Influence of UAS Flight Altitude and Speed on Aboveground Biomass Prediction
<p>Five 60 m × 100 m study areas at the Kaibab National Forest in Northern Arizona (KNF1: (<b>A</b>), KNF2: (<b>B</b>), KNF3: (<b>C</b>)) and Manitou Experimental Forest in Central Colorado (MEF1: (<b>D</b>), MEF2: (<b>E</b>)), with the location of KNF study area (red) and MEF study area (blue) displayed in panel (<b>F</b>). Each study area was divided into sixty 10 m × 10 m plots.</p> "> Figure 2
<p>Example density plot of Canopy (green) and Stem (red) NGRR values sampled from SfM point clouds at the MEF1 study area, with overlapping distribution segments are brown. Red and green vertical lines represent the 90th and 10th percentile of the Stem and Canopy NGRR values, respectively.</p> "> Figure 3
<p>Comparison of Standard (panels (<b>A</b>,<b>C</b>,<b>E</b>)) and Standard + NGRR (panels (<b>B</b>,<b>D</b>,<b>F</b>)) AGB model performance metrics relativized to LiDAR, including percent ∆R<sup>2</sup> (panels (<b>A</b>,<b>B</b>)), ∆RMSE (<b>C</b>,<b>D</b>), and ∆MAE (<b>E</b>,<b>F</b>). The panel is split to show the influence of altitude above ground (left) and the ratio A:L<sub>H</sub> (right). Points in black circles represent acquisitions that failed to reconstruct the forest canopy fully and were therefore excluded from the best it lines.</p> "> Figure 4
<p>Linear mixed-effects model results for the 37 Standard SfM AGB models (panels (<b>A</b>,<b>B</b>)) and the 37 Standard + NGRR AGB models (panels (<b>C</b>,<b>D</b>)).</p> "> Figure 5
<p>Relative density as a function of height above ground for the models providing the best and worst model ∆R<sup>2</sup> from the Standard SfM AGB datasets compared to the LiDAR at each site (from left to right (<b>A</b>) KNF1, (<b>B</b>) KNF2, (<b>C</b>) KNF3, (<b>D</b>) MEF1, and (<b>E</b>) MEF2).</p> "> Figure 6
<p>Comparison of the five most important Random Forest variables for the Standard (<b>A</b>) and Standard + NGRR (<b>B</b>) datasets, values are sorted based on the percentage of the 37 models they appeared in.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Data
Study Area | Northing | Easting | QMD (cm) | Max Tree Height (m) | Basal Area (m2 ha−1) | Trees ha−1 | AGB * (Tons ha−1) |
---|---|---|---|---|---|---|---|
KNF1 | 4,044,670 | 380,592 | 30.3 (14.8) | 15.9 (8.0) | 26.9 (22.0) | 300 (197) | 90.6 (51.1) |
KNF2 | 4,044,484 | 380,496 | 31.2 (22.0) | 14.9 (9.6) | 21.2 (22.1) | 200 (186) | 80.7 (55.6) |
KNF3 | 4,044,305 | 380,406 | 32.9 (14.6) | 22.2 (6.2) | 44.5 (29.2) | 626 (446) | 128.9 (54.7) |
MEF1 | 4,330,850 | 490,190 | 21.7 (11.8) | 17.5 (6.6) | 24.8 (15.9) | 931 (806) | 90.2 (34.9) |
MEF2 | 4,330,730 | 490,040 | 23.5 (11.3) | 17.1 (5.4) | 26.9 (17.4) | 701 (407) | 93.4 (35.1) |
2.2. UAS Data Acquisition
2.3. UAS Structure from Motion Point Cloud Generation Data Processing
2.4. LiDAR Datasets
2.5. Point Cloud Processing
2.6. Forest Biomass Modeling
2.7. Model Evaluation
3. Results
3.1. LiDAR AGB Model Performance
3.2. UAS AGB Model Performance
3.3. Comparison of Point Cloud Structure
4. Discussion
4.1. AGB Model Performance
4.2. Implications for Forest Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bond, W.J. Open Ecosystems; Oxford University Press: New York, NY, USA, 2019; p. 178. [Google Scholar]
- Freudenberger, D. A carbon vision for the restoration of eucalypt woodlands. In Temperate Woodland Conservation and Management; Lindenmayer, D., Bennett, A., Hobbs, R., Eds.; CSIRO Publishing: Collinswood, Australia, 2010. [Google Scholar]
- Hudak, A.T.; Fekety, P.A.; Kane, V.R.; Kennedy, R.E.; Filippelli, S.K.; Falkowski, M.J.; Tinkham, W.T.; Smith, A.M.S.; Crookston, N.L.; Domke, G.M.; et al. A carbon monitoring system for mapping regional, annual aboveground biomass across the northwestern USA. Environ. Res. Let. 2020, 15, 095003. [Google Scholar] [CrossRef]
- Addington, R.N.; Aplet, G.H.; Battaglia, M.A.; Briggs, J.S.; Brown, P.M.; Cheng, A.S.; Dickinson, Y.; Feinstein, J.A.; Pelz, K.A.; Regan, C.M.; et al. Principles and practices for the restoration of ponderosa pine and dry mixed-conifer forests of the Colorado Front Range. In General Technical Report RMRS-GTR-373; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2018. [Google Scholar]
- Tinkham, W.T.; Dickinson, Y.; Hoffman, C.M.; Battaglia, M.A.; Ex, S.; Underhill, J. Visualization of heterogeneous forest structures following treatment in the southern Rocky Mountains. In General Technical Report RMRS-GTR-365; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2017. [Google Scholar]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Klauberg, C.; Garcia, M.; Ferraz, A.; Keller, M.; Eitel, J.; Saatchi, S. Impacts of airborne Lidar pulse density on estimating biomass stocks and changes in a selectively logged tropical forest. Remote Sens. 2017, 9, 1068. [Google Scholar] [CrossRef] [Green Version]
- Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Falkowski, M.J.; Smith, A.M.; Gessler, P.E.; Morgan, P. Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data. Can. J. Remote Sens. 2006, 32, 126–138. [Google Scholar] [CrossRef]
- Bouvier, M.; Durriey, S.; Fournier, R.A.; Renaud, J.P. Generalizing Predictive Models of Forest Inventory Attributes Using an Area-Based Approach with Airborne LiDAR Data. Remote Sens. Environ. 2015, 156, 322–334. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Smith, A.M.S.; Hoffman, C.M.; Hudak, A.T.; Falkowski, M.J.; Swanson, M.E.; Gessler, P.E. Investigating the influence of LiDAR ground surface errors on the utility of derived forest inventories. Can. J. For. Res. 2012, 42, 413–422. [Google Scholar] [CrossRef]
- Tinkham, W.T.; Smith, A.M.S.; Affleck, D.L.R.; Saralecos, J.D.; Falkowski, M.J.; Hoffman, C.M.; Hudak, A.T.; Wulder, M.A. Development of height-volume relationships in second growth Abies grandis for use with aerial LiDAR. Can. J. Remote Sens. 2016, 42, 400–410. [Google Scholar] [CrossRef]
- Torresan, C.; Berton, A.; Carotenuto, F.; Di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry applications of UAVs in Europe: A review. Int. J. Remote Sens. 2017, 38, 2427–2447. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; López-Granados, F.; Serrano, N.; Arquero, O.; Peña, J.M. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology. PLoS ONE 2015, 10, e0130479. [Google Scholar] [CrossRef] [Green Version]
- Fraser, B.T.; Congalton, R.G. Issues in Unmanned Aerial Systems (UAS) Data Collection of Complex Forest Environments. Remote Sens. 2018, 10, 908. [Google Scholar] [CrossRef] [Green Version]
- Thiel, C.; Schmullius, C. Comparison of UAV Photograph-Based and Airborne Lidar-Based Point Clouds over Forest from a Forestry Application Perspective. Int. J. Remote Sens. 2016, 38, 2411–2426. [Google Scholar] [CrossRef]
- Frey, J.; Kovach, K.; Stemmler, S.; Koch, B. UAV Photogrammetry of Forests as a Vulnerable Process. A Sensitivity Analysis for a Structure from Motion RGB-Image Pipeline. J. Remote Sens. 2018, 10, 912. [Google Scholar] [CrossRef] [Green Version]
- Domingo, D.; Ørka, H.O.; Næsset, E.; Kachamba, D.; Gobakken, T. Effects of UAV Image Resolution, Camera Type, and Image Overlap on Accuracy of Biomass Predictions in a Tropical Woodland. Remote Sens. 2019, 11, 948. [Google Scholar] [CrossRef] [Green Version]
- Dandois, J.P.; Olano, M.; Ellis, E.C. Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Remote Sens. 2015, 7, 13895–13920. [Google Scholar] [CrossRef] [Green Version]
- Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; Aardt, J.V.; Kunneke, A.; Seifert, T. Influence of Drone Altitude, Image Overlap, and Optical Sensor Resolution on Multi-View Reconstruction of Forest Images. Remote Sens. 2019, 11, 1252. [Google Scholar] [CrossRef] [Green Version]
- Swayze, N.P.; Tinkham, W.T.; Vogeler, J.C.; Hudak, A.T. Influence of flight parameters on UAS-based monitoring and tree height, diameter, and density. Remote Sens. Environ. 2021, 263, 112540. [Google Scholar] [CrossRef]
- Boyden, S.; Binkley, D.; Shepherd, W. Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest in the Colorado Front Range. For. Ecol. Manag. 2005, 219, 43–55. [Google Scholar] [CrossRef]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-scale biomass estimators for United States tree species. For. Sci. 2003, 49, 12–35. [Google Scholar] [CrossRef]
- Keyser, C.E.; Dixon, G.E. Central Rockies (CR) Variant Overview—Forest Vegetation Simulator; Internal Report; U.S. Department of Agriculture, Forest Service, Forest Management Service Center: Fort Collins, CO, USA, 2008; 70p.
- Dixon, G.E. Essential FVS: A User’s Guide to the Forest Vegetation Simulator; USDA Forest Service, Internal Report; Forest Management Service Center: Fort Collins, CO, USA, 2002; 204p.
- Tinkham, W.T.; Swayze, N.C. Influence of Agisoft Metashape parameters on individual tree detection using structure from motion canopy height models. Forests 2021, 12, 250. [Google Scholar] [CrossRef]
- Roussel, J.R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.; Meador, A.S.; Bourdon, J.; de Boissieu, F.; Achim, A. lidR: An R Package for Analysis of Airborne Laser Scanning (ALS) Data. Rem. Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Woods, M.; Lim, K.; Treitz, P. Predicting forest stand variables from LiDAR data in the Great Lakes—St. Lawrence forest of Ontario. For. Chron. 2008, 84, 827–839. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Evans, J.S.; Murphy, M.A. _rfUtilities_, R Package Version 2.1-3. 2018. Available online: https://cran.r-project.org/package=rfUtilities (accessed on 20 August 2021).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.A.; Evans, J.S.; Storfer, A.S. Quantify Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 2010, 91, 252–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorey, T. Die mittlere Bestandeshöhe. Allg. Forst-Und Jagdztg. 1878, 54, 149–155. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from motion photogrammetry in forestry: A review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Finnigan, J. Turbulence in plant canopies. Annu. Rev. Fluid Mech. 2000, 32, 519–571. [Google Scholar] [CrossRef]
- O’Connor, J.; Smith, M.J.; James, M.R. Cameras and setting for aerial surveys in the geosciences: Optimising image data. Prog. Phys. Geogr. Earth Env. 2017, 41, 325–344. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Kattenborn, T.; Sperlich, M.; Bataua, K.; Koch, B. Automatic single palm tree detection in plantations using UAV-based photogrammetric point clouds. Remote Sens. Spat. Info. Sci. 2014, 3, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Goldbergs, G.; Maier, S.W.; Levick, S.R.; Edwards, A. Efficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas. Remote Sens. 2018, 10, 161. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.A.; Young, M.; Allan, B.; Carnell, P.; Macreadie, P.; Ierodiaconou, D. The application of Unmanned Aerial Vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote Sens. Environ. 2020, 242, 111747. [Google Scholar] [CrossRef]
- Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Loudermilk, E.L.; O’Brien, J.J.; Hiers, J.K.; Jack, S.B.; Gonzalez-Benecke, C.; Lee, H.; Falkowski, M.J.; et al. Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data. Can. J. Remote Sens. 2016, 42, 554–573. [Google Scholar] [CrossRef]
- Creasy, M.B.; Tinkham, W.T.; Hoffman, C.M.; Vogeler, J.C. Potential for individual tree monitoring in ponderosa pine-dominated forests using unmanned aerial system structure from motion point clouds. Can. J. For. Res. 2021, 51, 1093–1105. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Smith, A.M.S.; Gessler, P.E.; Hudak, A.T.; Vierling, L.A.; Evans, J.S. The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using LiDAR data. Can. J. Remote Sens. 2008, 34, S338–S350. [Google Scholar] [CrossRef]
- Navarro, J.A.; Algeet, N.; Fernández-Landa, A.; Esteban, J.; Rodriguez-Noriega, P.; Guillén-Climent, M. Integration of UAV, Sentinel-1, and Sentinel-2 Data for Mangrove Plantation Aboveground Biomass Monitoring in Senegal. Remote Sens. 2019, 11, 77. [Google Scholar] [CrossRef] [Green Version]
Parameter | Coefficient | SE | p-Value | Coefficient | SE | p-Value |
---|---|---|---|---|---|---|
Standard Parameters | Standard + NGRR Parameters | |||||
Intercept | −56.358 | 21.812 | 0.0143 | −28.447 | 17.689 | 0.1175 |
Altitude (m) | 0.596 | 0.180 | 0.0024 | 0.2843 | 0.143 | 0.0556 |
Speed (m s−1) | 3.081 | 5.076 | 0.5483 | 3.184 | 4.037 | 0.4364 |
Standard Parameters | Standard + NGRR Parameters | |||||
Intercept | −56.862 | 21.390 | 0.0120 | −29.996 | 17.328 | 0.0930 |
Relative Altitude (A:LH) | 11.933 | 3.471 | 0.0017 | 6.013 | 2.760 | 0.0372 |
Speed (m s−1) | 2.988 | 5.046 | 0.5581 | 3.144 | 4.012 | 0.4393 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swayze, N.C.; Tinkham, W.T.; Creasy, M.B.; Vogeler, J.C.; Hoffman, C.M.; Hudak, A.T. Influence of UAS Flight Altitude and Speed on Aboveground Biomass Prediction. Remote Sens. 2022, 14, 1989. https://doi.org/10.3390/rs14091989
Swayze NC, Tinkham WT, Creasy MB, Vogeler JC, Hoffman CM, Hudak AT. Influence of UAS Flight Altitude and Speed on Aboveground Biomass Prediction. Remote Sensing. 2022; 14(9):1989. https://doi.org/10.3390/rs14091989
Chicago/Turabian StyleSwayze, Neal C., Wade T. Tinkham, Matthew B. Creasy, Jody C. Vogeler, Chad M. Hoffman, and Andrew T. Hudak. 2022. "Influence of UAS Flight Altitude and Speed on Aboveground Biomass Prediction" Remote Sensing 14, no. 9: 1989. https://doi.org/10.3390/rs14091989
APA StyleSwayze, N. C., Tinkham, W. T., Creasy, M. B., Vogeler, J. C., Hoffman, C. M., & Hudak, A. T. (2022). Influence of UAS Flight Altitude and Speed on Aboveground Biomass Prediction. Remote Sensing, 14(9), 1989. https://doi.org/10.3390/rs14091989