A Novel Efficient Method for Land Cover Classification in Fragmented Agricultural Landscapes Using Sentinel Satellite Imagery
<p>Location of the study area (Hetao Irrigation District) and the two case areas (Jiyuan and Yonglian).</p> "> Figure 2
<p>The distribution of the ground truth samples in two case areas and Hetao: Jiyuan in 2020 (<b>a</b>) and 2021 (<b>b</b>), Yonglian in 2021 (<b>c</b>), and Hetao in 2021 (<b>d</b>).</p> "> Figure 3
<p>The workflow for identifying and mapping land cover by time series Sentinel-2 data. It includes satellite data preprocessing, reference data collecting, non-cropland mapping, cropland mapping, and accuracy assessment.</p> "> Figure 4
<p>Seasonal dynamics of Sentinel-2-based LSWI (<b>a</b>) for cropland, water body, natural land, dune, and residential area. (<b>b</b>–<b>f</b>) show the WorldView-3 images for cropland, water body, natural land, dune, and residential area in September 2021, respectively.</p> "> Figure 5
<p>An example of NDVI time series (circle symbol) and the fitted curve (dashed line) for a cropland field in the case area. Phenological metrics are labeled.</p> "> Figure 6
<p>The decision tree rules for crop classification. The meaning of the parameters and their calibrated values are shown in <a href="#remotesensing-14-02045-t003" class="html-table">Table 3</a>.</p> "> Figure 7
<p>Crop calendars for the major crops in Hetao. This figure shows the crop phenology stages which start in April and end in September within a year.</p> "> Figure 8
<p>Signature analysis of crops (wheat, maize, sunflower, and vegetable) at each phenology metric layer using the histogram statistics method (<b>a</b>–<b>c</b>). The training samples used in this analysis are shown in <a href="#remotesensing-14-02045-f002" class="html-fig">Figure 2</a>. (<b>d</b>–<b>g</b>) show the field photos for wheat, maize, sunflower, and vegetable, respectively, taken in July and August 2021.</p> "> Figure 9
<p>Land cover classification maps for Jiyuan in 2021: (<b>a</b>) for visual interpretation, and (<b>b</b>) for SPLC method. Four sample areas (<b>c</b>–<b>f</b>) were selected to show the zoom-in views.</p> "> Figure 10
<p>Land cover classification maps for Yonglian in 2021: (<b>a</b>) for visual interpretation, and (<b>b</b>) for SPLC method. Three sample areas (<b>c</b>–<b>e</b>) were selected to show the zoom-in views.</p> "> Figure 11
<p>A comparison of the statistical area for different land cover types by SPLC method and visual interpretation method for Jiyuan and Yongliang in 2021.</p> "> Figure 12
<p>Land cover classification map for Hetao in 2021: (<b>a</b>) for SPLC method. Five regions, denoted as (<b>b</b>–<b>f</b>) in (<b>a</b>), were selected randomly. The zoom-in views in (<b>a</b>) for the five regions are shown in (<b>b2</b>–<b>f2</b>). The 10 m spatial resolution views from Sentinel-2 images in August 2021 are shown in (<b>b1</b>–<b>f1</b>).</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Study Area and Datasets
2.1.1. Hetao and Two Case Areas
2.1.2. Datasets
2.2. Description of SPLC Method
2.2.1. Maps of Non-Cropland Land Cover Types as Masks in the Algorithm
2.2.2. Crop-Classification Based on Phenological and Pixel Patterns
2.3. Assessment of Classifier Performance
3. Results and Discussion
3.1. Overall Classification Accuracy
3.1.1. Accuracy Evaluation Using Reference Data
3.1.2. Performance of the Classifier at the Spatial Scale
3.2. Analysis of Land Cover Mapping Results
3.3. Implications and Improvements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löw, F.; Duveiller, G. Defining the spatial resolution requirements for crop identification using optical remote sensing. Remote Sens. 2014, 6, 9034–9063. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Fu, B.; Yang, X.; Lü, Y. Remote sensing of ecosystem services: An opportunity for spatially explicit assessment. Chin. Geogr. Sci. 2010, 20, 522–535. [Google Scholar] [CrossRef] [Green Version]
- Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ. 2012, 124, 334–347. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Wei, X.; Yao, Y.; Su, Y.; Jiang, B.; Wang, X. Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data. Remote Sens. 2014, 6, 11518–11532. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Xiao, X.; Dong, J.; Chen, B.; Liu, F.; Zhang, G.; Zhang, Y.; Wang, J.; Wu, X. Quantifying annual changes in built-up area in complex urban-rural landscapes from analyses of PALSAR and Landsat images. ISPRS J. Photogramm. Remote Sens. 2017, 124, 89–105. [Google Scholar] [CrossRef] [Green Version]
- Villa, P.; Pinardi, M.; Bolpagni, R.; Gillier, J.-M.; Zinke, P.; Nedelcuţ, F.; Bresciani, M. Assessing macrophyte seasonal dynamics using dense time series of medium resolution satellite data. Remote Sens. Environ. 2018, 216, 230–244. [Google Scholar] [CrossRef]
- Zhong, B.; Ma, P.; Nie, A.; Yang, A.; Yao, Y.; Lü, W.; Zhang, H.; Liu, Q. Land cover mapping using time series HJ-1/CCD data. Sci. China Earth Sci. 2014, 57, 1790–1799. [Google Scholar] [CrossRef]
- Bargiel, D. A new method for crop classification combining time series of radar images and crop phenology information. Remote Sens. Environ. 2017, 198, 369–383. [Google Scholar] [CrossRef]
- Shao, Y.; Taff, G.N.; Ren, J.; Campbell, J.B. Characterizing major agricultural land change trends in the Western Corn Belt. ISPRS J. Photogramm. Remote Sens. 2016, 122, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; et al. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m crop type maps in Northeast China during 2017–2019. Sci. Data. 2021, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Hu, L.; Yu, L.; Gong, P.; Biging, G.S. Automated mapping of soybean and corn using phenology. ISPRS J. Photogramm. Remote Sens. 2016, 119, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.A.; Brodley, C.E.; Strahler, A.H. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Trans. Geosci. Remote Sens. 1999, 37, 969–977. [Google Scholar] [CrossRef]
- Geerken, R.A. An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change. ISPRS J. Photogramm. Remote Sens. 2009, 64, 422–431. [Google Scholar] [CrossRef]
- Mascolo, L.; Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Nunziata, F.; Migliaccio, M.; Mazzarella, G. A complete procedure for crop phenology estimation with PolSAR data based on the Complex Wishart Classifier. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6505–6515. [Google Scholar] [CrossRef] [Green Version]
- Conrad, C.; Fritsch, S.; Zeidler, J.; Rücker, G.; Dech, S. Per-field irrigated crop classification in arid central Asia using SPOT and ASTER data. Remote Sens. 2010, 2, 1035–1056. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int. J. Remote Sens. 2007, 11, 2269–2279. [Google Scholar] [CrossRef]
- Siachalou, S.; Mallinis, G.; Tsakiri-Strati, M. A Hidden Markov Models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data. Remote Sens. 2015, 7, 3633–3650. [Google Scholar] [CrossRef] [Green Version]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Duc, H.N.; Chang, L.Y. A phenology-based classification of time-series MODIS data for rice crop monitoring in Mekong Delta, Vietnam. Remote Sens. 2013, 6, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lu, D.; Moran, E.; Batistella, M.; Dutra, L.V.; Sanches, I.D.A.; da Silva, R.F.B.; Huang, J.; Luiz, A.J.B.; de Oliveira, M.A.F. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 133–147. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Zhang, G.; Li, L.; Jin, C.; Zhou, Y.; Wang, J.; Biradar, C.; et al. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160, 99–113. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Liu, L.; Wu, X.; Qin, Y.; Steiner, J.L.; Dong, J. Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images. Remote Sens. Environ. 2020, 247, 111951. [Google Scholar] [CrossRef]
- Simonneaux, V.; Duchemin, B.; Helson, D.; Er-Raki, S.; Olioso, A.; Chehbouni, A.G. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco. Int. J. Remote Sens. 2010, 29, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Di Vittorio, C.A.; Georgakakos, A.P. Land cover classification and wetland inundation mapping using MODIS. Remote Sens. Environ. 2018, 204, 1–17. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47. [Google Scholar] [CrossRef]
- Deines, J.M.; Kendall, A.D.; Crowley, M.A.; Rapp, J.; Cardille, J.A.; Hyndman, D.W. Mapping three decades of annual irrigation across the US High Plains Aquifer using Landsat and Google Earth Engine. Remote Sens. Environ. 2019, 233, 111400. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.; Qu, Z.; Pereira, L.S. Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin. Agric. Water Manag. 2010, 98, 301–313. [Google Scholar] [CrossRef]
- Ren, D.; Wei, B.; Xu, X.; Engel, B.; Li, G.; Huang, Q.; Xiong, Y.; Huang, G. Analyzing spatiotemporal characteristics of soil salinity in arid irrigated agro-ecosystems using integrated approaches. Geoderma 2019, 356, 111935. [Google Scholar] [CrossRef]
- Jin, X.; Zhu, X.; Xue, Y. Satellite-based analysis of regional evapotranspiration trends in a semi-arid area. Int. J. Remote Sens. 2019, 40, 3267–3288. [Google Scholar] [CrossRef]
- Xue, X.; Liao, J.; Hsing, Y.; Huang, C.; Liu, F. Policies, land use, and water resource management in an arid oasis ecosystem. Environ. Manag. 2015, 55, 1036–1051. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Q.; Lu, Q.; Li, B. Salt-water Balance and Dry Drainage Desalting in Hetao Irrigating Area, Inner Mongolia. Sci. Geogr. Sin. 2006, 26, 455–460. [Google Scholar]
- Xiong, L.; Xu, X.; Engel, B.; Huang, Q.; Huo, Z.; Xiong, Y.; Han, W.; Huang, G. Modeling agro-hydrological processes and analyzing water use in a super-large irrigation district (Hetao) of arid upper Yellow River basin. J. Hydrol. 2021, 603, 127014. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Fischer, G.; Shah, M.; Van Velthuizen, H.; Nachtergaele, F.O. Global Agro-Ecological Assessment for Agriculture in the 21st Century; IIASA: Laxenburg, Austria, 2001. [Google Scholar]
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Wen, Y.; Shang, S.; Rahman, K. Pre-constrained machine learning method for multi-year mapping of three major crops in a large irrigation district. Remote Sens. 2019, 11, 242. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Xiao, X.; Ye, H.; Ma, J.; Doughty, R.; Li, X.; Zhao, B.; Wu, Z.; Sun, R.; Dong, J.; et al. Mapping forest and their spatial–temporal changes from 2007 to 2015 in tropical Hainan Island by integrating ALOS/ALOS-2 L-band SAR and Landsat optical images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 852–867. [Google Scholar] [CrossRef]
- Arvor, D.; Jonathan, M.; Meirelles, M.S.P.; Dubreuil, V.; Durieux, L. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 2011, 32, 7847–7871. [Google Scholar] [CrossRef]
- Zhong, L.; Gong, P.; Biging, G.S. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140, 1–13. [Google Scholar] [CrossRef]
- Feng, Z.; Huang, G.; Chi, D. Classification of the complex agricultural planting structure with a Semi-Supervised Extreme Learning Machine framework. Remote Sens. 2020, 12, 3708. [Google Scholar] [CrossRef]
- Yu, B.; Shang, S. Multi-Year Mapping of maize and sunflower in Hetao Irrigation District of China with high spatial and temporal resolution vegetation index series. Remote Sens. 2017, 9, 855. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Xu, X.; Lü, L.; Ren, D.; Ke, J.; Xiong, Y.; Huo, Z.; Huang, G. Soil salinity distribution based on remote sensing and its effect on crop growth in Hetao Irrigation District. Trans. Chin. Soc. Agric. Eng. 2018, 34, 102–109. [Google Scholar]
- Massey, R.; Sankey, T.T.; Congalton, R.G.; Yadav, K.; Thenkabail, P.S.; Ozdogan, M.; Sánchez Meador, A.J. MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types. Remote Sens. Environ. 2017, 198, 490–503. [Google Scholar] [CrossRef]
- Luciano, A.C.d.S.; Picoli, M.C.A.; Rocha, J.V.; Duft, D.G.; Lamparelli, R.A.C.; Leal, M.R.L.V.; Le Maire, G. A generalized space-time OBIA classification scheme to map sugarcane areas at regional scale, using Landsat images time-series and the random forest algorithm. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 127–136. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Reiche, J.; Verbesselt, J.; Hoekman, D.; Herold, M. Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sens. Environ. 2015, 156, 276–293. [Google Scholar] [CrossRef]
Year | Water Body | Dune | Natural Land | Residential Area | Wheat | Maize | Sunflower | Vegetable | |
---|---|---|---|---|---|---|---|---|---|
Jiyuan (2021) | Polygon (ROI) | 15 | 10 | 25 | 25 | 20 | 54 | 65 | 37 |
pixel | 156 | 85 | 225 | 219 | 161 | 575 | 591 | 320 | |
Yonglian (2021) | Polygon (ROI) | 3 | / | 25 | 22 | / | 32 | 43 | 21 |
pixel | 21 | / | 225 | 198 | / | 264 | 353 | 193 | |
Jiyuan (2020) | Polygon (ROI) | 10 | 10 | 15 | 20 | 19 | 46 | 39 | 30 |
pixel | 113 | 85 | 135 | 174 | 156 | 409 | 435 | 252 | |
Hetao (2021) | Polygon (ROI) | 21 | 25 | 16 | 34 | 16 | 16 | 16 | 19 |
pixel | 186 | 287 | 144 | 1016 | 144 | 144 | 144 | 171 |
Year | Water Body | Dune | Natural Land | Residential Area | Cropland | |
---|---|---|---|---|---|---|
Jiyuan (2021) | Polygon (ROI) | 5 | 8 | 15 | 17 | 69 |
pixel | 65 | 72 | 135 | 153 | 607 | |
Yonglian (2021) | Polygon (ROI) | 3 | / | 25 | 30 | 30 |
pixel | 21 | / | 225 | 255 | 270 | |
Jiyuan (2020) | Polygon (ROI) | 5 | 8 | 15 | 17 | 88 |
pixel | 65 | 72 | 135 | 153 | 850 | |
Hetao (2021) | Polygon (ROI) | 213 | 117 | 118 | 500 | 515 |
pixel | 1917 | 1053 | 1062 | 4500 | 4635 |
Threshold Parameters (Day) | Description | Initial and Calibrated Values | ||
---|---|---|---|---|
Initial (by Experiences and Surveys) | Calibrated (Jiyuan) | Calibrated (Yonglian) | ||
Lw_1 | The growing-season length to identify the first type of wheat | 140 | 130 | 130 |
Sw_2 | The start of the season to identify the second type of wheat | 120 | 130 | 130 |
SV_1 | The start of the season to identify the first type of vegetable | 180 | 190 | 200 |
SV_2 | The start of the season to identify the second type of vegetable | 150 | 150 | 160 |
EV_3 | The end of the season to identify the third type of vegetable | 270 | 260 | 260 |
LM_S | The growing-season length to identify maize and sunflower | 110 | 100 | 95 |
Accuracy | Water Body | Dune | Natural Land | Residential Area | Wheat | Maize | Sunflower | Vegetable | |
---|---|---|---|---|---|---|---|---|---|
Jiyuan (2021) | PA | 0.82 | 0.91 | 0.98 | 0.89 | 0.98 | 0.99 | 0.98 | 0.78 |
UA | 1.00 | 0.91 | 0.95 | 0.95 | 0.97 | 0.96 | 0.92 | 0.94 | |
Overall Accuracy: 0.94 | |||||||||
Yonglian (2021) | PA | 0.86 | / | 0.87 | 0.87 | / | 0.93 | 0.76 | 0.99 |
UA | 1.00 | / | 0.87 | 0.88 | / | 0.94 | 0.99 | 0.74 | |
Overall Accuracy: 0.90 | |||||||||
Jiyuan (2020) | PA | 0.86 | 0.98 | 0.98 | 0.89 | 0.95 | 0.94 | 0.82 | 0.78 |
UA | 1.00 | 0.93 | 0.96 | 0.97 | 0.78 | 0.85 | 0.93 | 0.85 | |
Overall Accuracy: 0.91 | |||||||||
Hetao (2021) | PA | 1.00 | 0.93 | 0.89 | 0.98 | 0.92 | 0.89 | 0.95 | 0.90 |
UA | 1.00 | 0.84 | 1.00 | 0.97 | 0.92 | 0.96 | 0.88 | 0.94 | |
Overall Accuracy: 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Sun, C.; Meng, H.; Ma, X.; Huang, G.; Xu, X. A Novel Efficient Method for Land Cover Classification in Fragmented Agricultural Landscapes Using Sentinel Satellite Imagery. Remote Sens. 2022, 14, 2045. https://doi.org/10.3390/rs14092045
Li X, Sun C, Meng H, Ma X, Huang G, Xu X. A Novel Efficient Method for Land Cover Classification in Fragmented Agricultural Landscapes Using Sentinel Satellite Imagery. Remote Sensing. 2022; 14(9):2045. https://doi.org/10.3390/rs14092045
Chicago/Turabian StyleLi, Xinyi, Chen Sun, Huimin Meng, Xin Ma, Guanhua Huang, and Xu Xu. 2022. "A Novel Efficient Method for Land Cover Classification in Fragmented Agricultural Landscapes Using Sentinel Satellite Imagery" Remote Sensing 14, no. 9: 2045. https://doi.org/10.3390/rs14092045
APA StyleLi, X., Sun, C., Meng, H., Ma, X., Huang, G., & Xu, X. (2022). A Novel Efficient Method for Land Cover Classification in Fragmented Agricultural Landscapes Using Sentinel Satellite Imagery. Remote Sensing, 14(9), 2045. https://doi.org/10.3390/rs14092045