Monitoring of Nitrogen and Grain Protein Content in Winter Wheat Based on Sentinel-2A Data
"> Figure 1
<p>Location of the study area.</p> "> Figure 2
<p>UAV hyper-spectral image for Trail 3.</p> "> Figure 3
<p>Winter wheat planting area in Renqiu area in 2018. The green part is the wheat growing area.</p> "> Figure 4
<p>Workflow of the study.</p> "> Figure 5
<p>The distribution of the measured data.</p> "> Figure 6
<p>Relationship between nitrogen nutrition parameters and vegetation indices.</p> "> Figure 7
<p>Relationship between predicted and measured values of nitrogen nutrition parameters. (<b>a</b>) Leaf nitrogen content (LNC) estimation results based on vegetation indices. (<b>b</b>) Leaf nitrogen accumulation (LNA) estimation results based on vegetation indices. (<b>c</b>) Plant nitrogen content (PNC) estimation results based on vegetation indices. (<b>d</b>) Plant nitrogen accumulation (PNA) estimation results based on vegetation indices.</p> "> Figure 8
<p>Relationship between measured and predicted grain protein content. (<b>a</b>) GPC estimation results based on <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>N</mi> <msub> <mi>C</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> and vegetation indices. (<b>b</b>) GPC estimation results based on <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>N</mi> <msub> <mi>A</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> and vegetation indices. (<b>c</b>) GPC estimation results based on <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>N</mi> <msub> <mi>C</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> and vegetation indices. (<b>d</b>) GPC estimation results based on <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>N</mi> <msub> <mi>A</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> and vegetation indices.</p> "> Figure 9
<p>UAV data inversion map of four nitrogen nutrition parameters. (<b>a</b>) LNC spatial distribution map. (<b>b</b>) LNA spatial distribution map. (<b>c</b>) PNC spatial distribution map. (<b>d</b>) PNA spatial distribution map.</p> "> Figure 10
<p>UAV data inversion of the grain protein content. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <msub> <mi>C</mi> <mrow> <mi>L</mi> <mi>N</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math> spatial distribution map. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <msub> <mi>C</mi> <mrow> <mi>L</mi> <mi>N</mi> <mi>A</mi> </mrow> </msub> </mrow> </semantics></math> spatial distribution map. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <msub> <mi>C</mi> <mrow> <mi>P</mi> <mi>N</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math> spatial distribution map. (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <msub> <mi>C</mi> <mrow> <mi>P</mi> <mi>N</mi> <mi>A</mi> </mrow> </msub> </mrow> </semantics></math> spatial distribution map.</p> "> Figure 11
<p>Spatial distribution map of the four nitrogen nutrition indexes. (<b>a</b>) LNC spatial distribution map. (<b>b</b>) LNA spatial distribution map. (<b>c</b>) PNC spatial distribution map. (<b>d</b>) PNA spatial distribution map.</p> "> Figure 12
<p>Spatial distribution of the grain protein content. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <msub> <mi>C</mi> <mrow> <mi>L</mi> <mi>N</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math> spatial distribution map. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <msub> <mi>C</mi> <mrow> <mi>L</mi> <mi>N</mi> <mi>A</mi> </mrow> </msub> </mrow> </semantics></math> spatial distribution map. (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <msub> <mi>C</mi> <mrow> <mi>P</mi> <mi>N</mi> <mi>C</mi> </mrow> </msub> </mrow> </semantics></math> spatial distribution map. (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <msub> <mi>C</mi> <mrow> <mi>P</mi> <mi>N</mi> <mi>A</mi> </mrow> </msub> </mrow> </semantics></math> spatial distribution map.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Data Acquisition
2.2.1. Canopy Spectral Measurement
2.2.2. Winter Wheat LAI and AGB Data
2.2.3. Winter Wheat Nitrogen Parameters
2.2.4. Winter Wheat GPC Data
2.2.5. Acquisition and Processing of Unmanned Aerial Vehicle (UAV) Remote-Sensing Images
2.2.6. Sentinel-2 Satellite Data Acquisition and Preprocessing
2.3. Method
2.3.1. Vegetation Index Selection
2.3.2. Multiple Linear Regression Model
2.3.3. Accuracy Verification
3. Results
3.1. The Distribution of Experimentally Measured Data
3.2. Correlation Analysis between Simulated Sentinel-2A Vegetation Indices and Nitrogen Nutrition Parameters of Wheat at the Anthesis Stage
3.3. Relationship between the Wheat Grain Protein Content and the Nitrogen Index, as well as Vegetation Indices
3.4. Model Verification
3.4.1. Model Verification by ASD Data Collected from Beijing Suburb
3.4.2. Model Verification by Simulated Sentinel-2B Image by UAV Hyper-Spectral Data
3.4.3. Model Verification by Sentinel-2B Image
4. Discussion
5. Conclusions
- (1)
- By analyzing the correlation between the Sentinel-2A VIs and the wheat nitrogen parameters or wheat GPC, the most significant relationship between wheat nitrogen parameters and GPC was found in the farm-scale experiment. The correlation coefficients for Sentinel-2A VIs and wheat nitrogen parameters also reached a very significant level in the wheat anthesis stage, which provides the potential for the estimation of wheat GPC through spectral VIs and the wheat nitrogen parameters.
- (2)
- A total of four nitrogen parameter estimation models were established using the simulated Sentinel-2A multi-vegetation index through the MLR algorithm and all have high modeling accuracy and verification accuracy. Among them, the PNA modeling had the highest accuracy and reliability with the calibration of 0.807 and verification nRMSE of 13.940%.
- (3)
- The wheat GPC was predicted by the four nitrogen parameters combined with the spectral parameters and the inversion model based on PNA, IREC, and CVI was the most accurate and reliable model (= 0.461, nRMSE = 7.344%).
- (4)
- We verified the accuracy of relevant models using ground-measured data obtained from 2003–2006 experiments in the Beijing suburbs. The prediction results of the four nitrogen nutrition parameters all showed an acceptable accuracy while the prediction results of the GPC, PNC, and LNA showed a good accuracy and PNA showed an acceptable accuracy. These three nitrogen nutrition parameters can better invert the grain protein content of wheat, which indicates that the models had good inter-annual and inter-regional expansion.
- (5)
- Applying the relevant models to the Sentinel-2A imagery obtained in Renqiu county in 2018 indicated that the nRMSE of PNA and LNC were 25.241% and 23.200%, respectively. The nRMSE for the GPC models based on PNA, PNC, and LNA and VIs were 8.040%, 7.888%, and 8.162%, respectively, which is not different. The nRMSE of the LNC was 12.461%. Based on the results of all the inversions, the model with PNA as the intermediate variable is a relatively reliable choice for the inversion of satellite image data.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yousaf, M.; Shaaban, M.; Ali, S.A.I.; Osman, K. The Effect of Nitrogen Application Rates and Timings of First Irrigation on Wheat Growth and Yield. Int. J. Agric. Innov. Res. 2014, 2, 645–653. [Google Scholar]
- Li, S.; Tan, H.; Wang, K.; Xiao, C.; Xie, R.; Gao, S. Research progress in wheat grain protein content monitoring using remote sensing. Trans. Chin. Soc. Agric. Eng. 2009, 25, 302–307, (In Chinese with English abstract). [Google Scholar]
- Zhao, C.; Liu, L.; Wang, J.; Huang, W.; Song, X.; Li, C. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 1–9. [Google Scholar] [CrossRef]
- Xue, L.; Cao, W.; Yang, L. Predicting Grain Yield and Protein Content in Winter Wheat at Different N Supply Levels Using Canopy Reflectance Spectra. Pedosphere 2007, 17, 646–653. [Google Scholar] [CrossRef]
- MacDonald, G.K. Effects of nitrogenous fertilizer on the growth, grain yield and grain protein concentration of wheat. Aust. J. Agric. Res. 1992, 43, 949–967. [Google Scholar] [CrossRef]
- Daniel, C.; Triboi, E. Changes in wheat protein aggregation during grain development: Effects of temperatures and water stress. Eur. J. Agron. 2002, 16, 1–12. [Google Scholar] [CrossRef]
- Li, Y.G.; Jiang, G.M.; Yang, J.C. Effects of temperature on carbon and nitrogen metabolism, yield and quality of wheat. Acta Phytoecol. Sin. 2003, 27, 164–169, (In Chinese with English abstract). [Google Scholar]
- Wang, Y.F.; Jiang, D.; Yu, Z.W.; Cao, W.X. Effects of nitrogen rates on grain yield and protein content of wheat and its physiological basis. Sci. Agric. Sin. 2003, 36, 513–520, (In Chinese with English abstract). [Google Scholar]
- Austin, R.B.; Ford, M.A.; Edrich, J.A.; Blackwell, R.D. The nitrogen economy of winter wheat. J. Agric. Sci. (Camb.) 1977, 88, 159–167. [Google Scholar] [CrossRef]
- Fangmeier, A.; De Temmerman, L.; Mortensen, L.; Kemp, K.; Burke, J.; Mitchell, R.; Oijen, M.; Weige, H.-J. Effects on nutrients and on grain quality in spring wheat crops grown under elevated co 2, concentrations and stress conditions in the european, multiple-site experiment ‘espace-wheat’. Eur. J. Agron. 1999, 10, 215–229. [Google Scholar] [CrossRef]
- Feller, U.; Fischer, A. Nitrogen metabolism in senescing leaves. Crit. Rev. Plant Sci. 1994, 13, 241–273. [Google Scholar] [CrossRef]
- Masclaux, C.; Quilleré, I.; Gallais, A.; Hirel, B. The challenge of remobilisation in plant nitrogen economy. A survey of physioagronomic and molecular approaches. Ann. Appl. Biol. 2001, 138, 69–81. [Google Scholar] [CrossRef]
- Van Sanford, D.A.; MacKown, C.T. Cultivar differences in nitrogen remobilization during grain filling in soft red winter wheat. Crop Sci. 1987, 27, 295–300. [Google Scholar] [CrossRef]
- Andersson, A.; Johansson, E.; Oscarson, P. Nitrogen redistribution from the roots in post-anthesis plants of spring wheat. Plant Soil 2005, 269, 321–332. [Google Scholar] [CrossRef]
- White, J.; Edwards, J. Wheat Growth and Development; Procrop; NSW Department of Primary Industries: Orange, NSW, Australia, 2007. [Google Scholar]
- Wang, J.H.; Huang, W.J.; Zhao, C.J. Estimation of leaf biochemical components and grain quality indicators of winter wheat from spectral reflectance. J. Remote Sens. 2003, 7, 277–284, (In Chinese with English abstract). [Google Scholar]
- Evans, J.R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 1989, 78, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Ladha, J.K.; Krupnik, T.J.; Six, J.; Kessel, C.V.; Pathak, H. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 2010, 143, 105–117. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- He, L.; Song, X.; Feng, W.; Guo, B.B.; Zhang, Y.S.; Wang, Y.H.; Wang, C.Y.; Guo, T.C. Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data. Remote Sens. Environ. 2016, 174, 122–133. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens. Environ. 2006, 101, 181–193. [Google Scholar] [CrossRef]
- Huang, Z.; Turner, B.J.; Dury, S.J.; Wallis, I.R.; Foley, W.J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ. 2004, 93, 18–29. [Google Scholar] [CrossRef]
- Dong, L.; Xue, W.; Hengbiao, Z.; Kai, Z.; Xia, Y.; Yongchao, T.; Yan, Z.; Weixing, C.; Tao, C. Estimation of area- and mass-based leaf nitrogen contents of wheat and rice crops from water-removed spectra using continuous wavelet analysis. Plant Methods 2018, 14, 76. [Google Scholar]
- Guo, B.B.; Qi, S.L.; Heng, Y.R.; Duan, J.Z.; Zhang, H.Y.; Wu, Y.P.; Feng, W.; Xie, Y.X.; Zhu, Y.J. Remotely assessing leaf N uptake in winter wheat based on canopy hyperspectral red-edge absorption. Eur. J. Agron. 2016, 82, 113–124. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.W.; Li, F.; Liu, B.; Yue, S.C.; Cheng, S.S.; Ustin, S.L.; Khosa, R. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Comput. Electron. Agric. 2015, 112, 54–67. [Google Scholar] [CrossRef]
- Chen, P.; Haboudane, D.; Tremblay, N.; Wang, J.; Vigneault, P.; Li, B. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat. Remote Sens. Environ. 2010, 114, 1987–1997. [Google Scholar] [CrossRef]
- Gastal, F. N uptake and distribution in crops: An agronomical and ecophysiological perspective. J. Exp. Bot. 2002, 53, 789–799. [Google Scholar] [CrossRef]
- Filella, I.; Serrano, L.; Serra, J.; Peñuelas, J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminate analysis. Crop Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Tarpley, L.; Reddy, K.; Sassenrath-Cole, F. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Sci. 2000, 40, 1814–1819. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Liu, L.; Huang, W.; Zhao, C.; Wang, C. Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crops Res. 2004, 90, 311–321. [Google Scholar] [CrossRef]
- Magney, T.S.; Eitel, J.U.H.; Vierling, L.A. Mapping wheat nitrogen uptake from RapidEye vegetation indices. Precis. Agric. 2017, 18, 429–451. [Google Scholar] [CrossRef]
- Huang, W.; Wang, J.; Liu, L.; Zhao, C.; Song, X.; Ma, Z. Study on grain quality effecting factors and monitoring methods by using hyperspectral data in winter wheat. Remote Sens. Technol. Appl. 2004, 19, 143–148, (In Chinese with English abstract). [Google Scholar]
- Haboudane, D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance Measurement of Canopy Biomass and Nitrogen Status in Wheat Crops Using Normalized Difference Vegetation Indices and Partial Least Squares Regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Liu, L.; Huang, W.; Zhao, C. Progress of Remote Sensing Monitoring and Forecasting Crop Quality. Sci. Agric. Sin. 2008, 41, 2633–2640. [Google Scholar]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Peng, Y.; Masek, J.G.; Rundquist, D.C.; Verma, S.; Suyker, A.; Baker, J.M.; Hatfield, J.L.; Meyerset, T. Remote estimation of crop gross primary production with Landsat data. Remote Sens. Environ. 2012, 121, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Pattey, E.; Je’go, G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347–358. [Google Scholar] [CrossRef]
- Thenkabail, P.S. Biophysical and yield information for precision farming from near-real-time and historical Landsat TM images. Int. J. Remote Sens. 2003, 24, 2879–2904. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Smith, A.M.S. Using in situ measurements to evaluate the new RapidEyeTM satellite series for prediction of wheat nitrogen status. Int. J. Remote Sens. 2007, 8, 4183–4190. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Long, D.S.; Gessler, P.E.; Hunt, E.R. Combined spectral index to improve ground-based estimates of nitrogen status in dryland wheat. Agron. J. 2008, 100, 1694–1702. [Google Scholar] [CrossRef]
- Perry, E.M.; Fitzgerald, G.J.; Nuttall, J.G.; O’Leary, G.J.; Schulthess, U.; Whitlock, A. Rapid estimation of canopy nitrogen of cereal crops at paddock scale using a canopy chlorophyll content index. Field Crops Res. 2012, 134, 158–164. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Bao, Y.; Huang, W.; Ma, Z.; Zhao, C. Predicting winter wheat condition, grain yield and protein content using multi-temporal EnviSat-ASAR and Landsat TM satellite images. Int. J. Remote Sens. 2006, 27, 737–753. [Google Scholar] [CrossRef]
- Reyniers, M.; Vrindts, E.; Baerdemaeker, J.D. Comparison of an aerial-based system and an on the ground continuous measuring device to predict yield of winter wheat. Eur. J. Agron. 2006, 24, 87–94. [Google Scholar] [CrossRef]
- Li, C.; Wang, Q.; Wang, J.; Wang, Y.; Yang, X.; Song, X.; Huang, W. Wheat Grain Protein Content Estimation Based on Multi-temporal Remote Sensing Data and Generalized Regression Neural Network. In IFIP Advances in Information and Communication Technology, Proceedings of the Computer and Computing Technologies in Agriculture V, Beijing, China, 29–31 October 2011; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinform. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 MSI Technical Guide. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi (accessed on 28 February 2018).
- Exelis VIS. ENVI 5.3; Exelis VIS: Boulder, CO, USA, 2015. [Google Scholar]
- Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage: Theory and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [Google Scholar] [CrossRef]
- Matsunaka, T.; Watanabe, Y.; Miyawaki, T.; Ichikawa, N. Prediction of grain protein content in winter wheat through leaf color measurements using a chlorophyll meter. Soil Sci. Plant Nutr. 1997, 43, 127–134. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y. Non-destructive estimation of rice plant nitrogen status with crop circle multispectral active canopy sensor. Field Crops Res. 2013, 154, 133–144. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratiofor boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Daughtry, C.T.S.; Walthall, C.L.; Kim, M.S.; Brown de Coulston, E.; Mc Murtrey, J.E., III. Estimating corn leaf chlorophyll concentration fromleaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Vincini, M.; Amaducci, S.; Frazzi, E. Sensitivity of Sentinel-2 red-edge bands to leaf chlorophyll concentration in winter wheat. In Proceedings of the First Sentinel-2 Preparatory Symposium, Frascati, Italy, 23–27 April 2012; Volume 707. [Google Scholar]
- Gitelson, A.; Viña, A.; Ciganda, V.S.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 93–114. [Google Scholar] [CrossRef]
- Frampton, W.; Dash, J.; Watmough, G.; Milton, E. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, U.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms fornon-destructive chlorophyll assessment in higher plant leaves. Plant Phys. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef]
- Vincini, M.; Frazzi, E.; D’Alessio, P. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Nathans, L.; Oswald, F.L.; Nimon, K. Interpreting Multiple Linear Regression: A Guidebook of Variable Importance. Pract. Assess. Res. Eval. 2012, 17, 17–19. [Google Scholar]
- Timsina, J.; Humphreys, E. Performance of CERES-rice and CERES-wheat models in rice-wheat systems: A review. Agric. Syst. 2006, 89, 5–31. [Google Scholar] [CrossRef]
- Biernath, C.; Gayler, S.; Bittner, S.; Klein, C. Evaluating the ability of four crop models to predict different environmental impacts on spring wheat grown in open-top chambers. Eur. J. Agron. 2011, 35, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.L.; Yang, J.Y.; Drury, C.F.; Reynolds, D.; Tan, C.S.; Bai, Y.L.; He, P.; Jin, J.; Hoogenboom, G. Using the DSSAT-CERES-Maize model to simulate crop yield and nitrogen cycling in fields under long-term continuous maize production. Nutr. Cycl. Agroecosyst. 2011, 89, 313–328. [Google Scholar] [CrossRef]
- Ran, H.; Kang, S.; Li, F.; Du, T.; Tong, L.; Li, S.; Ding, R.; Zhang, X. Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China. Agric. Water Manag. 2018, 203, 438–450. [Google Scholar] [CrossRef]
- Hu, Z.; Islam, S. Analysis of the influence of surface heterogeneity on the remote sensing algorithms. AGU Spring Meet. EOS Trans. 1995, 76, 116. [Google Scholar]
- Hu, Z.; Islam, S. A Framework for Analyzing and Designing Scale Invariant Remote Sensing Algorithms. IEEE Trans. Geosci. Remote Sens. 1997, 35, 747–755. [Google Scholar]
- Walburg, G.; Bauer, M.E.; Daughtry, C.S.T.; Housley, T.L. Effects of N nutrition on the growth, yield, and reflectance characteristics of corn canopies. Agron. J. 1982, 74, 677–683. [Google Scholar] [CrossRef]
- Scheromm, P.; Martin, G.; Bergoin, A.; Autran, J.C. Influence of nitrogen fertilizer on the potential bread-baking quality of two wheat cultivars differing in their responses to increasing nitrogen supplies. Cereal Chem. 1992, 69, 664–670. [Google Scholar]
- Woodard, H.J.; Bly, A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota. J. Plant Nutr. 1998, 21, 217–233. [Google Scholar] [CrossRef]
- Boman, R.K.; Westerman, R.L.; Raun, W.R.; Jojola, M.E. Time of nitrogen application: Effects on winter wheat and residual soil nitrate. Soil Sci. Soc. Am. J. 1995, 59, 1364–1369. [Google Scholar] [CrossRef]
- Ozturk, A.; Aydin, F. Effect of water stress at various growth stages on some quality characteristics of winter wheat. J. Agron. Crop Sci. 2004, 190, 93–99. [Google Scholar] [CrossRef]
- Blumenthal, C.; Stone, P.J.; Gras, P.W.; Bekes, F.; Clarke, B.; Barlow, E.W.R.; Appels, R.; Wrigley, C.W. Heat-shock protein 70 and dough-quality changes resulting from heat stress during grain filling in wheat. Cereal Chem. 1998, 75, 43–49. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Jin, X.; Zhang, J.; Song, X.; Song, S.; Yang, G.; Wang, J. Remote Sensing Prediction of Grain Protein Content of Winter Wheat Based on Nitrogen Operation Principle and GRA-PLS Algorithm. Sci. Agric. Sin. 2014, 47, 3780–3790. [Google Scholar]
- Chen, P.; Wang, J.; Pan, P.; Xu, Y.; Yao, L. Remote Sensing Inversion of Grain Protein Content in Winter Wheat Based on Nitrogen Nutrition Index. Trans. Chin. Soc. Agric. Eng. 2011, 27, 75–80, (In Chinese with English abstract). [Google Scholar]
- Chemura, A.; Mutanga, O.; Odindi, J.; Kutywayo, D. Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica, L.) plantations with multispectral Sentinel-2 MSI data. ISPRS J. Photogramm. Remote Sens. 2018, 138, 1–11. [Google Scholar] [CrossRef]
- Tan, C.; Wang, J.; Huang, W.; Zhu, X. Predicting grain protein content in winter wheat based on TM images and partial least squares regression. Trans. Chin. Soc. Agric. Eng. 2011, 27, 388–392. [Google Scholar]
Location | Trial | Year | Growth Stage | Treatment | Number of Samples | Data Collection | Model |
---|---|---|---|---|---|---|---|
National Experimental Station for Precision Agriculture | Trial 1 | 11 May 2013 | Anthesis | Nitrogen treatments | 32 | Canopy spectral data, Plant N, AGB, GPC | Calculation |
Trial 2 | 22 May 2014 | Anthesis | Nitrogen treatments | 48 | |||
Trial 3 | 13 May 2015 | Anthesis | Nitrogen treatments | 48 | UAV-UHD image, plant AGB, N, GPC | ||
Beijing suburb | Trial 4 | 17 May 2003 | Anthesis | Uniform Management | 21 | Canopy spectral data, Plant AGB, N, GPC | Validation |
Trial 5 | 18 May 2004 | Anthesis | Uniform Management | 25 | |||
Trial 6 | 8 May 2005 | Anthesis | Uniform Management | 14 | |||
Trial 7 | 10 May 2006 | Anthesis | Uniform Management | 13 | |||
Renqiu | Trial 8 | 10 May 2018 | Anthesis | Uniform Management | 20 | Sentinel-2 data, Plant AGB, N, GPC | Validation |
Sentinel-2 Bands | Central Wavelength (nm) | Spatial Resolution (m) |
---|---|---|
Band 1—Coastal aerosol | 443 ± 10 | 60 |
Band 2—Blue | 490 ± 32.5 | 10 |
Band 3—Green | 560 ± 17.5 | 10 |
Band 4—Red | 665 ± 15 | 10 |
Band 5—Vegetation red-edge | 705 ± 7.5 | 20 |
Band 6—Vegetation red-edge | 740 ± 7.5 | 20 |
Band 7—Vegetation red-edge | 783 ± 10 | 20 |
Band 8—NIR 1 | 842 ± 57.5 | 10 |
Band 8A—Vegetation red-edge | 865 ± 10 | 20 |
Band 9—Water vapor | 945 ± 10 | 60 |
Band 10—SWIR 2-Cirrus | 1375 ± 15 | 60 |
Band 11—SWIR | 1610 ± 15 | 20 |
Band 12—SWIR | 2190 ± 90 | 20 |
Image Acquisition Date | Image Type | Wheat Growth Season | Data Usage |
---|---|---|---|
2018-03-01 | Sentinel-2A | Greening | Classification |
2018-03-16 | Sentinel-2B | Up | Classification |
2018-04-20 | Sentinel-2A | Flag | Classification |
2018-05-08 | Sentinel-2B | Anthesis | Nitrogen monitoring |
2018-05-30 | Sentinel-2A | Filling | Classification |
2018-06-04 | Sentinel-2B | Milking | Classification |
2018-06-14 | Sentinel-2B | Harvesting | Classification |
Vegetation Index | Name | Formula | References |
---|---|---|---|
MTCI | MERIS Terrestrial Chlorophyll Index | [52] | |
RDVI705 | Re-normalized Difference Vegetation Index | [53] | |
mSR | Modified Simple Ratio | [54] | |
mSR2 | mSR[705,750] | [55] | |
SR705 | Simple Ratio[705,750] | [56] | |
MCARI | Modified Chlorophyll Absorption Ratio Index | [57] | |
MCARI[705,750] | MCARI[705,750] | [58] | |
REIPS2 | Red-Edge Inflection Position of Sentinel-2 bands | [59] | |
CIRE1 | Red-edge Chlorophyll Index | [57] | |
IREC | Inverted Red-Edge Chlorophyll Index | [60] | |
RED EDGE NDVI | Red-edge NDVI | [61] | |
GSR | green SR | [62] | |
CRI 1 | Carotenoid Reflectance Index 1 | [63] | |
CVI | Chlorophyll Vegetation Index | [64] |
Vegetation Index | AGB (kg/hm2) | PNA (kg/hm2) | PNC (%) | LNA (kg/hm2) | LNC (%) |
---|---|---|---|---|---|
MTCI | 0.713 ** | 0.883 ** | 0.875 ** | 0.836 ** | 0.883 ** |
0.780 ** | 0.881 ** | 0.858 ** | 0.856 ** | 0.839 ** | |
mSR2 | 0.765 ** | 0.872 ** | 0.867 ** | 0.851 ** | 0.840 ** |
0.738 ** | 0.882 ** | 0.884 ** | 0.855 ** | 0.848 ** | |
0.731 ** | 0.888 ** | 0.879 ** | 0.856 ** | 0.830 ** | |
0.753 ** | 0.873 ** | 0.866 ** | 0.846 ** | 0.893 ** | |
0.711 ** | 0.891 ** | 0.895 ** | 0.856 ** | 0.862 ** | |
IREC | 0.717 ** | 0.899 ** | 0.893 ** | 0.863 ** | 0.844 ** |
MCARI | −0.782 ** | −0.805 ** | −0.822 ** | −0.819 ** | −0.839 ** |
RED EDGE NDVI | 0.733 ** | 0.886 ** | 0.880 ** | 0.853 ** | 0.881 ** |
mSR | 0.760 ** | 0.867 ** | 0.871 ** | 0.857 ** | 0.822 ** |
GSR | 0.719 ** | 0.880 ** | 0.894 ** | 0.857 ** | 0.860 ** |
CVI | 0.607 ** | 0.700 ** | 0.765 ** | 0.743 ** | 0.693 ** |
CRI 1 | 0.684 ** | 0.783 ** | 0.796 ** | 0.743 ** | 0.838 ** |
Nitrogen Nutrition Index | Vegetation Index |
---|---|
PNA | |
PNC | MCARI |
LNA | mSR |
LNC | MTCI RED EDGE NDVI |
Parameters | Regression Model |
---|---|
PNA | = 23.537 + 6.178 − 4453.427 |
PNC | = 0.567 MCARI + 0.103 + 0.696 |
LNA | = 5.024 mSR + 4.962 + 1.924 |
LNC | = 0.179 MTCI + 3.093 RED EDGE NDVI + 1.804 |
Vegetation Index | Correlation Coefficient | Vegetation Index | Correlation Coefficient |
---|---|---|---|
MTCI | 0.628 ** | IREC | 0.624 ** |
0.535 ** | MCARI | −0.429 ** | |
mSR2 | 0.515 ** | RED EDGE NDVI | 0.596 ** |
0.560 ** | mSR | 0.503 ** | |
0.592 ** | GSR | 0.587 ** | |
0.585 ** | CVI | 0.622 ** | |
0.608 ** | CRI 1 | 0.284 ** |
Parameters | Regression Model |
---|---|
= 1.424 IREC + 0.461 CVI + 0.001 + 10.536 | |
= 0.505 IREC +0.685 CVI + 0.646 + 9.980 | |
= 1.143 IREC + 0.664 CVI + 0.009 + 9.700 | |
= 3.077 IREC +1.871 CVI − 5.737 + 20.503 |
Parameters | nRMSE | Parameters | nRMSE |
---|---|---|---|
PNA | 0.264 | 0.225 | |
PNC | 0.274 | 0.188 | |
LNA | 0.263 | 0.175 | |
LNC | 0.295 | 0.525 |
Parameters | nRMSE | Parameters | nRMSE | ||||
---|---|---|---|---|---|---|---|
0.50 m | 1.00 m | 2.50 m | 0.50 m | 1.00 m | 2.50 cm | ||
PNA | 0.200 | 0.200 | 0.209 | 0.126 | 0.123 | 0.126 | |
PNC | 0.373 | 0.373 | 0.378 | 0.132 | 0.132 | 0.132 | |
LNA | 0.306 | 0.306 | 0.322 | 0.127 | 0.127 | 0.127 | |
LNC | 0.169 | 0.169 | 0.172 | 0.128 | 0.128 | 0.125 |
Parameters | nRMSE | Parameters | nRMSE |
---|---|---|---|
PNA | 0.250 | 0.795 | |
PNC | 0.428 | 0.789 | |
LNA | 0.426 | 0.816 | |
LNC | 0.232 | 0.125 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Song, X.; Yang, G.; Li, Z.; Zhang, D.; Feng, H. Monitoring of Nitrogen and Grain Protein Content in Winter Wheat Based on Sentinel-2A Data. Remote Sens. 2019, 11, 1724. https://doi.org/10.3390/rs11141724
Zhao H, Song X, Yang G, Li Z, Zhang D, Feng H. Monitoring of Nitrogen and Grain Protein Content in Winter Wheat Based on Sentinel-2A Data. Remote Sensing. 2019; 11(14):1724. https://doi.org/10.3390/rs11141724
Chicago/Turabian StyleZhao, Haitao, Xiaoyu Song, Guijun Yang, Zhenhai Li, Dongyan Zhang, and Haikuan Feng. 2019. "Monitoring of Nitrogen and Grain Protein Content in Winter Wheat Based on Sentinel-2A Data" Remote Sensing 11, no. 14: 1724. https://doi.org/10.3390/rs11141724
APA StyleZhao, H., Song, X., Yang, G., Li, Z., Zhang, D., & Feng, H. (2019). Monitoring of Nitrogen and Grain Protein Content in Winter Wheat Based on Sentinel-2A Data. Remote Sensing, 11(14), 1724. https://doi.org/10.3390/rs11141724