R., and Emmert, J., Ionospheric TEC: Global and hemispheric climatology, J. Geophys. Res.: Space Phys., 2012, vol. 116, A10318.
Li, S., Peng, J., Xu, W., and Qin, K., Time series modeling and analysis of trends of daily averaged ionospheric total electron content, Adv. Space Res., 2013, vol. 52, pp. 801–809.
Liu, Z., Yang, Z., Xu, D., and Morton, Y.J., On inconsistent ROTI derived from multiconstellation GNSS measurements of globally distributed GNSS receivers for ionospheric irregularities characterization, Radio Sci., 2019, vol. 54, no. 3, pp. 215–232.
Okoh, D., McKinnell, L., Cillers, P., Okere, P., Okonkwo, C., and Rabiu, B., IRI-vTEC versus GPS-vTEC for Nigerian SCINDA GPS stations, Adv. Space Res., 2014, vol. 55, no. 8, pp. 1941–1947.
Pi, X., Mannucci, A.J., Lindqwister, U.J., and Ho, C.M., Monitoring of global ionospheric irregularities using the worldwide GPS network, Geophys. Res. Lett., 1997, vol. 24, no. 18, pp. 2283–2286.
Rishbeth, H., Day-to-day ionospheric variations in a period of high solar activity, J. Atmos. Terr. Phys., 1993, vol. 55, no. 2, pp. 165–171. https://doi.org/10.1016/0021-9169(93)90121-E
Sharma, K., Dabas, R., and Ravindran, S., Study of total electron content variations over equatorial and low latitude ionosphere during extreme solar minimum, Astrophys. Space Sci., 2012, vol. 341, pp. 277–286.
She, C., Wan, W., and Xu, G., Climatological analysis and modeling of the ionospheric global electron content, Chin. Sci. Bull., 2008, vol. 53, pp. 282–288.
Tariku, Y., Patterns of GPS-TEC variation over low latitude regions (African sector) during the deep solar minimum (2008–2009) and solar maximum (2012–2013) phases, Earth Planets Space, 2015, vol. 67, no. 35, pp. 1–9.
Yang, Z. and Liu, Z., Correlation between ROTI and ionospheric scintillation indices using Hong Kong low-latitude GPS data, GPS Solutions, 2016, vol. 20, no. 4, pp. 815–824.
Yu, Y., Wan, W., and Liu, L., A global ionospheric TEC perturbation index, Chin. J. Geophys., 2009, vol. 52, pp. 907–912.
Zhao, B., Wan, W., Liu, L., and Venkatraman, S., Statistical characteristics of the total ion density in the topside ionosphere during the period 1996–2004 using empirical orthogonal function (EOF) analysis, Ann. Geophys., 2005, vol. 23, no. 12, pp. 3615–3631.
Zhe, Y. and Zhizhao, L., Correlation between ROTI and ionospheric scintillation indices using Hong Kong low-latitude GPS data, GPS Solutions, 2015. https://doi.org/10.1007/s10291-015-0492-y
ACKNOWLEDGMENTS
We are grateful to Bahir Dar University, Ethiopia for partly supported the current work. We also appreciate all data providers for realizing the current work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gogie, T.K. The Rate of Ionospheric Total Electron Content Index (ROTI) as a Proxy for Nighttime Ionospheric Irregularity Using Ethiopian Low-Latitude GPS Data. Geomagn. Aeron. 61, 464–475 (2021). https://doi.org/10.1134/S0016793221030051
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0016793221030051