A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam
<p>The 2002 land-cover map of the study area showing different rice cropping systems and the locations of sampling sites used for the accuracy assessment of the classification results.</p> ">
<p>Flowchart of the methodology showing steps of data processing used in this study. EVI, enhanced vegetation index. MODIS, Moderate Resolution Imaging Spectroradiometer.</p> ">
<p>The IMF3 (intrinsic mode function) obtained from the empirical mode decomposition (EMD) sifting for different signals of land-use types in the study area: (<b>a</b>) single-cropped rain-fed rice, (<b>b</b>) double-cropped irrigated rice, (<b>c</b>) double-cropped rain-fed rice, (<b>d</b>) triple-cropped irrigated rice, (<b>e</b>) orchards/fruit trees, (<b>f</b>) forests, (<b>g</b>) built-up areas and (<b>h</b>) water bodies/shrimp farms.</p> ">
<p>Smooth EVI profiles (December, 2011, to December, 2012) show phenological information of crop phenology used for classification of rice cropping systems in the study area: (<b>a</b>) single-cropped rain-fed rice, (<b>b</b>) double-cropped irrigated rice, (<b>c</b>) double-cropped rain-fed rice (<b>d</b>) and (<b>e</b>) triple-cropped irrigated rice.</p> ">
<p>EMD sifting results of a rice EVI signal shows the temporal variations of IMFs (<span class="html-italic">c</span><sub>1</sub> ∼ <span class="html-italic">c</span><sub>8</sub>) and the residue (<span class="html-italic">r</span>) during December, 2000, to December, 2012.</p> ">
<p>The raw EVI signal profile (dashed line) and the smooth profile (solid line) derived from the EMD-based low-pass filter by adding IMFs (<span class="html-italic">c</span><sub>3</sub> ∼ <span class="html-italic">c</span><sub>8</sub>) and the residue (<span class="html-italic">r</span>) for rice-cropping seasons from December, 2000, to December, 2012.</p> ">
<p>Results of regression analysis between MODIS-derived rice area and rice area statistics at the provincial level for the entire region: (<b>a</b>) 2001, (<b>b</b>) 2002 (<b>c</b>) 2003, (<b>d</b>) 2004, (<b>e</b>) 2005, (<b>f</b>) 2006, (<b>g</b>) 2007, (<b>h</b>) 2008, (<b>i</b>) 2009, (<b>j</b>) 2010, (<b>k</b>) 2011 and (<b>l</b>) 2012.</p> ">
<p>Results of regression analysis between MODIS-derived rice area and rice area statistics at the provincial level for the entire region: (<b>a</b>) 2001, (<b>b</b>) 2002 (<b>c</b>) 2003, (<b>d</b>) 2004, (<b>e</b>) 2005, (<b>f</b>) 2006, (<b>g</b>) 2007, (<b>h</b>) 2008, (<b>i</b>) 2009, (<b>j</b>) 2010, (<b>k</b>) 2011 and (<b>l</b>) 2012.</p> ">
<p>Spatial distributions of rice cropping systems in the study area: (<b>a</b>) 2001, (<b>b</b>) 2002, (<b>c</b>) 2003, (<b>d</b>) 2004, (<b>e</b>) 2005, (<b>f</b>) 2006, (<b>g</b>) 2007, (<b>h</b>) 2008, (<b>i</b>) 2009, (<b>j</b>) 2010, (<b>k</b>) 2011 and (<b>l</b>) 2012.</p> ">
<p>Spatial distributions of rice cropping systems in the study area: (<b>a</b>) 2001, (<b>b</b>) 2002, (<b>c</b>) 2003, (<b>d</b>) 2004, (<b>e</b>) 2005, (<b>f</b>) 2006, (<b>g</b>) 2007, (<b>h</b>) 2008, (<b>i</b>) 2009, (<b>j</b>) 2010, (<b>k</b>) 2011 and (<b>l</b>) 2012.</p> ">
<p>Spatial distributions of rice cropping systems in the study area: (<b>a</b>) 2001, (<b>b</b>) 2002, (<b>c</b>) 2003, (<b>d</b>) 2004, (<b>e</b>) 2005, (<b>f</b>) 2006, (<b>g</b>) 2007, (<b>h</b>) 2008, (<b>i</b>) 2009, (<b>j</b>) 2010, (<b>k</b>) 2011 and (<b>l</b>) 2012.</p> ">
Abstract
:1. Introduction
2. Study Area and Rice Crop Phenology
3. Data Collection
3.1. MODIS Data
3.2. Ground Reference Data and Rice Area Statistics
4. Methodology
4.1. Constructing Smooth Time-Series EVI Data
4.2. Non-Rice Area Masking
4.3. Rice Crop Classification
4.4. Accuracy Assessment
5. Results and Discussion
5.1. Long-Term Analysis of EVI Time Series
5.2. Accuracies of the Classification Results
5.3. Distribution of Rice Cropping Systems and Changes in Rice Cropping Activities
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Global Climate Changes and Rice Food Security. Available online: http://www.hechoenperu.org.pe/fao/docs/Agriculture/3-Nguyen.pdf (accessed on 16 May 2013).
- Timmer, C.P. A World without Agriculture: The Structural Transformation in Historical Perspective; American Enterprise Institute: Washington, DC, USA, 2009. [Google Scholar]
- Evenson, R.E.; Gollin, D. Crop Varietal Improvement and Its Effects on Productivity: The Impact of International Agricultural Research; CABI Publishing: Wallingford, UK, 2003. [Google Scholar]
- Metz, B.; Davidson, O.R.; Bosch, P.R.; Dave, R.; Meyer, L.A. Contribution of Working Groups I, II and III to the Fourth Assessement Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK and New York, NY, USA, 2007. [Google Scholar]
- Furuya, J.; Kobayashi, S. Impact of Global Warming on Agricultural Product Markets: Stochastic World Food Model Analysis. In Adaptation and Mitigation Strategies for Climate Change; Sumi, A., Fukushi, K., Hiramatsu, A., Eds.; Springer: Japan: Tokyo, Japan, 2009; pp. 19–35. [Google Scholar]
- Matthews, R.; Wassmann, R. Modelling the impacts of climate change and methane emission reductions on rice production: A review. Eur. J. Agron 2003, 19, 573–598. [Google Scholar]
- Matthews, R.B.; Kropff, M.J.; Bachelet, D. Modeling the Impact of Climate Change on Rice Production in Asia; CAB International in association with the International Rice Research Institute: Wallingford, UK, 1995. [Google Scholar]
- Matthews, R.B.; Kropff, M.J.; Horie, T.; Bachelet, D. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agric. Syst 1997, 54, 399–425. [Google Scholar]
- Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. U.S.A 2004, 101, 9971–9975. [Google Scholar]
- Van Duivenbooden, N.; Abdoussalam, S.; Ben Mohamed, A. Impact of climate change on agricultural production in the sahel—Part 2. Case study for groundnut and cowpea in Niger. Clim. Chang 2002, 54, 349–368. [Google Scholar]
- Chipanshi, A.C.; Chanda, R.; Totolo, O. Vulnerability assessment of the maize and sorghum crops to climate change in botswana. Clim. Chang 2003, 61, 339–360. [Google Scholar]
- Ericson, J.P.; Vörösmarty, C.J.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Chang 2006, 50, 63–82. [Google Scholar]
- OECD-FAO Agricultural Outlook 2006–2015. Available online: http://www.euroqualityfiles.net/Documents%20EUAM%20and%20CEECAP/Europe/Future%20policy/37038911.pdf (accessed on 16 September 2013).
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar]
- GSO. Statistical Yearbook of Vietnam. Available online: http://www.gso.gov.vn (accessed on 10 November 2013).
- Nguyen, V.N.; Do, M.H.; Nguyen, N.A.; Le, V.K. Rice Production in the Mekong Delta (Vietnam): Trends of Development and Diversification. Proceedings of the Mekong Rice Conference 2004: Rice the Environment, and Livelihoods for the Poor, Ho Chi Minh City, Vietnam, 15–17 October 2004.
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal modis images. Remote Sens. Environ 2006, 100, 95–113. [Google Scholar]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ 2005, 95, 480–492. [Google Scholar]
- Chen, C.F.; Son, N.T.; Chang, L.Y.; Chen, C.R. Classification of rice cropping systems by empirical mode decomposition and linear mixture model for time-series modis 250 m NDVI data in the Mekong Delta, Vietnam. Int. J. Remote Sens 2011, 32, 5115–5134. [Google Scholar]
- Chen, C.F.; Son, N.T.; Chen, C.R.; Chang, L.Y. Wavelet filtering of time-series moderate resolution imaging spectroradiometer data for rice crop mapping using support vector machines and maximum likelihood classifier. J. Appl. Remote Sens 2011, 5. [Google Scholar] [CrossRef]
- Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year modis data. Remote Sens 2010, 2, 1844–1863. [Google Scholar]
- Zhang, M.; Zhou, Q.; Chen, Z.; Liu, J.; Zhou, Y.; Cai, C. Crop discrimination in Northern China with double cropping systems using fourier analysis of time-series MODIS data. Int. J. Appl. Earth Obs. Geoinf 2008, 10, 476–485. [Google Scholar]
- Canisius, F.; Turral, H.; Molden, D. Fourier analysis of historical NOAA time series data to estimate bimodal agriculture. Int. J. Remote Sens 2007, 28, 5503–5522. [Google Scholar]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ 2012, 123, 400–417. [Google Scholar]
- Chen, C.-F.; Huang, S.-W.; Son, N.-T.; Chang, L.-Y. Mapping double-cropped irrigated rice fields in Taiwan using time-series satellite pour I’observation de la terre data. J. Appl. Remote Sens 2011, 5. [Google Scholar] [CrossRef]
- Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E.P. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ 2008, 112, 576–587. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar]
- Huang, N.E.; Shen, S.S.P. Hilbert-Huang Transform and Its Applications; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2005. [Google Scholar]
- Gumma, M.K.; Nelson, A.; Thenkabail, P.S.; Singh, A.N. Mapping rice areas of south asia using MODIS multitemporal data. J. Appl. Remote Sens 2011, 5. [Google Scholar] [CrossRef]
- Bridhikitti, A.; Overcamp, T.J. Estimation of Southeast Asian rice paddy areas with different ecosystems from moderate-resolution satellite imagery. Agric. Ecosyst. Environ 2012, 146, 113–120. [Google Scholar]
- Bolstad, P.V.; Lillesand, T.M. Rapid maximum likelihood classification. Photogramm. Eng. Remote Sens 1991, 57, 67–74. [Google Scholar]
- A Training Algorithm for Optimal Margin Classiers. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1189&rep=rep1&type=pdf (accessed on 16 March 2013).
- Benediktsson, J.A.; Swain, P.H.; Ersoy, O.K. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens 1989, 28, 540–552. [Google Scholar]
- Deng, F.; Su, G.; Liu, C. Seasonal variation of MODIS vegetation indexes and their statistical relationship with climate over the subtropic evergreen forest in Zhejiang, China. IEEE Geosci. Remote Sens. Lett 2007, 4, 236–240. [Google Scholar]
- Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ 2005, 94, 244–255. [Google Scholar]
- Stroppiana, D.; Boschetti, M.; Brivio, P.A.; Nizzetto, L.; di Guardo, A. Forest leaf area index in an alpine valley from medium resolution satellite imagery and in situ data. J. Appl. Remote Sens 2012, 6. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ 2011, 115, 3468–3478. [Google Scholar]
- Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens 2009, 30, 4643–4662. [Google Scholar]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ 2003, 84, 471–475. [Google Scholar]
- Vina, A.; Gitelson, A.A.; Rundquist, D.C.; Keydan, G.; Leavitt, B.; Schepers, J. Monitoring maize (Zea mays L.) phenology with remote sensing. Agron. J 2004, 96, 1139–1147. [Google Scholar]
- MODIS Land Surface Reflectance. Available online: http://modis-sr.ltdri.org (accessed on 16 February 2012).
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ 2007, 108, 290–310. [Google Scholar]
- Thenkabail, P.S.; Schull, M.; Turral, H. Ganges and indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sens. Environ 2005, 95, 317–341. [Google Scholar]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y. Satellite-based investigation of flood-affected rice cultivation areas in Chao Phraya River Delta, Thailand. ISPRS J. Photogramm. Remote Sens 2013, 86, 77–88. [Google Scholar]
- Chen, C.F.; Chen, C.R.; Son, N.T. Investigating rice cropping practices and growing areas from MODIS data using empirical mode decomposition and support vector machines. GISci. Remote Sens 2012, 49, 117–138. [Google Scholar]
- Salas, S.L.; Hille, E.; Etgen, G.J. Calculus: One and Several Variables, 10th ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
Ground Reference Data | Classification Results (2002, 2006, and 2012) | Total | |||
---|---|---|---|---|---|
Single-Cropped Rain-Fed Rice | Double-Cropped Irrigated Rice | Double-Cropped Rain-Fed Rice | Triple-Cropped Irrigated Rice | ||
2002 | |||||
Single-cropped rain-fed rice | 104 | 0 | 85 | 11 | 200 |
Double-cropped irrigated rice | 2 | 164 | 19 | 15 | 200 |
Double-cropped rain-fed rice | 1 | 0 | 192 | 7 | 200 |
Triple-cropped irrigated rice | 0 | 5 | 4 | 191 | 200 |
Total | 107 | 169 | 300 | 224 | 800 |
Producer accuracy (%) | 52.0 | 82.0 | 96.0 | 95.5 | |
User accuracy (%) | 97.2 | 97.0 | 64.0 | 85.3 | |
Overall accuracy (%) | 81.4 | ||||
Kappa coefficient | 0.75 | ||||
2006 | |||||
Single-cropped rain-fed rice | 139 | 0 | 58 | 3 | 200 |
Double-cropped irrigated rice | 0 | 167 | 17 | 16 | 200 |
Double-cropped rain-fed rice | 7 | 15 | 171 | 7 | 200 |
Triple-cropped irrigated rice | 0 | 15 | 17 | 168 | 200 |
Total | 146 | 197 | 263 | 194 | 800 |
Producer accuracy (%) | 69.5 | 83.5 | 85.5 | 84.0 | |
User accuracy (%) | 95.2 | 84.8 | 65.0 | 86.6 | |
Overall accuracy (%) | 80.6 | ||||
Kappa coefficient | 0.74 | ||||
2012 | |||||
Single-cropped rain-fed rice | 161 | 12 | 27 | 0 | 200 |
Double-cropped irrigated rice | 0 | 167 | 12 | 21 | 200 |
Double-cropped rain-fed rice | 6 | 8 | 163 | 23 | 200 |
Triple-cropped irrigated rice | 0 | 3 | 4 | 193 | 200 |
Total | 167 | 190 | 206 | 237 | 800 |
Producer accuracy (%) | 80.5 | 83.5 | 81.5 | 96.5 | |
User accuracy (%) | 96.4 | 87.9 | 79.1 | 81.4 | |
Overall accuracy (%) | 85.5 | ||||
Kappa coefficient | 0.81 |
Year | RAS (km2) | MOD (km2) | REA (%) |
---|---|---|---|
2001 | 3,792.0 | 4,393.4 | 15.9 |
2002 | 3,834.8 | 4,356.1 | 13.6 |
2003 | 3,787.3 | 4,136.0 | 9.2 |
2004 | 3,815.7 | 4,246.2 | 11.3 |
2005 | 3,826.3 | 4,095.6 | 7.0 |
2006 | 3,773.9 | 4,138.2 | 9.7 |
2007 | 3,683.1 | 4,060.2 | 10.2 |
2008 | 3,858.9 | 4,047.7 | 4.9 |
2009 | 3,863.9 | 4,121.2 | 6.7 |
2010 | 3,945.9 | 4,051.4 | 2.7 |
2011 | 4,089.3 | 4,126.3 | 0.9 |
2012 | 4,181.3 | 4,248.5 | 1.6 |
Year | Single-Cropped Rain-Fed Rice | Double-Cropped Irrigated Rice | Double-Cropped Rain-Fed Rice | Triple-Cropped Irrigated Rice | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pixel Count | km2 | % | Pixel Count | km2 | % | Pixel Count | km2 | % | Pixel Count | km2 | % | km2 | |
2001 | 8,559 | 2,139.8 | 11.2 | 38,863 | 9,715.8 | 51.0 | 17,877 | 4,469.3 | 23.5 | 10,891 | 2,722.8 | 14.3 | 19,047.5 |
2002 | 3,091 | 772.8 | 4.0 | 29,312 | 7,328.0 | 37.9 | 23,173 | 5,793.3 | 30.0 | 21,746 | 5,436.5 | 28.1 | 19,330.5 |
2003 | 1,995 | 498.8 | 2.7 | 28,270 | 7,067.5 | 38.1 | 19,457 | 4,864.3 | 26.2 | 24,499 | 6,124.8 | 33.0 | 18,555.3 |
2004 | 2,630 | 657.5 | 3.5 | 24,705 | 6,176.3 | 32.4 | 20,542 | 5,135.5 | 27.0 | 28,319 | 7,079.8 | 37.2 | 19,049.0 |
2005 | 2,603 | 650.8 | 3.5 | 24,413 | 6,103.3 | 33.0 | 19,040 | 4,760.0 | 25.8 | 27,877 | 6,969.3 | 37.7 | 18,483.3 |
2006 | 3,966 | 991.5 | 5.2 | 31,992 | 7,998.0 | 41.9 | 17,074 | 4,268.5 | 22.3 | 23,391 | 5,847.8 | 30.6 | 19,105.8 |
2007 | 4,347 | 1,086.8 | 5.7 | 35,289 | 8,822.3 | 46.5 | 15,244 | 3,811.0 | 20.1 | 21,072 | 5,268.0 | 27.7 | 18,988.0 |
2008 | 3,189 | 797.3 | 4.2 | 33,293 | 8,323.3 | 43.9 | 13,731 | 3,432.8 | 18.1 | 25,669 | 6,417.3 | 33.8 | 18,970.5 |
2009 | 6,544 | 1,636.0 | 8.2 | 36,212 | 9,053.0 | 45.5 | 12,509 | 3,127.3 | 15.7 | 24,374 | 6,093.5 | 30.6 | 19,909.8 |
2010 | 4,188 | 1,047.0 | 5.5 | 27,503 | 6,875.8 | 36.1 | 14,257 | 3,564.3 | 18.7 | 30,263 | 7,565.8 | 39.7 | 19,052.8 |
2011 | 2,032 | 508.0 | 2.7 | 26,232 | 6,558.0 | 34.7 | 16,522 | 4,130.5 | 21.9 | 30,715 | 7,678.8 | 40.7 | 18,875.3 |
2012 | 5,056 | 1,264.0 | 6.2 | 25,861 | 6,465.3 | 31.8 | 13,027 | 3,256.8 | 16.0 | 37,266 | 9,316.5 | 45.9 | 20,302.5 |
Period | Single-Cropped Rain-Fed Rice | Double-Cropped Irrigated Rice | Double-Cropped Rain-Fed Rice | Triple-Cropped Irrigated Rice | ||||
---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | km2 | % | |
2001−2002 | −1,367.0 | −7.2 | −9,551 | −13.1 | 1,324.0 | 6.5 | 2,713.8 | 13.8 |
2002−2003 | −274.0 | −1.3 | −1,042 | 0.2 | −929.0 | −3.8 | 688.3 | 4.9 |
2003−2004 | 158.8 | 0.8 | −3,565 | −5.7 | 271.3 | 0.7 | 955.0 | 4.2 |
2004−2005 | −6.8 | 0.1 | −292 | 0.6 | −375.5 | −1.2 | −110.5 | 0.5 |
2005−2006 | 340.8 | 1.7 | 7,579 | 8.8 | −491.5 | −3.4 | −1,121.5 | −7.1 |
2006−2007 | 95.3 | 0.5 | 3,297 | 4.6 | −457.5 | −2.3 | −579.8 | −2.9 |
2007−2008 | −289.5 | −1.5 | −1,996 | −2.6 | −378.3 | −2.0 | 1,149.3 | 6.1 |
2008−2009 | 838.8 | 4.0 | 2,919 | 1.6 | −305.5 | −2.4 | −323.8 | −3.2 |
2009−2010 | −589.0 | −2.7 | −8,709 | −9.4 | 437.0 | 3.0 | 1,472.3 | 9.1 |
2010−2011 | −539.0 | −2.8 | −1,271 | −1.3 | 566.3 | 3.2 | 113.0 | 1.0 |
2011−2012 | 756.0 | 3.5 | −371 | −2.9 | −873.8 | −5.8 | 1,637.8 | 5.2 |
2001−2012 | −875.8 | −5.0 | −3,250.5 | −19.2 | −1,212.5 | −7.4 | 6,593.8 | 31.6 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Son, N.-T.; Chen, C.-F.; Chen, C.-R.; Duc, H.-N.; Chang, L.-Y. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam. Remote Sens. 2014, 6, 135-156. https://doi.org/10.3390/rs6010135
Son N-T, Chen C-F, Chen C-R, Duc H-N, Chang L-Y. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam. Remote Sensing. 2014; 6(1):135-156. https://doi.org/10.3390/rs6010135
Chicago/Turabian StyleSon, Nguyen-Thanh, Chi-Farn Chen, Cheng-Ru Chen, Huynh-Ngoc Duc, and Ly-Yu Chang. 2014. "A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam" Remote Sensing 6, no. 1: 135-156. https://doi.org/10.3390/rs6010135
APA StyleSon, N. -T., Chen, C. -F., Chen, C. -R., Duc, H. -N., & Chang, L. -Y. (2014). A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam. Remote Sensing, 6(1), 135-156. https://doi.org/10.3390/rs6010135