Current Status and Future Opportunities for Grain Protein Prediction Using On- and Off-Combine Sensors: A Synthesis-Analysis of the Literature
<p>Distribution of (<b>a</b>) maximum R<sup>2</sup> and (<b>b</b>) minimum root mean squared error (RMSE) by sensor type (combine, proximal, remote). Black dot and lines represent the mean ± standard deviation, and <span class="html-italic">n</span> is the number of observations for each sensor type. In panel (<b>a</b>), means followed by the same letter are not significantly different at α = 0.05.</p> "> Figure 2
<p>Distribution of (<b>a</b>) maximum R<sup>2</sup> and (<b>b</b>) minimum root mean squared error (RMSE) by type of the best spectral covariable (single and multiple spectral). Black dot and lines represent the mean ± standard deviation, and <span class="html-italic">n</span> is the number of observations for each best number of spectral features. In panel (<b>a</b>), means followed by the same letter are not significantly different at α = 0.05.</p> "> Figure 3
<p>Distribution of (<b>a</b>) maximum R<sup>2</sup> and (<b>b</b>) minimum root mean squared error (RMSE) by presence or absence of different bands (blue, green, red, RE = red-edge, NIR = near infrared, SWIR = short wave infrared) in the spectral feature utilized to model grain protein concentration. Black dot and lines represent the mean ± standard deviation, and <span class="html-italic">n</span> is the number of observations for each distribution. Means followed by the same letter are not significantly different at α = 0.05.</p> "> Figure 4
<p>Distribution of (<b>a</b>) maximum R<sup>2</sup> and (<b>b</b>) minimum root mean squared error (RMSE) by statistical approach (bivariatef = bivariate family, multivariatef = multivariate family, PLSRf = partial least squares family, RF-ANN = random forest artificial neural network) utilized to model grain protein concentration. Black dot and lines represent the mean ± standard deviation, and <span class="html-italic">n</span> is the number of observations for each distribution of best statistical approach. Means followed by the same letter are not significantly different at α = 0.05.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Search Summary, Building the Database
3.2. Sensor Type
3.3. Spatial Resolution
3.4. Number of Days Sensed
3.5. Number of Spectral Features
3.6. Type of Spectral Features
3.7. Nonspectral Covariables
3.8. Spectral Frequency
3.9. Statistical Approach
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GPC | Grain protein concentration |
N | Nitrogen |
RMSE | Root mean squared error |
PLSR | Partial least-square regression |
RF | Random forest |
ANN | Artificial neural network |
CIT | Conditional inference tree |
RE | Red-edge |
NIR | Near infra-red |
SWIR | Short-wave near-infrared |
References
- Delin, S. Within-field variations in grain protein content—relationships to yield and soil nitrogen and consistency in maps between years. Precis. Agric. 2004, 5, 565–577. [Google Scholar] [CrossRef]
- Long, D.S.; McCallum, J.D. On-combine, multi-sensor data collection for post-harvest assessment of environmental stress in wheat. Precis. Agric. 2015, 16, 492–504. [Google Scholar] [CrossRef]
- Norng, S.; Pettitt, A.; Kelly, R.; Butler, D.; Strong, W. Investigating the relationship between site-specific yield and protein of cereal crops. Precis. Agric. 2005, 6, 41–51. [Google Scholar] [CrossRef]
- Reyns, P.; Spaepen, P.; De Baerdemaeker, J. Site-specific relationship between grain quality and yield. Precis. Agric. 2000, 2, 231–246. [Google Scholar] [CrossRef]
- Whelan, B.M.; Taylor, J.A.; Hassall, J.A. Site-specific variation in wheat grain protein concentration and wheat grain yield measured on an Australian farm using harvester-mounted on-the-go sensors. Crop Pasture Sci. 2009, 60, 808–817. [Google Scholar] [CrossRef]
- Klem, K.; Záhora, J.; Zemek, F.; Trunda, P.; Tůma, I.; Novotná, K.; Hodaňová, P.; Rapantová, B.; Hanuš, J.; Vavříková, J.; et al. Interactive effects of water deficit and nitrogen nutrition on winter wheat. Remote sensing methods for their detection. Agric. Water Manag. 2018, 210, 171–184. [Google Scholar] [CrossRef]
- Long, D.S.; Carlson, G.R.; Engel, R.E. Grain protein mapping for precision management of dryland wheat. In Proceedings of the Fourth International Conference on Precision Agriculture, St. Paul, MN, USA, 19–22 July 1998; pp. 787–796. [Google Scholar]
- Engel, R.E.; Long, D.S.; Carlson, G.R.; Meirer, C. Method for precision nitrogen management in spring wheat: I fundamental relationships. Precis. Agric. 1999, 1, 327–338. [Google Scholar] [CrossRef]
- Morari, F.; Zanella, V.; Sartori, L.; Visioli, G.; Berzaghi, P.; Mosca, G. Optimising durum wheat cultivation in North Italy: Understanding the effects of site-specific fertilization on yield and protein content. Precis. Agric. 2018, 19, 257–277. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D.; Chen, D.; Cafiero, G.; Amato, M.; Bitella, G.; Rossi, R.; Basso, F. Landscape position and precipitation effects on spatial variability of wheat yield and grain protein in Southern Italy. J. Agron. Crop Sci. 2009, 195, 301–312. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Bullock, D.G. Spatial variability of soybean quality data as a function of field topography: I. spatial data analysis. Crop Sci. 2002, 42, 804–815. [Google Scholar] [CrossRef]
- Stewart, C.M.; McBratney, A.B.; Skerritt, J.H. Site-specific durum wheat quality and its relationship to soil properties in a single field in Northern New South Wales. Precis. Agric. 2002, 3, 155–168. [Google Scholar] [CrossRef]
- Long, D.S.; McCallum, J.D.; Martin, C.T.; Capalbo, S. Net returns from segregating dark northern spring wheat by protein concentration during harvest. Agron. J. 2016, 108, 1503–1513. [Google Scholar] [CrossRef] [Green Version]
- Long, D.S.; McCallum, J.D.; Scharf, P.A. Optical-mechanical system for on-combine segregation of wheat by grain protein concentration. Agron. J. 2013, 105, 1529–1535. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.T.; McCallum, J.D.; Long, D.S. A web-based calculator for estimating the profit potential of grain segregation by protein concentration. Agron. J. 2013, 105, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Miao, R.; Hennessy, D.A. Optimal protein segregation strategies for wheat growers. Can. J. Agric. Econ./Rev. Can. D’Agroecon. 2015, 63, 309–331. [Google Scholar] [CrossRef]
- Bonfil, D.; Mufradi, I.; Asido, S.; Long, D. Precision nitrogen management based on nitrogen removal in rainfed wheat. In Proceedings of the 9th International Conference on Precision Agriculture, Denver, CO, USA, 20–23 July 2008. [Google Scholar]
- Engel, R.E.; Long, D.S.; Carlson, G.R. Grain protein as a post-harvest index of nitrogen status for winter wheat in the Northern Great Plains. Can. J. Plant Sci. 2006, 86, 425–431. [Google Scholar] [CrossRef]
- Long, D.S.; Nielsen, G.A.; Henry, M.P.; Westcott, M.P. Remote sensing for Northern Plains precision agriculture. In Proceedings of the Space 2000, Albuquerque, NM, USA, 27 February–2 March 2000; American Society of Civil Engineers: Albuquerque, NM, USA, 2000; pp. 208–214. [Google Scholar]
- McLellan, E.L.; Cassman, K.G.; Eagle, A.J.; Woodbury, P.B.; Sela, S.; Tonitto, C.; Marjerison, R.D.; van Es, H.M. The nitrogen balancing act: Tracking the environmental performance of food production. BioScience 2018, 68, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Whelan, B. On-The-Go Protein Monitoring: A Review. Available online: https://www.researchgate.net/profile/James-Taylor-58/publication/259655553_On-the-go_grain_quality_monitoring_A_review/links/0deec52d2c169e7641000000/On-the-go-grain-quality-monitoring-A-review.pdf (accessed on 29 December 2020).
- Diacono, M.; Rubino, P.; Montemurro, F. Precision nitrogen management of wheat. a review. Agron. Sustain. Dev. 2013, 33, 219–241. [Google Scholar] [CrossRef]
- Øvergaard, S.I.; Isaksson, T.; Korsaeth, A. Prediction of wheat yield and protein using remote sensors on plots—part i: Assessing near infrared model robustness for year and site variations. J. Infrared Spectrosc. 2013, 21, 117–131. [Google Scholar] [CrossRef]
- Barmeier, G.; Hofer, K.; Schmidhalter, U. Mid-season prediction of grain yield and protein content of spring barley cultivars using high-throughput spectral sensing. Eur. J. Agron. 2017, 90, 108–116. [Google Scholar] [CrossRef]
- Magney, T.S.; Eitel, J.U.H.; Huggins, D.R.; Vierling, L.A. Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality. Agric. For. Meteorol. 2016, 217, 46–60. [Google Scholar] [CrossRef]
- Hama, A.; Tanaka, K.; Mochizuki, A.; Tsuruoka, Y.; Kondoh, A. Estimating the protein concentration in rice grain using UAV imagery together with agroclimatic data. Agronomy 2020, 10, 431. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, T.K.; Ryu, C.-S.; Kang, Y.-S.; Kim, S.-H.; Jeon, S.-R.; Jang, S.-H.; Park, J.-W.; Kim, S.-G.; Kim, H.-J. Integrating UAV Remote Sensing with GIS for Predicting Rice Grain Protein. J. Biosyst. Eng. 2018, 43, 148–159. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Blasch, G.; BlasDefournych, P.; Ortiz-Monasterio, J.I.; Schulthess, U.; Zarco-Tejada, P.J.; Taylor, J.A.; Gérard, B. Multi-temporal and spectral analysis of high-resolution hyperspectral airborne imagery for precision agriculture: Assessment of wheat grain yield and grain protein content. Remote Sens. 2018, 10, 930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, C.; Suguri, M.; Iida, M.; Umeda, M.; Lee, C. Integrating remote sensing and GIS for prediction of rice protein contents. Precis. Agric. 2011, 12, 378–394. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Huggins, D.R.; Tao, H. Rapid mapping of winter wheat yield, protein, and nitrogen uptake using remote and proximal sensing. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101921. [Google Scholar] [CrossRef]
- Xu, X.; Teng, C.; Zhao, Y.; Du, Y.; Zhao, C.; Yang, G.; Jin, X.; Song, X.; Gu, X.; Casa, R.; et al. Prediction of wheat grain protein by coupling multisource remote sensing imagery and ECMWF data. Remote Sens. 2020, 12, 1349. [Google Scholar] [CrossRef]
- Meier, C.G. Protein Mapping Spring Wheat Using a Mobile Near-Infrared Sensor and Terrain Modeling. Ph.D. Thesis, Montana State University-Bozeman, College of Agriculture, Bozeman, MT, USA, 2004. [Google Scholar]
- Sharabiani, V.; Kassar, F.; Gilandeh, Y.; Ardabili, S. Application of soft computing methods and spectral reflectance data for wheat growth monitoring. Iraqi J. Agric. Sci. 2019, 50, 1064–1076. [Google Scholar]
- Zhao, C.; Liu, L.; Wang, J.; Huang, W.; Song, X.; Li, C.; Wang, Z. Methods and application of remote sensing to forecast wheat grain quality. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 6, pp. 4008–4010. [Google Scholar]
- Basnet, B.B.; Apan, A.; Kelly, R.; Jensen, T.; Strong, W.; Butler, D. Relating satellite imagery with grain protein content. In Proceedings of the 2003 Spatial Sciences Institute Biennial Conference: Spatial Knowledge without Boundaries (SSC2003), Spatial Sciences Institute, Canberra, Australia, 22–27 September 2003; pp. 1–11. [Google Scholar]
- Li, C.; Wang, J.; Wang, Q.; Wang, D.; Song, X.; Wang, Y.; Huang, W. Estimating wheat grain protein content using multi-temporal remote sensing data based on partial least squares regression. J. Integr. Agric. 2012, 11, 1445–1452. [Google Scholar] [CrossRef]
- Øvergaard, S.I.; Isaksson, T.; Kvaal, K.; Korsaeth, A. Comparisons of two hand-held, multispectral field radiometers and a hyperspectral airborne imager in terms of predicting spring wheat grain yield and quality by means of powered partial least squares regression. J. Infrared Spectrosc. 2010, 18, 247–261. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Hansen, P.M.; Jørgensen, J.R.; Thomsen, A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. J. Agric. Sci. 2002, 139, 307–318. [Google Scholar] [CrossRef]
- Nutter, F.W.; Tylka, G.L.; Guan, J.; Moreira, A.J.D.; Marett, C.C.; Rosburg, T.R.; Basart, J.P.; Chong, C.S. Use of remote sensing to detect soybean cyst nematode-induced plant stress. J. Nematol. 2002, 34, 222–231. [Google Scholar]
- Wright, D.L.; Ritchie, G.; Rasmussen, V.; Ramsey, D.; Baker, D. Managing grain protein in wheat using remote sensing. Online J. Space Commun. 2003, 3, 1–12. [Google Scholar]
- Kelly, R.; Cooper, J.; Thomas, G.; Strong, W.; Butler, D.; Apan, A. Using a handheld multispectral radiometer to forecast grain protein in northern Australia. In Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004. [Google Scholar]
- Maertens, K.; Reyns, P.; De Baerdemaeker, J. On-line measurement of grain quality with NIR technology. Trans. ASAE 2004, 47, 1135–1140. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, J.H.; Liu, L.Y.; Huang, W.J.; Zhao, C.J.; Wang, C.Z. Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crop. Res. 2004, 90, 311–321. [Google Scholar] [CrossRef]
- Wells, N.; Kelly, R.; Phinn, S.; Apan, A.; Jensen, T.; Cooper, J.; Strong, W. Use of airborne hyperspectral imagery to determine quality of sorghum crops. In Proceedings of the 12th Australasian Remote Sensing and Photogrammetry Conference (ARSPC 2004), Causal Productions, Fremantle, Australia, 18–22 October 2004. [Google Scholar]
- Wright, D.L.; Rasmussen, V.P.; Ramsey, R.D.; Baker, D.J.; Ellsworth, J.W. Canopy reflectance estimation of wheat nitrogen content for grain protein management. GIScience Remote Sens. 2004, 41, 287–300. [Google Scholar] [CrossRef]
- Long, D.; Rosenthal, T. Evaluation of an on-combine wheat protein analyzer on Montana hard red spring wheat. Progress report. In Proceedings of the 5th European Conference on Precision Agriculture, Uppsala, Sweden, 9–12 June 2005; Zeltex, Inc.: Hagerstown, MD, USA, 2005; p. 21740. [Google Scholar]
- Long, D.S.; Engel, R.E.; Carpenter, F.M. On-combine sensing and mapping of wheat protein concentration. Crop Manag. 2005, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Liu, L.; Wang, J.; Huang, W.; Song, X.; Li, C. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 1–9. [Google Scholar] [CrossRef]
- Apan, A.; Kelly, R.; Phinn, S.; Strong, W.; Lester, D.; Butler, D.; Robson, A. Predicting grain protein content in wheat using hyperspectral sensing of in-season crop canopies and partial least squares regression. Int. J. Geoinform. 2006, 2, 93–108. [Google Scholar]
- Liu, L.; Wang, J.; Bao, Y.; Huang, W.; Ma, Z.; Zhao, C. Predicting winter wheat condition, grain yield and protein content using multi-temporal EnviSat-ASAR and Landsat TM satellite images. Int. J. Remote Sens. 2006, 27, 737–753. [Google Scholar] [CrossRef]
- Long, D.S.; Baker, A. On-Combine Sensing of Grain Protein Concentration in Soft White Winter Wheat. 2006 Dryland Agricultural Annual Report. 2006, pp. 18–24. Available online: https://nanopdf.com/download/2006-dryland-agricultural-annual-report-aig-special-report-1068_pdf (accessed on 16 November 2021).
- Pettersson, C.-G.; Söderström, M.; Eckersten, H. Canopy reflectance, thermal stress, and apparent soil electrical conductivity as predictors of within-field variability in grain yield and grain protein of malting barley. Precis. Agric. 2006, 7, 343–359. [Google Scholar] [CrossRef]
- Reyniers, M.; Vrindts, E.; De Baerdemaeker, J. Comparison of an aerial-based system and an on the ground continuous measuring device to predict yield of winter wheat. Eur. J. Agron. 2006, 24, 87–94. [Google Scholar] [CrossRef]
- Jensen, T.; Apan, A.; Young, F.; Zeller, L. Detecting the attributes of a wheat crop using digital imagery acquired from a low-altitude platform. Comput. Electron. Agric. 2007, 59, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Pettersson, C.G.; Eckersten, H. Prediction of grain protein in spring malting barley grown in Northern Europe. Eur. J. Agron. 2007, 27, 205–214. [Google Scholar] [CrossRef]
- Xue, L.-H.; Cao, W.-X.; Yang, L.-Z. Predicting grain yield and protein content in winter wheat at different N supply levels using canopy reflectance spectra. Pedosphere 2007, 17, 646–653. [Google Scholar] [CrossRef]
- Huang, W.; Song, X.; Lamb, D.W.; Wang, Z.; Niu, Z.; Liu, L.; Wang, J. Estimation of winter wheat grain crude protein content from in situ reflectance and advanced spaceborne thermal emission and reflection radiometer image. J. Appl. Remote Sens. 2008, 2, 023530. [Google Scholar] [CrossRef]
- Long, D.S.; Engel, R.E.; Siemens, M.C. Measuring grain protein concentration with in-line near infrared reflectance spectroscopy. Agron. J. 2008, 100, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Papale, D.; Belli, C.; Gioli, B.; Miglietta, F.; Ronchi, C.; Vaccari, F.; Valentini, R. ASPIS, a flexible multispectral system for airborne remote sensing environmental applications. Sensors 2008, 8, 3240–3256. [Google Scholar] [CrossRef] [Green Version]
- Fox, G.P.; Bloustein, G.; Sheppard, J. “On-the-go” NIT technology to assess protein and moisture during harvest of wheat breeding trials. J. Cereal Sci. 2010, 51, 171–173. [Google Scholar] [CrossRef]
- Qualm, A.M.; Osborne, S.L.; Gelderman, R. Utilizing existing sensor technology to predict spring wheat grain nitrogen concentration. Commun. Soil Sci. Plant Anal. 2010, 41, 2086–2099. [Google Scholar] [CrossRef]
- Risius, H.; Hahn, J.; Korte, H. Monitoring of Grain Quality and Segregation of Grain According to Protein Concentration Threshold on an Operating Combine Harvester. Book of Abstracts, Proceedings of the XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR|SCGAB), Québec City, QC, Canada, 13–17 June 2010; Canadian Society for Bioengineering: Québec City, QC, Canada, 2010; p. 28. Available online: https://www.semanticscholar.org/paper/Monitoring-of-grain-quality-and-segregation-of-to-Risius-Hahn/3573ee9ba88e1c3a5c466294714314a0c1dea24c (accessed on 16 November 2021).
- Söderström, M.; Börjesson, T.; Pettersson, C.-G.; Nissen, K.; Hagner, O. Prediction of protein content in malting barley using proximal and remote sensing. Precis. Agric. 2010, 11, 587–599. [Google Scholar] [CrossRef]
- Song, X.; Wang, J.; Huang, W. Winter Wheat Growth and Grain Protein Uniformity Monitoring through Remotely Sensed Data. In Proceedings of the Remote Sensing for Agriculture, Ecosystems and Hydrology XII. International Society for Optics and Photonics, Toulouse, France, 7 October 2010; Volume 7824, p. 78242G. [Google Scholar]
- Guasconi, F.; Dalla Marta, A.; Grifoni, D.; Mancini, M.; Orlando, F.; Orlandini, S. Influence of climate on durum wheat production and use of remote sensing and weather data to predict quality and quantity of harvests. J. Agrometeorol. 2011, 3, 21–28. [Google Scholar]
- Han-ya, I.; Ishii, K.; Noguchi, N. Rice yields and protein content estimation by low-altitude remote sensing using spectroradiometer. IFAC Proc. Vol. 2011, 44, 1796–1801. [Google Scholar] [CrossRef] [Green Version]
- Onoyama, H.; Ryu, C.; Suguri, M.; Iida, M. Estimation of rice protein content using ground-based hyperspectral remote sensing. Eng. Agric. Environ. Food 2011, 4, 71–76. [Google Scholar] [CrossRef]
- Orlandini, S.; Mancini, M.; Grifoni, D.; Orlando, F.; Dalla Marta, A.; Capecchi, V. Integration of meteo-climatic and remote sensing information for the analysis of durum wheat quality in Val d’Orcia (Tuscany, Italy). Q. J. Hung. Meteorol. Serv. 2011, 115, 233–245. [Google Scholar]
- Zhang, J.; Gu, X.; Wang, J.; Huang, W.; Dong, Y.; Luo, J.; Yuan, L.; Li, Y. Evaluating maize grain quality by continuous wavelet analysis under normal and lodging circumstances. Sens. Lett. 2012, 10, 580–585. [Google Scholar] [CrossRef]
- Schoch, A.S. Enhanching Protein Concentration in Hard Red Spring Wheat with Nitrogen Management Based on Plant Predictors. Ph.D. Thesis, North Dakota State University, Fargo, ND, USA, 2013. [Google Scholar]
- Feng, M.; Xiao, L.; Zhang, M.; Yang, W.; Ding, G. Integrating remote sensing and GIS for prediction of winter wheat (triticum aestivum) protein contents in Linfen (Shanxi), China. PLoS ONE 2014, 9, e80989. [Google Scholar] [CrossRef] [Green Version]
- Xiu-liang, J.; Xin-gang, X.; Feng, H.; Xiao-yu, S.; Wang, Q.; Ji-hua, W.; Wen-shan, G. Estimation of grain protein content in winter wheat by using three methods with hyperspectral data. Int. J. Agric. Biol. 2014, 16, 498–504. [Google Scholar]
- Macnack, N.; Khim, B.C.; Mullock, J.; Raun, W. In-season prediction of nitrogen use efficiency and grain protein in winter wheat (Triticum aestivum L.). Commun. Soil Sci. Plant Anal. 2014, 45, 2480–2494. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Wang, J.; Yang, G.; Feng, H. Winter wheat cropland grain protein content evaluation through remote sensing. Intell. Autom. Soft Comput. 2014, 20, 599–609. [Google Scholar] [CrossRef]
- Wang, L.; Tian, Y.; Yao, X.; Zhu, Y.; Cao, W. Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crop. Res. 2014, 164, 178–188. [Google Scholar] [CrossRef]
- Xu, X.-G.; Li, C.-J.; Dong, Y.-S.; Song, X.-Y.; Jin, X.-L. Estimating grain protein content in winter wheat with multi-temporal hyperspectral measurements. Sens. Lett. 2014, 12, 855–859. [Google Scholar] [CrossRef]
- Li, Z.; Jin, X.; Zhao, C.; Wang, J.; Xu, X.; Yang, G.; Li, C.; Shen, J. Estimating wheat yield and quality by coupling the DSSAT-CERES model and proximal remote sensing. Eur. J. Agron. 2015, 71, 53–62. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Xu, X.; Zhao, C.; Jin, X.; Yang, G.; Feng, H. Assimilation of two variables derived from hyperspectral data into the DSSAT-CERES model for grain yield and quality estimation. Remote Sens. 2015, 7, 12400–12418. [Google Scholar] [CrossRef] [Green Version]
- Orlando, F.; Marta, A.D.; Mancini, M.; Motha, R.; Qu, J.J.; Orlandini, S. Integration of remote sensing and crop modeling for the early assessment of durum wheat harvest at the field scale. Crop Sci. 2015, 55, 1280–1289. [Google Scholar] [CrossRef]
- Geipel, J.; Link, J.; Wirwahn, J.; Claupein, W. A programmable aerial multispectral camera system for in-season crop biomass and nitrogen content estimation. Agriculture 2016, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Mengmeng, D.; Noboru, N.; Atsushi, I.; Yukinori, S. Multi-temporal monitoring of wheat growth by using images from satellite and unmanned aerial vehicle. Int. J. Agric. Biol. Eng. 2017, 10, 1–13. [Google Scholar] [CrossRef]
- Rellaford, M.J. Predicting and Enhancing Spring Wheat Grain Protein Content through Sensing and In-Season Nitrogen Fertilization. Ph.D. Thesis, North Dakota State University, Fargo, ND, USA, 2018. [Google Scholar]
- Prey, L.; Schmidhalter, U. Simulation of satellite reflectance data using high-frequency ground based hyperspectral canopy measurements for in-season estimation of grain yield and grain nitrogen status in winter wheat. ISPRS J. Photogramm. Remote Sens. 2019, 149, 176–187. [Google Scholar] [CrossRef]
- Zhao, H.; Song, X.; Yang, G.; Li, Z.; Zhang, D.; Feng, H. Monitoring of nitrogen and grain protein content in winter wheat based on Sentinel-2a data. Remote Sens. 2019, 11, 1724. [Google Scholar] [CrossRef] [Green Version]
- Aranguren, M.; Castellón, A.; Aizpurua, A. Crop sensor based non-destructive estimation of nitrogen nutritional status, yield, and grain protein content in wheat. Agriculture 2020, 10, 148. [Google Scholar] [CrossRef]
- Chen, P. Estimation of winter wheat grain protein content based on multisource data assimilation. Remote Sens. 2020, 12, 3201. [Google Scholar] [CrossRef]
- Li, Z.; Taylor, J.; Yang, H.; Casa, R.; Jin, X.; Li, Z.; Song, X.; Yang, G. A hierarchical interannual wheat yield and grain protein prediction model using spectral vegetative indices and meteorological data. Field Crop. Res. 2020, 248, 107711. [Google Scholar] [CrossRef]
- Long, D.S.; McCallum, J.D. Adapting a relatively low-cost reflectance spectrometer for on-combine sensing of grain protein concentration. Comput. Electron. Agric. 2020, 174, 105467. [Google Scholar] [CrossRef]
- Tan, C.; Zhou, X.; Zhang, P.; Wang, Z.; Wang, D.; Guo, W.; Yun, F. Predicting grain protein content of field-grown winter wheat with satellite images and partial least square algorithm. PLoS ONE 2020, 15, e0228500. [Google Scholar] [CrossRef] [PubMed]
- Walsh, O.S.; Torrion, J.A.; Liang, X.; Shafian, S.; Yang, R.; Belmont, K.M.; McClintick-Chess, J.R. Grain yield, quality, and spectral characteristics of wheat grown under varied nitrogen and irrigation. Agrosyst. Geosci. Environ. 2020, 3, e20104. [Google Scholar] [CrossRef]
- Aranguren, M.; Castellón, A.; Aizpurua, A. Wheat grain protein content under Mediterranean conditions measured with chlorophyll meter. Plants 2021, 10, 374. [Google Scholar] [CrossRef] [PubMed]
- Chiozza, M.V.; Parmley, K.A.; Higgins, R.H.; Singh, A.K.; Miguez, F.E. Comparative prediction accuracy of hyperspectral bands for different soybean crop variables: From leaf area to seed composition. Field Crop. Res. 2021, 271, 108260. [Google Scholar] [CrossRef]
- Kang, Y.; Nam, J.; Kim, Y.; Lee, S.; Seong, D.; Jang, S.; Ryu, C. Assessment of regression models for predicting rice yield and protein content using unmanned aerial vehicle-based multispectral imagery. Remote Sens. 2021, 13, 1508. [Google Scholar] [CrossRef]
- Kizilgeci, F.; Yildirim, M.; Islam, M.S.; Ratnasekera, D.; Iqbal, M.A.; Sabagh, A.E. Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under semi-arid conditions. Sustainability 2021, 13, 3725. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Mihalyov, P.D.; Lewien, M.J.; Pumphrey, M.O.; Carter, A.H. Combining genomic and phenomic information for predicting grain protein content and grain yield in spring wheat. Front. Plant Sci. 2021, 12, 613300. [Google Scholar] [CrossRef] [PubMed]
- Santaga, F.S.; Benincasa, P.; Toscano, P.; Antognelli, S.; Ranieri, E.; Vizzari, M. Simplified and advanced Sentinel-2-based precision nitrogen management of wheat. Agronomy 2021, 11, 1156. [Google Scholar] [CrossRef]
- Savaşlı, E.; Karaduman, Y.; Önder, O.; Ateş, Ö. Prediction of grain protein content and gluten quality of bread wheat in the early vegetation period by optical sensors. J. Cereal Sci. 2021, 102, 103354. [Google Scholar] [CrossRef]
- Veverka, D.; Chatterjee, A.; Carlson, M. Comparisons of sensors to predict spring wheat grain yield and protein content. Agron. J. 2021, 113, 2091–2101. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Zhang, J.; Fan, Y.; Cheng, Y.; Wang, B.; Wu, X.; Tan, X.; Tan, T.; Li, S.; et al. Predicting grain yield and protein content using canopy reflectance in maize grown under different water and nitrogen levels. Field Crop. Res. 2021, 260, 107988. [Google Scholar] [CrossRef]
- Zhou, X.; Kono, Y.; Win, A.; Matsui, T.; Tanaka, T.S.T. Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches. Plant Prod. Sci. 2021, 24, 137–151. [Google Scholar] [CrossRef]
- Fu, Z.; Yu, S.; Zhang, J.; Xi, H.; Gao, Y.; Lu, R.; Zheng, H.; Zhu, Y.; Cao, W.; Liu, X. Combining UAV multispectral imagery and ecological factors to estimate leaf nitrogen and grain protein content of wheat. Eur. J. Agron. 2022, 132, 126405. [Google Scholar] [CrossRef]
- Zaman, W. JCR, SCI Complete List of Journal Reports 2020. 2020. Available online: https://www.scribd.com/document/476514395/ImpactfactorandJIFQuartilereleasedon29june2020-pdf (accessed on 16 November 2021).
- Austin, R.B.; Ford, M.A.; Edrich, J.A.; Blackwell, R.D. The nitrogen economy of winter wheat. J. Agric. Sci. 1977, 88, 159–167. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [Google Scholar] [CrossRef] [Green Version]
- Diacono, M.; Castrignanò, A.; Troccoli, A.; De Benedetto, D.; Basso, B.; Rubino, P. Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: A multivariate geostatistical approach. Field Crop. Res. 2012, 131, 49–62. [Google Scholar] [CrossRef]
- Brown, C. Achieving Soybean Seed Quality Is a Combination of Nature and Nurture. Available online: https://soybeanresearchinfo.com/research-highlight/achieving-soybean-seed-quality-is-a-combination-of-nature-and-nurture/ (accessed on 19 December 2020).
- Kirk, P.L. Kjeldahl method for total nitrogen. Anal. Chem. 1950, 22, 354–358. [Google Scholar] [CrossRef]
- Lin, L.I.-K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Hedayat, A.S.; Sinha, B.; Yang, M. Statistical methods in assessing agreement: Models, issues, and tools. J. Am. Stat. Assoc. 2002, 97, 257–270. [Google Scholar] [CrossRef]
Entry ID. | Citation | Journal Quality * | Crop | No. SYs | GPC Range (%) | Sensor Type | Spatial Resolution (m) | No. Days Sensed | Best Timing | Best Spectral Variable | Best Spectral Frequency | Best Statistical Model | Max R2 | Min RMSE (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1a | [36] | Q2 | Wheat | 2 | 2.5 | Proximal | 2–5 | Heading | MS | MD | PLSRf | 0.4 | ||
1b | [36] | Q2 | Barley | 2 | 1.2 | Proximal | 2–5 | Heading | MS | MD | PLSRf | 0.8 | ||
2 | [37] | Q2 | Soybean | 1 | 8 | Remote | 30 | 2–5 | SS | SD | Bivariatef | 0.8 | 0.28 | |
3a | [33] | C | Barley | 3 | 7.8 | Remote | 30 | 1 | Anthesis | SS | SD | Bivariatef | 0.71 | |
3b | [33] | C | Sorghum | 3 | 4.4 | Remote | 30 | 2–5 | Anthesis | SS | SD | Bivariatef | 0.03 | |
3c | [33] | C | Wheat | 3 | 2.5 | Remote | 15 | 1 | Anthesis | SS | SD | Bivariatef | 0.22 | |
3d | [33] | C | Wheat | 3 | 2.5 | Remote | 30 | 1 | Anthesis | SS | SD | Bivariatef | 0.64 | |
4a | [38] | NA | Wheat | 1 | 1.9 | Remote | 2.5 | 1 | Heading | SS | SD | Bivariatef | 0.35 | |
4b | [38] | NA | Wheat | 1 | 1.9 | Remote | 1 | 1 | Heading | SS | SD | Bivariatef | 0.36 | |
5 | [39] | C | Wheat | 2 | 4.8 | Proximal | 2–5 | Anthesis | SS | SD | Bivariatef | 0.74 | ||
6 | [40] | C | Wheat | 6 | 7.1 | Combine | 0.57 | |||||||
7 | [30] | T | Wheat | 2 | 7.9 | Combine | 0.31 | 0.92 | ||||||
8 | [41] | Q1 | Wheat | 2 | 2.3 | Proximal | 6–10 | Anthesis | SS | SD | Bivariatef | 0.97 | 0.17 | |
9 | [42] | C | Sorghum | 1 | 10 | Remote | 3 | 1 | MS | SD | Multivariatef | 0.36 | ||
10a | [43] | Q1 | Wheat | 2 | 5.8 | Remote | 2.5 | 1 | Booting | SS | SD | Bivariatef | 0.5 | |
10b | [43] | Q1 | Wheat | 2 | 5.8 | Remote | 1 | 1 | Booting | SS | SD | Bivariatef | 0.53 | |
10c | [43] | Q1 | Wheat | 2 | 5.8 | Proximal | 1 | Booting | SS | SD | Bivariatef | 0.63 | ||
10d | [43] | Q1 | Wheat | 2 | 5.8 | Proximal | 1 | Booting | SS | SD | Bivariatef | 0.63 | ||
11 | [32] | C | Wheat | 1 | 6.1 | Proximal | 1 | Anthesis | SS | SD | Bivariatef | 0.45 | ||
12 | [44] | C | Wheat | 2 | 6.5 | Combine | 0.65 | 0.66 | ||||||
13 | [45] | NA | Wheat | 1 | 3.5 | Combine | 0.55 | 0.66 | ||||||
14a | [46] | Q2 | Wheat | 22 | 6.3 | Proximal | 2–5 | Anthesis | SS | SD | Bivariatef | 0.45 | ||
14b | [46] | Q2 | Wheat | 22 | 6.3 | Remote | 30 | 2–5 | Anthesis | SS | SD | Bivariatef | 0.5 | |
15 | [47] | NA | Wheat | 2 | 6.7 | Proximal | 1 | Anthesis | MS | SD | PLSRf | 0.92 | 0.5 | |
16 | [48] | Q2 | Wheat | 25 | 4.2 | Remote | 30 | 2–5 | Grain filling | MS | SD | Multivariatef | 0.56 | |
17 | [49] | IR | Wheat | 4 | 5.3 | Combine | 0.71 | 0.9 | ||||||
Anthesis | [50] | Q1 | Barley | 3 | 3.2 | Proximal | 2–5 | SS | SD | Bivariatef | 0.77 | |||
19a | [51] | Q1 | Wheat | 1 | 3.7 | Remote | 0.4 | 1 | SS | SD | Bivariatef | 0.57 | 0.94 | |
19b | [51] | Q1 | Wheat | 1 | 3.7 | Proximal | 1 | SS | SD | Bivariatef | 0.7 | 0.78 | ||
20 | [52] | Q1 | Wheat | 1 | 3.8 | Remote | 0.25 | 1 | MS | SD | PLSRf | 0.74 | 0.89 | |
21 | [53] | Q1 | Barley | 16 | 2.6 | Proximal | 1 | Stem elongation | SS + other | SD | Multivariatef | 0.78 | ||
22 | [54] | Q1 | Wheat | 1 | 3.9 | Proximal | 6–10 | Grain filling | SS | SD | Bivariatef | 0.79 | 0.65 | |
23a | [55] | Q4 | Wheat | 3 | 5.3 | Remote | 15 | 2–5 | Anthesis | SS | SD | Bivariatef | 0.74 | 1.65 |
23b | [55] | Q4 | Wheat | 3 | 5.3 | Proximal | 2–5 | Anthesis | SS | SD | Bivariatef | 0.77 | 0.89 | |
24 | [56] | Q2 | Wheat | 1 | 4.2 | Combine | 0.94 | 0.31 | ||||||
25 | [57] | Q1 | Wheat | 2 | Remote | 0.5 | 1 | Preheading | SS | SD | Bivariatef | 0.65 | ||
26 | [5] | Q2 | Wheat | 27 | 8.5 | Combine | 0.95 | 0.42 | ||||||
27 | [58] | Q2 | Wheat | 2 | 2.1 | Combine | 0.83 | |||||||
28a | [59] | Q3 | Wheat | 1 | 6.7 | Proximal | 2–5 | Heading | MS | SD | PLSRf | 0.92 | 0.4 | |
28b | [59] | Q3 | Wheat | 1 | 6.7 | Remote | 0.2 | 1 | Heading | MS | SD | PLSRf | 0.71 | 0.82 |
29 | [60] | Q4 | Wheat | 8 | 9.7 | Proximal | 6–10 | Preheading | SS | SD | Bivariatef | 0.62 | ||
30a | [61] | C | Wheat | Combine | 0.96 | 0.33 | ||||||||
30b | [61] | C | Barley | Combine | 0.94 | 0.31 | ||||||||
31a | [62] | Q1 | Barley | 21 | 9.1 | Proximal | 1 | Anthesis | MS + other | SD | PLSRf | 0.77 | 0.4 | |
31b | [62] | Q1 | Barley | 21 | 9.1 | Remote | 23.5 | 1 | Anthesis | MS + other | SD | PLSRf | 0.61 | 0.66 |
31c | [62] | Q1 | Barley | 21 | 9.1 | Remote | 10 | 1 | Anthesis | MS + other | SD | PLSRf | 0.51 | 0.57 |
32 | [63] | NA | Wheat | 1 | 4.2 | Remote | 2.5 | 1 | Booting | SS | SD | Bivariatef | 0.28 | |
33 | [64] | Q3 | Wheat | 220 | Remote | 1000 | >10 | SS | MD | Bivariatef | 0.64 | |||
34 | [65] | C | Rice | 2 | 1.4 | Remote | 1 | MS | SD | Multivariatef | 0.8 | |||
35 | [66] | NA | Rice | 10 | 3 | Proximal | 1 | Before Harvest | MS | SD | PLSRf | 0.82 | 0.19 | |
36 | [67] | Q4 | Wheat | 1 | Remote | 1000 | >10 | SS | SD | Bivariatef | 0.62 | |||
37 | [27] | Q1 | Rice | 172 | 1.5 | Remote | 0.23 | 1 | SS | SD | Bivariatef | 0.51 | 0.25 | |
38 | [34] | Q1 | Wheat | 40 | 5.8 | Remote | 30 | Anthesis | MS | MD | PLSRf | 0.89 | ||
39 | [68] | NA | Maize | 1 | 2.5 | Proximal | 2–5 | MS | SD | PLSRf | 0.81 | 0.1 | ||
40 | [10] | PC | Wheat | Combine | 0.98 | 0.28 | ||||||||
41 | [10] | Q2 | Wheat | 3 | 9.2 | Combine | 0.88 | 0.76 | ||||||
42 | [21] | Q3 | Wheat | 7 | 10.5 | Proximal | 1 | Anthesis | MS | SD | PLSRf | 0.68 | 1.5 | |
43 | [69] | T | Wheat | 2 | 5 | Proximal | 2–5 | Stem elongation | SS | SD | Bivariatef | 0.74 | ||
44 | [70] | Q2 | Wheat | 54 | 8.3 | Remote | 1000 | >10 | Heading | MS | MD | Multivariatef | 0.62 | |
45 | [71] | Q3 | Wheat | 3 | 4.4 | Proximal | 1 | MS | SD | PLSRf | 0.63 | 0.61 | ||
46 | [72] | Q4 | Wheat | 9 | 10 | Proximal | 2–5 | Tillering | SS + other | SD | Multivariatef | 0.76 | ||
47 | [73] | Q3 | Wheat | 41 | Remote | 30 | 2–5 | Booting | MS | MD | Multivariatef | 0.52 | 0.66 | |
48 | [74] | Q1 | Wheat | 83 | 7.2 | Remote | 10 | >10 | Anthesis | SS | SD | Bivariatef | 0.8 | 1.28 |
49 | [75] | NA | Wheat | 6 | 4.3 | Proximal | 2–5 | Anthesis | MS | MD | PLSRf | 0.52 | 0.64 | |
50 | [76] | Q1 | Wheat | 5 | 7.4 | Proximal | 2–5 | SS | MD | Bivariatef | 0.52 | 1.53 | ||
51 | [77] | Q2 | Wheat | 3 | Proximal | 2–5 | Multiple | MS | MD | Bivariatef | 0.77 | 1.16 | ||
52a | [78] | Q2 | Wheat | 24 | 6.4 | Remote | 1000 | >10 | Pretillering | SS | SD | Bivariatef | 0.57 | |
52b | [79] | Q2 | Wheat | 24 | 6.4 | Remote | 250 | >10 | Pretillering | SS | SD | Bivariatef | 0.45 | |
53 | [80] | Q2 | Wheat | 1 | 5.9 | Remote | 0.04 | 2–5 | Heading | SS | SD | Bivariatef | 0.86 | 0.61 |
54 | [23] | Q1 | Wheat | 1 | Proximal | 2–5 | Heading | SS | MD | Multivariatef | 0.69 | 1.09 | ||
55 | [24] | Q1 | Barley | 6 | 9.9 | Proximal | 1 | Anthesis | MS | SD | PLSRf | 0.54 | 0.8 | |
56 | [81] | NA | Wheat | 2 | 3.3 | Remote | 6.5 | 1 | Heading | SS | SD | Bivariatef | 0.67 | |
57 | [20] | Q1 | Wheat | 4 | 10 | Proximal | 1 | Milk ripe | SS | SD | Bivariatef | 0.73 | ||
58 | [17] | Q1 | Wheat | 2 | Combine | 0.3 | ||||||||
59 | [82] | T | Wheat | 12 | 3 | Proximal | 2–5 | Booting | SS | SD | Bivariatef | 0.48 | ||
60 | [26] | Q2 | Wheat | 1 | 4.1 | Remote | 1 | 6–10 | Multiple | SS | SD | Bivariatef | 0.21 | 0.45 |
61 | [83] | NA | Rice | 54 | 1.5 | Remote | 0.04 | 1 | MS | SD | RF-ANN | 0.74 | 0.21 | |
62a | [84] | Q1 | Wheat | 3 | 5.8 | Remote | 30 | 2–5 | Grain filling | SS | MD | Bivariatef | 0.48 | |
62b | [84] | Q1 | Wheat | 3 | 5.8 | Remote | 2.5 | 2–5 | Grain filling | SS | MD | Bivariatef | 0.47 | |
62c | [84] | Q1 | Wheat | 3 | 5.8 | Remote | 6.5 | 2–5 | Grain filling | SS | MD | Bivariatef | 0.51 | |
62d | [84] | Q1 | Wheat | 3 | 5.8 | Remote | 1.8 | 2–5 | Grain filling | SS | MD | Bivariatef | 0.55 | |
62e | [84] | Q1 | Wheat | 3 | 5.8 | Remote | 10 | 2–5 | Grain filling | SS | MD | Bivariatef | 0.56 | |
62f | [84] | Q1 | Wheat | 3 | 5.8 | Proximal | 2–5 | Grain filling | SS | MD | Bivariatef | 0.56 | ||
63 | [31] | NA | Wheat | 2 | 5.1 | Proximal | 2–5 | Stem elongation | MS | SD | RF-ANN | 0.99 | 0.02 | |
64 | [28] | Q2 | Wheat | 1 | 9.6 | Remote | 5 | >10 | SS | SD | Bivariatef | 0.02 | ||
65 | [85] | Q2 | Wheat | 83 | 9.9 | Proximal | 1 | Anthesis | MS | SD | Multivariatef | 0.47 | ||
66 | [86] | Q2 | Wheat | 3 | Proximal | 2–5 | Anthesis | SS | SD | Bivariatef | 0.36 | |||
67 | [87] | Q2 | Wheat | 2 | 4 | Remote | 30 | 2–5 | MS | MD | Bivariatef | 0.39 | 0.89 | |
68 | [24] | Q1 | Rice | 3 | 2.6 | Remote | 0.018 | >10 | Heading | SS + other | SD | Multivariatef | 0.8 | 0.34 |
69 | [88] | Q1 | Wheat | 8 | 9.7 | Proximal | 1 | Anthesis | SS + other | SD | Multivariatef | 0.85 | 1.02 | |
70 | [89] | Q1 | Wheat | 1 | 9 | Combine | 0.62 | |||||||
71 | [90] | Q2 | Wheat | 92 | 5.2 | Remote | 30 | 1 | Anthesis | MS | SD | PLSRf | 0.81 | 0.54 |
72 | [91] | NA | Wheat | 6 | 3.5 | Proximal | 1 | SS | SD | Bivariatef | 0.37 | |||
73 | [29] | Q2 | Wheat | 10 | 6.6 | Remote | 10 | 1 | Anthesis | SS + other | SD | Multivariatef | 0.52 | 0.38 |
74 | [92] | Q1 | Wheat | 3 | 5.9 | Proximal | 1 | Anthesis | SS | SD | Bivariatef | 0.77 | ||
75 | [93] | Q1 | Soybean | 5 | 7.9 | Proximal | 1 | Seeding | MS | SD | PLSRf | 0.39 | 1.3 | |
76 | [94] | Q2 | Rice | 3 | 1.6 | Remote | 0.025 | 1 | MS | SD | RF-ANN | 0.93 | 0.2 | |
77 | [95] | Q2 | Wheat | 2 | 7 | Proximal | 2–5 | Heading | SS | SD | Bivariatef | 0.05 | ||
78 | [96] | Q1 | Wheat | 3 | 2.2 | Proximal | 2–5 | Heading | SS | SD | Bivariatef | 0.14 | ||
79 | [97] | Q1 | Wheat | 4 | 3.6 | Remote | 10 | >10 | SS | SD | Bivariatef | 0.66 | ||
80 | [98] | Q2 | Wheat | 2 | 1.8 | Proximal | 2–5 | Stem elongation | SS | SD | Bivariatef | 0.99 | ||
81 | [99] | Q2 | Wheat | 16 | 7.7 | Remote | 0.06 | 2–5 | Pretillering | SS | SD | Bivariatef | 0.6 | 1.48 |
82 | [100] | Q1 | Maize | 4 | 3.3 | Proximal | 2–5 | Anthesis | SS | SD | Bivariatef | 0.7 | 0.74 | |
83 | [101] | Q2 | Wheat | 4 | 10.3 | Remote | 0.06 | 2–5 | MS + other | MD | RF-ANN | 0.63 | 1.07 | |
84 | [102] | Q1 | Wheat | 4 | 11 | Remote | 2–5 | MS + other | MD | RF-ANN | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastos, L.M.; Froes de Borja Reis, A.; Sharda, A.; Wright, Y.; Ciampitti, I.A. Current Status and Future Opportunities for Grain Protein Prediction Using On- and Off-Combine Sensors: A Synthesis-Analysis of the Literature. Remote Sens. 2021, 13, 5027. https://doi.org/10.3390/rs13245027
Bastos LM, Froes de Borja Reis A, Sharda A, Wright Y, Ciampitti IA. Current Status and Future Opportunities for Grain Protein Prediction Using On- and Off-Combine Sensors: A Synthesis-Analysis of the Literature. Remote Sensing. 2021; 13(24):5027. https://doi.org/10.3390/rs13245027
Chicago/Turabian StyleBastos, Leonardo M., Andre Froes de Borja Reis, Ajay Sharda, Yancy Wright, and Ignacio A. Ciampitti. 2021. "Current Status and Future Opportunities for Grain Protein Prediction Using On- and Off-Combine Sensors: A Synthesis-Analysis of the Literature" Remote Sensing 13, no. 24: 5027. https://doi.org/10.3390/rs13245027
APA StyleBastos, L. M., Froes de Borja Reis, A., Sharda, A., Wright, Y., & Ciampitti, I. A. (2021). Current Status and Future Opportunities for Grain Protein Prediction Using On- and Off-Combine Sensors: A Synthesis-Analysis of the Literature. Remote Sensing, 13(24), 5027. https://doi.org/10.3390/rs13245027